Definicja zgodności z Androidem 5.1

Spis treści

1. Wstęp

W dokumencie tym wyszczególniono wymagania, jakie muszą zostać spełnione, aby urządzenia były kompatybilne z systemem Android 5.1.

Użycie zwrotów „MUSI”, „NIE MOŻE”, „WYMAGANE”, „MUSI”, „NIE NALEŻY”, „POWINNO”, „NIE powinno”, „ZALECANE”, „MOŻE” i „OPCJONALNE” jest zgodne z IETF standard zdefiniowany w RFC2119 [ Zasoby, 1 ].

W niniejszym dokumencie „wykonawca urządzenia” lub „wykonawca” to osoba lub organizacja opracowująca rozwiązanie sprzętowe/programowe z systemem Android 5.1. „Wdrożenie urządzenia” lub „wdrożenie to opracowane w ten sposób rozwiązanie sprzętowe/programowe.

Aby urządzenia zostały uznane za zgodne z systemem Android 5.1, MUSZĄ spełniać wymagania przedstawione w niniejszej definicji zgodności, w tym wszelkie dokumenty włączone przez odniesienie.

Jeżeli ta definicja lub testy oprogramowania opisane w sekcji 10 są ciche, niejednoznaczne lub niekompletne, obowiązkiem wdrażającego urządzenie jest zapewnienie zgodności z istniejącymi implementacjami.

Z tego powodu projekt Android Open Source [ Zasoby, 2 ] jest zarówno referencyjną, jak i preferowaną implementacją Androida. Zdecydowanie zachęca się osoby wdrażające urządzenia, aby w największym możliwym stopniu opierały swoje implementacje na „źródłowym” kodzie źródłowym dostępnym w ramach projektu Android Open Source Project. Chociaż niektóre komponenty można hipotetycznie zastąpić alternatywnymi implementacjami, praktyka ta jest zdecydowanie odradzana, ponieważ zdanie testów oprogramowania stanie się znacznie trudniejsze. Obowiązkiem wdrażającego jest zapewnienie pełnej zgodności behawioralnej ze standardową implementacją Androida, w tym i poza pakietem testów zgodności. Na koniec należy pamiętać, że niniejszy dokument wyraźnie zabrania niektórych zamian i modyfikacji komponentów.

Wiele zasobów wymienionych w sekcji 14 pochodzi bezpośrednio lub pośrednio z zestawu SDK systemu Android i będzie funkcjonalnie identycznych z informacjami zawartymi w dokumentacji tego zestawu SDK. W każdym przypadku, gdy ta Definicja Zgodności lub Zestaw Testów Zgodności nie zgadza się z dokumentacją SDK, dokumentacja SDK jest uważana za wiarygodną. Wszelkie szczegóły techniczne podane w odniesieniach zawartych w sekcji 14 są uznawane przez włączenie za część niniejszej Definicji Kompatybilności.

2. Typy urządzeń

Chociaż projekt Android Open Source został wykorzystany do wdrożenia różnych typów urządzeń i formatów, wiele aspektów architektury i wymagań dotyczących kompatybilności zostało zoptymalizowanych pod kątem urządzeń przenośnych. Począwszy od Androida 5.0, projekt Android Open Source ma na celu objęcie szerszej gamy typów urządzeń, jak opisano w tej sekcji.

Urządzenie przenośne z systemem Android oznacza urządzenie z systemem Android, którego zwykle używa się trzymając je w dłoni, np. odtwarzacze mp3, telefony i tablety. Implementacje urządzeń przenośnych z systemem Android:

  • MUSI mieć ekran dotykowy wbudowany w urządzenie.
  • MUSI mieć źródło zasilania zapewniające mobilność, np. akumulator.

Urządzenie telewizyjne z systemem Android oznacza implementację urządzenia z systemem Android, która stanowi interfejs rozrywkowy umożliwiający korzystanie z multimediów cyfrowych, filmów, gier, aplikacji i/lub telewizji na żywo dla użytkowników siedzących w odległości około dziesięciu stóp („odchylony do tyłu” lub „interfejs użytkownika o długości 3 stóp”). ”). Urządzenia telewizyjne z Androidem:

  • MUSI mieć wbudowany ekran LUB zawierać port wyjścia wideo, taki jak VGA, HDMI lub port bezprzewodowy do wyświetlania.
  • MUSI zadeklarować funkcje android.software.leanback i android.hardware.type.television [ Zasoby, 3 ].

Urządzenie Android Watch oznacza urządzenie z systemem Android przeznaczone do noszenia na ciele, na przykład na nadgarstku, oraz:

  • MUSI posiadać ekran o fizycznej długości przekątnej z zakresu od 1,1 do 2,5 cala.
  • MUSI zadeklarować funkcję android.hardware.type.watch.
  • MUSI obsługiwać uiMode = UI_MODE_TYPE_WATCH [ Zasoby, 4 ].

Implementacja Android Automotive odnosi się do jednostki głównej pojazdu, na której działa Android jako system operacyjny dla części lub całości systemu i/lub funkcji informacyjno-rozrywkowych. Implementacje Android Automotive MUSZĄ obsługiwać tryb uiMode = UI_MODE_TYPE_CAR [ Zasoby, 111 ].

Wszystkie implementacje urządzeń z systemem Android, które nie pasują do żadnego z powyższych typów urządzeń, nadal MUSZĄ spełniać wszystkie wymagania zawarte w tym dokumencie, aby były kompatybilne z systemem Android 5.1, chyba że powyżej wyraźnie określono, że wymaganie ma zastosowanie tylko do określonego typu urządzenia z systemem Android.

2.1 Konfiguracje urządzenia

Jest to podsumowanie głównych różnic w konfiguracji sprzętowej według typu urządzenia. (Puste komórki oznaczają „MAJ”). Nie wszystkie konfiguracje są ujęte w tej tabeli; więcej szczegółów znajdziesz w odpowiednich sekcjach poświęconych sprzętowi.

Kategoria Funkcja Sekcja Ręczny Telewizja Oglądać Automobilowy Inny
Wejście Pad kierunkowy 7.2.2. Nawigacja bezdotykowa MUSIEĆ
Ekran dotykowy 7.2.4. Wejście na ekranie dotykowym MUSIEĆ MUSIEĆ POWINIEN
Mikrofon 7.8.1. Mikrofon MUSIEĆ POWINIEN MUSIEĆ MUSIEĆ POWINIEN
Czujniki Akcelerometr 7.3.1 Akcelerometr POWINIEN POWINIEN POWINIEN
GPS 7.3.3. GPS POWINIEN POWINIEN
Łączność Wi-Fi 7.4.2. IEEE 802.11 POWINIEN MUSIEĆ POWINIEN POWINIEN
Bezpośrednie Wi-Fi 7.4.2.1. Bezpośrednie Wi-Fi POWINIEN POWINIEN POWINIEN
Bluetooth 7.4.3. Bluetooth POWINIEN MUSIEĆ MUSIEĆ MUSIEĆ POWINIEN
Bluetooth o niskim zużyciu energii 7.4.3. Bluetooth POWINIEN MUSIEĆ POWINIEN POWINIEN POWINIEN
Tryb urządzenia peryferyjnego/hosta USB 7.7. USB POWINIEN POWINIEN POWINIEN
Wyjście Porty wyjściowe głośników i/lub audio 7.8.2. Wyjście audio MUSIEĆ MUSIEĆ MUSIEĆ MUSIEĆ

3. Oprogramowanie

3.1. Zgodność zarządzanego interfejsu API

Zarządzane środowisko wykonawcze kodu bajtowego Dalvik jest głównym narzędziem dla aplikacji na Androida. Interfejs programowania aplikacji systemu Android (API) to zestaw interfejsów platformy Android udostępnianych aplikacjom działającym w zarządzanym środowisku wykonawczym. Implementacje urządzeń MUSZĄ zapewniać kompletne implementacje, w tym wszystkie udokumentowane zachowania, dowolnego udokumentowanego interfejsu API udostępnianego przez zestaw SDK systemu Android [ Zasoby, 5 ] lub dowolnego interfejsu API oznaczonego znacznikiem „@SystemApi” w kodzie źródłowym systemu Android.

Implementacje urządzeń NIE MOGĄ pomijać żadnych zarządzanych interfejsów API, zmieniać interfejsów API lub podpisów, odbiegać od udokumentowanego zachowania ani zawierać zakazu działania, z wyjątkiem przypadków wyraźnie dozwolonych w niniejszej definicji zgodności.

Niniejsza definicja zgodności pozwala na pominięcie niektórych typów sprzętu, dla którego system Android zawiera interfejsy API, w implementacjach urządzeń. W takich przypadkach interfejsy API MUSZĄ nadal być obecne i zachowywać się w rozsądny sposób. Szczegółowe wymagania dotyczące tego scenariusza znajdują się w sekcji 7 .

3.2. Zgodność z miękkim interfejsem API

Oprócz zarządzanych interfejsów API z sekcji 3.1 , Android zawiera także znaczący „miękki” interfejs API przeznaczony wyłącznie do środowiska wykonawczego w postaci takich rzeczy, jak intencje, uprawnienia i podobne aspekty aplikacji Androida, których nie można wymusić w czasie kompilacji aplikacji.

3.2.1. Uprawnienia

Osoby wdrażające urządzenia MUSZĄ obsługiwać i egzekwować wszystkie stałe uprawnień zgodnie z dokumentacją na stronie odniesienia do uprawnień [ Zasoby, 6] . Należy pamiętać, że w sekcji 9 wymieniono dodatkowe wymagania związane z modelem zabezpieczeń Androida.

3.2.2. Parametry kompilacji

Interfejsy API systemu Android zawierają szereg stałych w klasie android.os.Build [ Resources, 7 ], które mają opisywać bieżące urządzenie. Aby zapewnić spójne, znaczące wartości we wszystkich implementacjach urządzeń, poniższa tabela zawiera dodatkowe ograniczenia dotyczące formatów tych wartości, z którymi MUSZĄ być zgodne implementacje urządzeń.

Parametr Detale
WYDANIE WERSJI Wersja aktualnie działającego systemu Android, w formacie czytelnym dla człowieka. To pole MUSI zawierać jedną z wartości ciągu znaków zdefiniowanych w [ Resources, 8] .
WERSJA.SDK Wersja aktualnie działającego systemu Android, w formacie dostępnym dla kodu aplikacji innych firm. W systemie Android 5.1 to pole MUSI mieć wartość całkowitą 22.
WERSJA.SDK_INT Wersja aktualnie działającego systemu Android, w formacie dostępnym dla kodu aplikacji innych firm. W systemie Android 5.1 to pole MUSI mieć wartość całkowitą 22.
WERSJA.INKREMENTALNA Wartość wybrana przez realizatora urządzenia, określająca konkretną wersję aktualnie działającego systemu Android, w formacie czytelnym dla człowieka. Tej wartości NIE WOLNO ponownie używać w przypadku różnych kompilacji udostępnianych użytkownikom końcowym. Typowym zastosowaniem tego pola jest wskazanie, który numer kompilacji lub identyfikator zmiany kontroli źródła został użyty do wygenerowania kompilacji. Nie ma wymagań dotyczących konkretnego formatu tego pola, z wyjątkiem tego, że NIE MOŻE ono mieć wartości null ani pustego ciągu („”).
TABLICA Wartość wybrana przez wdrażającego urządzenie, identyfikująca konkretny sprzęt wewnętrzny używany przez urządzenie, w formacie czytelnym dla człowieka. Możliwym zastosowaniem tego pola jest wskazanie konkretnej wersji płytki zasilającej urządzenie. Wartość tego pola MUSI być zakodowana jako 7-bitowy kod ASCII i odpowiadać wyrażeniu regularnemu „^[a-zA-Z0-9_-]+$”.
MARKA Wartość odzwierciedlająca markę związaną z urządzeniem, znaną użytkownikom końcowym. MUSI być w formacie czytelnym dla człowieka i POWINIEN przedstawiać producenta urządzenia lub markę firmy, pod którą urządzenie jest sprzedawane. Wartość tego pola MUSI być zakodowana jako 7-bitowy kod ASCII i odpowiadać wyrażeniu regularnemu „^[a-zA-Z0-9_-]+$”.
WSPIERANE_ABIS Nazwa zestawu instrukcji (typ procesora + konwencja ABI) kodu natywnego. Patrz sekcja 3.3. Natywna kompatybilność API .
SUPPORTED_32_BIT_ABIS Nazwa zestawu instrukcji (typ procesora + konwencja ABI) kodu natywnego. Patrz sekcja 3.3. Natywna kompatybilność API .
SUPPORTED_64_BIT_ABIS Nazwa drugiego zestawu instrukcji (typ procesora + konwencja ABI) kodu natywnego. Patrz sekcja 3.3. Natywna kompatybilność API .
Procesor_ABI Nazwa zestawu instrukcji (typ procesora + konwencja ABI) kodu natywnego. Patrz sekcja 3.3. Natywna kompatybilność API .
Procesor_ABI2 Nazwa drugiego zestawu instrukcji (typ procesora + konwencja ABI) kodu natywnego. Patrz sekcja 3.3. Natywna kompatybilność API .
URZĄDZENIE Wartość wybrana przez realizatora urządzenia, zawierająca nazwę rozwinięcia lub nazwę kodową identyfikującą konfigurację cech sprzętowych i projekt przemysłowy urządzenia. Wartość tego pola MUSI być zakodowana jako 7-bitowy kod ASCII i odpowiadać wyrażeniu regularnemu „^[a-zA-Z0-9_-]+$”.
ODCISK PALCA Ciąg, który jednoznacznie identyfikuje tę kompilację. POWINIEN być w miarę czytelny dla człowieka. MUSI być zgodny z tym szablonem:

$(MARA)/$(PRODUKT)/$(URZĄDZENIE):$(WERSJA.WYDANIE)/$(ID)/$(WERSJA.ROZRODOWA):$(TYP)/$(TAGI)

Na przykład: acme/myproduct/mydevice:5.1/LMYXX/3359:userdebug/test-keys

Odcisk palca NIE MOŻE zawierać białych znaków. Jeśli inne pola zawarte w powyższym szablonie zawierają białe znaki, MUSZĄ one zostać zastąpione w odcisku palca kompilacji innym znakiem, takim jak znak podkreślenia („_”). Wartość tego pola MUSI być zakodowana jako 7-bitowy kod ASCII.

SPRZĘT KOMPUTEROWY Nazwa sprzętu (z wiersza poleceń jądra lub /proc). POWINIEN być w miarę czytelny dla człowieka. Wartość tego pola MUSI być zakodowana jako 7-bitowy kod ASCII i odpowiadać wyrażeniu regularnemu „^[a-zA-Z0-9_-]+$”.
GOSPODARZ Ciąg znaków, który jednoznacznie identyfikuje hosta, na którym została zbudowana kompilacja, w formacie czytelnym dla człowieka. Nie ma żadnych wymagań dotyczących konkretnego formatu tego pola, z wyjątkiem tego, że NIE MOŻE ono mieć wartości null ani pustego ciągu znaków („”).
ID Identyfikator wybrany przez wdrażającego urządzenie w celu odniesienia się do konkretnej wersji, w formacie czytelnym dla człowieka. To pole może być takie samo jak pole android.os.Build.VERSION.INCREMENTAL, ale POWINNO być wartością na tyle znaczącą, aby użytkownicy końcowi mogli rozróżnić kompilacje oprogramowania. Wartość tego pola MUSI być zakodowana jako 7-bitowy kod ASCII i odpowiadać wyrażeniu regularnemu „^[a-zA-Z0-9._-]+$”.
PRODUCENT Nazwa handlowa producenta oryginalnego sprzętu (OEM) produktu. Nie ma żadnych wymagań dotyczących konkretnego formatu tego pola, z wyjątkiem tego, że NIE MOŻE ono mieć wartości null ani pustego ciągu znaków („”).
MODEL Wartość wybrana przez realizatora urządzenia, zawierająca nazwę urządzenia znaną użytkownikowi końcowemu. POWINNA to być ta sama nazwa, pod którą urządzenie jest sprzedawane i sprzedawane użytkownikom końcowym. Nie ma żadnych wymagań dotyczących konkretnego formatu tego pola, z wyjątkiem tego, że NIE MOŻE ono mieć wartości null ani pustego ciągu znaków („”).
PRODUKT Wartość wybrana przez wdrażającego urządzenie zawierająca nazwę rozwojową lub nazwę kodową konkretnego produktu (SKU), która MUSI być unikalna w ramach tej samej marki. MUSI być czytelny dla człowieka, ale niekoniecznie jest przeznaczony do przeglądania przez użytkowników końcowych. Wartość tego pola MUSI być zakodowana jako 7-bitowy kod ASCII i odpowiadać wyrażeniu regularnemu „^[a-zA-Z0-9_-]+$”.
SERYJNY Numer seryjny sprzętu, który MUSI być dostępny. Wartość tego pola MUSI być zakodowana jako 7-bitowy kod ASCII i odpowiadać wyrażeniu regularnemu „^([a-zA-Z0-9]{6,20})$”.
TAGI Rozdzielana przecinkami lista tagów wybranych przez realizatora urządzenia, która dodatkowo wyróżnia kompilację. To pole MUSI mieć jedną z wartości odpowiadających trzem typowym konfiguracjom podpisywania platformy Android: release-keys, dev-keys, test-keys.
CZAS Wartość reprezentująca sygnaturę czasową wystąpienia kompilacji.
TYP Wartość wybrana przez realizatora urządzenia, określająca konfigurację środowiska uruchomieniowego kompilacji. To pole MUSI mieć jedną z wartości odpowiadających trzem typowym konfiguracjom środowiska wykonawczego Androida: użytkownik, userdebug lub eng.
UŻYTKOWNIK Nazwa lub identyfikator użytkownika (lub użytkownika automatycznego), który wygenerował kompilację. Nie ma żadnych wymagań dotyczących konkretnego formatu tego pola, z wyjątkiem tego, że NIE MOŻE ono mieć wartości null ani pustego ciągu znaków („”).

3.2.3. Zamierzona kompatybilność

Implementacje urządzeń MUSZĄ uwzględniać system Androida dotyczący luźnego powiązania, zgodnie z opisem w poniższych sekcjach. Przez „honorowany” rozumie się, że osoba wdrażająca urządzenie MUSI udostępnić działanie lub usługę Androida, która określa pasujący filtr intencji, który wiąże się z każdym określonym wzorcem intencji i implementuje prawidłowe zachowanie.

3.2.3.1. Podstawowe cele aplikacji

Intencje systemu Android umożliwiają komponentom aplikacji żądanie funkcjonalności od innych komponentów systemu Android. Projekt nadrzędny systemu Android zawiera listę aplikacji uznawanych za podstawowe aplikacje systemu Android, która implementuje kilka wzorców intencji w celu wykonywania typowych działań. Podstawowe aplikacje na Androida to:

  • Zegar biurkowy
  • Przeglądarka
  • Kalendarz
  • Łączność
  • Galeria
  • Globalne wyszukiwanie
  • Wyrzutnia
  • Muzyka
  • Ustawienia

Implementacje urządzeń POWINNY obejmować, w stosownych przypadkach, podstawowe aplikacje dla systemu Android, ale MUSZĄ zawierać komponent realizujący te same wzorce zamierzeń, określone przez wszystkie „publiczne” komponenty Aktywności lub Usługi tych podstawowych aplikacji dla Androida. Należy pamiętać, że komponenty Aktywności lub Usługi są uznawane za „publiczne”, gdy atrybut Android:exported jest nieobecny lub ma wartość true.

3.2.3.2. Zastąpienie zamiaru

Ponieważ Android jest platformą rozszerzalną, implementacje urządzeń MUSZĄ umożliwiać zastąpienie każdego wzorca intencji, o którym mowa w sekcji 3.2.3.1, przez aplikacje innych firm. Domyślnie pozwala na to implementacja open source Androida; podmiotom wdrażającym urządzenia NIE MOŻE nadawać specjalnych uprawnień aplikacjom systemowym korzystającym z tych wzorców intencji ani uniemożliwiać aplikacjom stron trzecich wiązania się z tymi wzorcami i przejmowania nad nimi kontroli. Zakaz ten obejmuje w szczególności, ale nie ogranicza się do wyłączenia interfejsu użytkownika „Chooser”, który pozwala użytkownikowi wybierać pomiędzy wieloma aplikacjami, które obsługują ten sam wzorzec zamiarów.

Jednakże implementacje urządzeń MOGĄ zapewniać domyślne działania dla określonych wzorców URI (np. http://play.google.com), jeśli domyślne działanie zapewnia bardziej szczegółowy filtr URI danych. Na przykład filtr intencji określający identyfikator URI danych „http://www.android.com” jest bardziej szczegółowy niż filtr przeglądarki dla „http://”. Implementacje urządzeń MUSZĄ zapewniać interfejs użytkownika umożliwiający użytkownikom modyfikowanie domyślnej aktywności dotyczącej intencji.

3.2.3.3. Przestrzenie nazw intencji

Implementacje urządzeń NIE MOGĄ zawierać żadnego komponentu Androida, który obsługuje nowe wzorce intencji lub intencji rozgłaszania przy użyciu AKCJI, KATEGORII lub innego ciągu kluczy w przestrzeni nazw android.* lub com.android.*. Osoby wdrażające urządzenia NIE MOGĄ dołączać żadnych komponentów Androida, które obsługują jakiekolwiek nowe intencje lub wzorce intencji rozgłaszania przy użyciu AKCJI, KATEGORII lub innego ciągu klucza w przestrzeni pakietu należącej do innej organizacji. Osoby wdrażające urządzenia NIE MOGĄ zmieniać ani rozszerzać żadnych wzorców zamierzeń używanych przez podstawowe aplikacje wymienione w sekcji 3.2.3.1 . Implementacje urządzeń MOGĄ obejmować wzorce intencji wykorzystujące przestrzenie nazw wyraźnie i wyraźnie powiązane z ich własną organizacją. Zakaz ten jest analogiczny do zakazu określonego dla klas języka Java w punkcie 3.6 .

3.2.3.4. Zamierzenia transmisji

Aplikacje innych firm wykorzystują platformę do transmitowania określonych zamiarów w celu powiadamiania ich o zmianach w środowisku sprzętu lub oprogramowania. Urządzenia kompatybilne z Androidem MUSZĄ nadawać publiczne intencje transmisji w odpowiedzi na odpowiednie zdarzenia systemowe. Intencje rozgłaszania są opisane w dokumentacji zestawu SDK.

3.2.3.5. Domyślne ustawienia aplikacji

Android zawiera ustawienia, które umożliwiają użytkownikom łatwy wybór domyślnych aplikacji, na przykład ekranu głównego lub SMS-ów. Tam, gdzie ma to sens, implementacje urządzeń MUSZĄ zapewniać podobne menu ustawień i być zgodne ze wzorcem filtra intencji i metodami API opisanymi w dokumentacji zestawu SDK, jak poniżej.

Implementacje urządzeń:

  • MUSI honorować intencję android.settings.HOME_SETTINGS, aby wyświetlić domyślne menu ustawień aplikacji na ekranie głównym, jeśli implementacja urządzenia zgłasza android.software.home_screen [ Zasoby, 10]
  • MUSI zapewnić menu ustawień, które wywoła intencję android.provider.Telephony.ACTION_CHANGE_DEFAULT, aby wyświetlić okno dialogowe umożliwiające zmianę domyślnej aplikacji SMS, jeśli implementacja urządzenia zgłasza android.hardware.telephony [ Zasoby, 9 ]
  • MUSI honorować intencję android.settings.NFC_PAYMENT_SETTINGS, aby wyświetlać domyślne menu ustawień aplikacji dla funkcji Dotknij i zapłać, jeśli implementacja urządzenia zgłasza android.hardware.nfc.hce [ Zasoby, 10]

3.3. Natywna kompatybilność API

3.3.1. Interfejsy binarne aplikacji

Zarządzany kod bajtowy Dalvik może wywoływać kod natywny dostarczony w pliku .apk aplikacji jako plik ELF .so skompilowany dla odpowiedniej architektury sprzętowej urządzenia. Ponieważ kod natywny jest w dużym stopniu zależny od podstawowej technologii procesora, system Android definiuje szereg interfejsów binarnych aplikacji (ABI) w zestawie Android NDK. Implementacje urządzeń MUSZĄ być kompatybilne z co najmniej jednym zdefiniowanym interfejsem ABI i MUSZĄ implementować zgodność z zestawem Android NDK, jak poniżej.

Jeśli implementacja urządzenia obejmuje obsługę interfejsu ABI systemu Android, to:

  • MUSI obejmować obsługę kodu działającego w środowisku zarządzanym w celu wywołania kodu natywnego przy użyciu standardowej semantyki Java Native Interface (JNI)
  • MUSI być kompatybilny ze źródłem (tj. zgodny z nagłówkiem) i kompatybilny binarnie (dla ABI) z każdą wymaganą biblioteką z poniższej listy
  • MUSI obsługiwać równoważny 32-bitowy ABI, jeśli obsługiwany jest jakikolwiek 64-bitowy ABI
  • MUSI dokładnie raportować natywny interfejs binarny aplikacji (ABI) obsługiwany przez urządzenie za pośrednictwem parametrów android.os.Build.SUPPORTED_ABIS, android.os.Build.SUPPORTED_32_BIT_ABIS i android.os.Build.SUPPORTED_64_BIT_ABIS, każdy z nich jest listą rozdzieloną przecinkami ABI uporządkowane od najbardziej do najmniej preferowanego
  • MUSI raportować, za pomocą powyższych parametrów, tylko te ABI udokumentowane w najnowszej wersji Androida NDK, „Przewodnik programisty NDK | Zarządzanie ABI” w katalogu docs/
  • POWINNO zostać zbudowane przy użyciu kodu źródłowego i plików nagłówkowych dostępnych w pierwotnym projekcie Android Open Source

Dla aplikacji zawierających kod natywny MUSZĄ być dostępne następujące interfejsy API kodu natywnego:

  • libc (biblioteka C)
  • libm (biblioteka matematyczna)
  • Minimalne wsparcie dla C++
  • Interfejs JNI
  • liblog (logowanie na Androida)
  • libz (kompresja Zlib)
  • libdl (dynamiczny linker)
  • libGLESv1_CM.so (OpenGL ES 1.x)
  • libGLESv2.so (OpenGL ES 2.0)
  • libGLESv3.so (OpenGL ES 3.x)
  • libEGL.so (natywne zarządzanie powierzchnią OpenGL)
  • libjnigraphics.so
  • libOpenSLES.so (obsługa dźwięku OpenSL ES 1.0.1)
  • libOpenMAXAL.so (obsługa OpenMAX AL 1.0.1)
  • libandroid.so (natywna obsługa aktywności w systemie Android)
  • libmediandk.so (obsługa natywnych interfejsów API multimediów)
  • Obsługa OpenGL zgodnie z opisem poniżej

Należy pamiętać, że przyszłe wersje zestawu Android NDK mogą wprowadzać obsługę dodatkowych interfejsów ABI. Jeśli implementacja urządzenia nie jest kompatybilna z istniejącym, predefiniowanym ABI, NIE MOŻE w ogóle zgłaszać obsługi żadnego ABI.

Należy pamiętać, że implementacje urządzeń MUSZĄ zawierać bibliotekę libGLESv3.so i MUSZĄ one zawierać dowiązanie symboliczne (dowiązanie symboliczne) do libGLESv2.so. z kolei MUSI wyeksportować wszystkie symbole funkcyjne OpenGL ES 3.1 i pakietu rozszerzeń Androida [ Zasoby, 11 ] zgodnie z definicją w wydaniu NDK Android-21. Chociaż wszystkie symbole muszą być obecne, należy w pełni zaimplementować tylko odpowiednie funkcje dla wersji i rozszerzeń OpenGL ES faktycznie obsługiwanych przez urządzenie.

Zgodność kodu natywnego jest wyzwaniem. Z tego powodu gorąco zachęca się twórców urządzeń do korzystania z implementacji bibliotek wymienionych powyżej z pierwotnego projektu Android Open Source.

3.3.2. Zgodność z 32-bitowym natywnym kodem ARM

Architektura ARMv8 wycofuje kilka operacji procesora, w tym niektóre operacje używane w istniejącym kodzie natywnym. Na 64-bitowych urządzeniach ARM następujące przestarzałe operacje MUSZĄ pozostać dostępne dla 32-bitowego natywnego kodu ARM, albo poprzez natywną obsługę procesora, albo poprzez emulację oprogramowania:

  • Instrukcje SWP i SWPB
  • Instrukcja SETEND
  • Obsługa barier CP15ISB, CP15DSB i CP15DMB

Starsze wersje zestawu Android NDK wykorzystywały /proc/cpuinfo do odkrywania funkcji procesora na podstawie 32-bitowego natywnego kodu ARM. Aby zapewnić zgodność z aplikacjami zbudowanymi przy użyciu tego pakietu NDK, urządzenia MUSZĄ zawierać następujące wiersze w pliku /proc/cpuinfo, gdy jest on odczytywany przez 32-bitowe aplikacje ARM:

  • „Funkcje:”, po którym następuje lista opcjonalnych funkcji procesora ARMv7 obsługiwanych przez urządzenie
  • „Architektura procesora:”, po której następuje liczba całkowita opisująca najwyżej obsługiwaną architekturę ARM urządzenia (np. „8” dla urządzeń ARMv8)

Te wymagania mają zastosowanie tylko wtedy, gdy /proc/cpuinfo jest odczytywany przez 32-bitowe aplikacje ARM. Urządzenia NIE POWINNY zmieniać /proc/cpuinfo podczas odczytu przez 64-bitowe aplikacje ARM lub inne niż ARM.

3.4. Zgodność sieciowa

3.4.1. Zgodność z WebView

Urządzenia z Androidem Watch MOGĄ, ale wszystkie inne implementacje urządzeń MUSZĄ zapewniać pełną implementację interfejsu API android.webkit.Webview.

Funkcja platformy android.software.webview MUSI być zgłaszana na każdym urządzeniu zapewniającym pełną implementację interfejsu API android.webkit.WebView i NIE MOŻE być zgłaszana na urządzeniach bez pełnej implementacji interfejsu API. Implementacja Android Open Source wykorzystuje kod z projektu Chromium do implementacji android.webkit.WebView [ Zasoby, 12 ]. Ponieważ nie jest możliwe opracowanie kompleksowego zestawu testów dla systemu renderowania stron internetowych, osoby wdrażające urządzenia MUSZĄ używać określonej wcześniejszej wersji Chromium w implementacji WebView. Konkretnie:

  • Implementacje urządzenia android.webkit.WebView MUSZĄ być oparte na kompilacji Chromium z pierwotnego projektu Android Open Source dla systemu Android 5.1. Ta kompilacja zawiera określony zestaw poprawek funkcjonalności i bezpieczeństwa dla WebView [ Zasoby, 13 ].
  • Ciąg agenta użytkownika zgłaszany przez WebView MUSI mieć następujący format:

    Mozilla/5.0 (Linux; Android $(VERSION); $(MODEL) Build/$(BUILD)$(WEBVIEW)) AppleWebKit/537.36 (KHTML, jak Gecko) Wersja/4.0 $(CHROMIUM_VER) Mobile Safari/537.36

    • Wartość ciągu $(VERSION) MUSI być taka sama jak wartość Android.os.Build.VERSION.RELEASE.
    • Ciąg $(WEBVIEW) MOŻE zostać pominięty, ale jeśli zostanie dołączony, MUSI zawierać „; wv”, aby zaznaczyć, że jest to widok sieciowy
    • Wartość ciągu $(MODEL) MUSI być taka sama jak wartość Android.os.Build.MODEL.
    • Wartość ciągu $(BUILD) MUSI być taka sama jak wartość android.os.Build.ID.
    • Wartość ciągu $(CHROMIUM_VER) MUSI być wersją Chromium w pierwotnym projekcie Android Open Source.
    • Implementacje urządzeń MOGĄ pomijać Mobile w ciągu agenta użytkownika.

Komponent WebView POWINIEN zapewniać obsługę jak największej liczby funkcji HTML5, a jeśli obsługuje tę funkcję, MUSI być zgodny ze specyfikacją HTML5 [ Zasoby, 14 ].

3.4.2. Zgodność przeglądarki

Implementacje Android Television, Watch i Android Automotive MOGĄ pomijać aplikację przeglądarki, ale MUSZĄ obsługiwać wzorce intencji publicznej, jak opisano w sekcji 3.2.3.1 . Wszystkie inne typy implementacji urządzeń MUSZĄ zawierać samodzielną aplikację przeglądarki do przeglądania stron internetowych przez zwykłego użytkownika.

Samodzielna przeglądarka MOŻE być oparta na technologii przeglądarki innej niż WebKit. Jednakże, nawet jeśli używana jest alternatywna aplikacja przeglądarki, komponent android.webkit.WebView dostarczany aplikacjom innych firm MUSI być oparty na WebKit, jak opisano w sekcji 3.4.1 .

Implementacje MOGĄ dostarczać niestandardowy ciąg agenta użytkownika w samodzielnej aplikacji przeglądarki.

Samodzielna aplikacja przeglądarki (niezależnie od tego, czy jest oparta na wcześniejszej aplikacji przeglądarki WebKit, czy na zamienniku innej firmy) POWINNA obsługiwać możliwie najwięcej HTML5 [ Zasoby, 14 ]. Co najmniej implementacje urządzeń MUSZĄ obsługiwać każdy z tych interfejsów API powiązanych z HTML5:

Ponadto implementacje urządzeń MUSZĄ obsługiwać interfejs API HTML5/W3C do przechowywania danych internetowych [ Zasoby, 18 ] i POWINNY obsługiwać interfejs API HTML5/W3C IndexedDB [ Zasoby, 19 ]. Należy pamiętać, że w miarę jak organy odpowiedzialne za standardy tworzenia stron internetowych będą faworyzować IndexedDB zamiast przechowywania danych w Internecie, oczekuje się, że IndexedDB stanie się wymaganym komponentem przyszłej wersji Androida.

3.5. Zgodność behawioralna API

Zachowanie każdego z typów API (zarządzanego, miękkiego, natywnego i internetowego) musi być spójne z preferowaną implementacją nadrzędnego projektu Android Open Source [ Zasoby, 2 ]. Niektóre konkretne obszary zgodności to:

  • Urządzenia NIE MOGĄ zmieniać zachowania ani semantyki standardowego zamiaru.
  • Urządzenia NIE MOGĄ zmieniać cyklu życia ani semantyki cyklu życia określonego typu komponentu systemu (takiego jak usługa, działanie, dostawca treści itp.).
  • Urządzenia NIE MOGĄ zmieniać semantyki standardowego pozwolenia.

Powyższa lista nie jest kompletna. Zestaw testów zgodności (CTS) testuje znaczną część platformy pod kątem zgodności behawioralnej, ale nie wszystkie. Obowiązkiem realizatora jest zapewnienie zgodności behawioralnej z projektem Android Open Source. Z tego powodu osoby wdrażające urządzenia POWINNY używać kodu źródłowego dostępnego w ramach projektu Android Open Source, tam gdzie to możliwe, zamiast ponownie wdrażać znaczące części systemu.

3.6. Przestrzenie nazw API

Android przestrzega konwencji przestrzeni nazw pakietów i klas zdefiniowanych przez język programowania Java. Aby zapewnić kompatybilność z aplikacjami innych firm, twórcom urządzeń NIE WOLNO wprowadzać żadnych zabronionych modyfikacji (patrz poniżej) w tych przestrzeniach nazw pakietów:

  • Jawa.*
  • javax.*
  • słońce.*
  • android.*
  • com.android.*

Zabronione modyfikacje obejmują :

  • Implementacje urządzeń NIE WOLNO modyfikować publicznie udostępnionych interfejsów API na platformie Android poprzez zmianę jakichkolwiek podpisów metod lub klas albo poprzez usuwanie klas lub pól klas.
  • Osoby wdrażające urządzenia MOGĄ modyfikować podstawową implementację interfejsów API, ale takie modyfikacje NIE MOGĄ wpływać na określone zachowanie i podpis w języku Java jakichkolwiek publicznie udostępnianych interfejsów API.
  • Implementatorom urządzeń NIE WOLNO dodawać żadnych publicznie dostępnych elementów (takich jak klasy lub interfejsy albo pola lub metody do istniejących klas lub interfejsów) do powyższych interfejsów API.

„Element publicznie eksponowany” to dowolny konstrukt, który nie jest ozdobiony znacznikiem „@hide” używanym w pierwotnym kodzie źródłowym Androida. Innymi słowy, twórcom urządzeń NIE WOLNO ujawniać nowych interfejsów API ani zmieniać istniejących interfejsów API w przestrzeniach nazw wymienionych powyżej. Osoby wdrażające urządzenia MOGĄ wprowadzać modyfikacje wyłącznie do użytku wewnętrznego, ale modyfikacje te NIE MOGĄ być reklamowane ani w żaden inny sposób udostępniane programistom.

Osoby wdrażające urządzenia MOGĄ dodawać niestandardowe interfejsy API, ale żadne takie interfejsy API NIE MOGĄ znajdować się w przestrzeni nazw będącej własnością innej organizacji lub odnoszącej się do innej organizacji. Na przykład twórcom urządzeń NIE WOLNO dodawać interfejsów API do com.google.* lub podobnej przestrzeni nazw: może to zrobić tylko firma Google. Podobnie Google NIE WOLNO dodawać interfejsów API do przestrzeni nazw innych firm. Dodatkowo, jeśli implementacja urządzenia zawiera niestandardowe interfejsy API spoza standardowej przestrzeni nazw Androida, te interfejsy API MUSZĄ być spakowane w udostępnionej bibliotece Androida, aby zwiększone wykorzystanie pamięci miało wpływ tylko na aplikacje, które jawnie z nich korzystają (poprzez mechanizm <uses-library>). takich interfejsów API.

Jeśli osoba wdrażająca urządzenie zaproponuje ulepszenie jednej z powyższych przestrzeni nazw pakietów (na przykład poprzez dodanie przydatnej nowej funkcjonalności do istniejącego interfejsu API lub dodanie nowego interfejsu API), osoba wdrażająca POWINNA odwiedzić stronę source.android.com i rozpocząć proces wprowadzania zmian i zgodnie z informacjami zawartymi na tej stronie.

Należy pamiętać, że powyższe ograniczenia odpowiadają standardowym konwencjom nazewnictwa interfejsów API w języku programowania Java; ta sekcja ma po prostu na celu wzmocnienie tych konwencji i uczynienie ich wiążącymi poprzez włączenie ich do niniejszej Definicji Zgodności.

3.7. Zgodność środowiska wykonawczego

Implementacje urządzeń MUSZĄ obsługiwać pełny format pliku wykonywalnego Dalvik (DEX) oraz specyfikację i semantykę kodu bajtowego Dalvik [ Zasoby, 20 ]. Osoby wdrażające urządzenia POWINNY używać ART, referencyjnej implementacji formatu wykonywalnego Dalvik i systemu zarządzania pakietami implementacji referencyjnej.

Implementacje urządzeń MUSZĄ skonfigurować środowiska wykonawcze Dalvik w celu alokacji pamięci zgodnie z platformą Android i zgodnie z poniższą tabelą. (Zobacz sekcję 7.1.1 , aby zapoznać się z definicjami rozmiaru i gęstości ekranu.)

Należy pamiętać, że wartości pamięci określone poniżej są uważane za wartości minimalne, a implementacje urządzeń MOGĄ przydzielać więcej pamięci na aplikację.

Wygląd ekranu Gęstość ekranu Minimalna pamięć aplikacji
mały/normalny 120 dpi (ldpi) 32 MB
160 dpi (mdpi)
213 DPI (TVDPI) 48 MB
240 DPI (HDPI)
280 DPI (280dpi)
320 DPI (XHDPI) 80 MB
400 DPI (400dpi) 96 MB
480 DPI (xxhdpi) 128 MB
560 DPI (560dpi) 192 MB
640 DPI (xxxhdpi) 256 MB
duży 120 DPI (LDPI) 32 MB
160 DPI (MDPI) 48 MB
213 DPI (TVDPI) 80 MB
240 DPI (HDPI)
280 DPI (280dpi) 96 MB
320 DPI (XHDPI) 128 MB
400 DPI (400dpi) 192 MB
480 DPI (xxhdpi) 256 MB
560 DPI (560dpi) 384 MB
640 DPI (xxxhdpi) 512 MB
Xlarge 120 DPI (LDPI) 48 MB
160 DPI (MDPI) 80 MB
213 DPI (TVDPI) 96 MB
240 DPI (HDPI)
280 DPI (280dpi) 144 MB
320 DPI (XHDPI) 192 MB
400 DPI (400dpi) 288 MB
480 DPI (xxhdpi) 384 MB
560 DPI (560dpi) 576 MB
640 DPI (xxxhdpi) 768 MB

3.8. Kompatybilność interfejsu użytkownika

3.8.1. Launcher (ekran główny)

Android zawiera aplikację uruchamiającą (ekran główny) i obsługę aplikacji innych firm w celu wymiany wyrzutni urządzenia (ekran główny). Implementacje urządzeń, które pozwalają aplikacjom zewnętrznym na wymianę ekranu głównego urządzenia, muszą zadeklarować funkcję platformy Android.software.home_screen.

3.8.2. Widżety

Widżety są opcjonalne dla wszystkich implementacji urządzeń z Androidem, ale powinny być obsługiwane na urządzeniach z systemem Android.

Android definiuje typ komponentu oraz odpowiedni API i cykl życia, które pozwala aplikacjom na ujawnienie „AppWidget” użytkownikowi końcowi [ zasobów, 21 ] funkcji, która jest zdecydowanie zalecana do obsługi podręczników urządzeń. Implementacje urządzeń, które obsługują widżety osadzania na ekranie głównym, muszą spełniać następujące wymagania i deklarować obsługę funkcji platformy Android.software.App_Widgets.

  • Laczyści urządzeń muszą zawierać wbudowaną obsługę aplikacji i wystawiać afordancje interfejsu użytkownika, aby dodawać, konfigurować, wyświetlić i usuwać AppWidgets bezpośrednio w uruchamianiu.
  • Implementacje urządzeń muszą być zdolne do renderowania widżetów, które mają 4 x 4 w standardowym rozmiarze siatki. Szczegółowe informacje znajdują się w wytycznych dotyczących projektowania widżetu aplikacji w dokumentacji Android SDK [ Resources, 21 ].
  • Implementacje urządzeń, które obejmują obsługę ekranu blokady, mogą obsługiwać widżety aplikacji na ekranie blokady.

3.8.3. Powiadomienia

Android obejmuje interfejsy API, które pozwalają programistom powiadomić użytkowników o znaczących zdarzeniach [ zasoby, 22 ], korzystając z funkcji sprzętu i oprogramowania urządzenia.

Niektóre interfejsy API pozwalają aplikacjom wykonywać powiadomienia lub zwrócić uwagę za pomocą sprzętu - szczególnie dźwięku, wibracji i światła. Implementacje urządzeń muszą obsługiwać powiadomienia korzystające z funkcji sprzętowych, jak opisano w dokumentacji SDK, oraz w możliwym zakresie ze sprzętem do implementacji urządzeń. Na przykład, jeśli implementacja urządzenia obejmuje wibrator, musi poprawnie zaimplementować interfejsy API wibracyjne. Jeśli implementacja urządzenia nie ma sprzętu, odpowiednie interfejsy API muszą zostać zaimplementowane jako NO-OPS. To zachowanie jest bardziej szczegółowe w sekcji 7 .

Ponadto implementacja musi poprawnie renderować wszystkie zasoby (ikony, pliki animacji itp.) Przedstawione w interfejsach API [ zasoby, 23 ] lub w przewodniku ikon ikony paska statusu [ zasoby, 24 ], które w przypadku Urządzenie telewizyjne z Androidem obejmuje możliwość nie wyświetlania powiadomień. Wdrażacze urządzeń mogą zapewnić alternatywne wrażenia użytkownika do powiadomień, niż dostarczone przez referencyjne implementację open source Android; Jednak takie alternatywne systemy powiadomień muszą obsługiwać istniejące zasoby powiadomień, jak wyżej.

Android zawiera wsparcie dla różnych powiadomień, takich jak:

  • Bogate powiadomienia . Interaktywne poglądy na bieżące powiadomienia.
  • Powiadomienia o głowach . Interaktywne widoki użytkownicy mogą działać lub odrzucić bez opuszczania bieżącej aplikacji.
  • Powiadomienia o sklepie blokady . Powiadomienia pokazane na ekranie blokady z szczegółową kontrolą widoczności.

Implementacje urządzeń z Androidem, gdy takie powiadomienia są widoczne, muszą poprawnie wykonywać bogate i głowowe powiadomienia i zawierać tytuł/nazwę, ikonę, tekst udokumentowany w interfejsach API Androida [zasoby, 25] .

Android zawiera interfejsy API serwisowych słuchaczy, które pozwalają aplikacjom (po wyraźnym włączeniu przez użytkownika) na otrzymanie kopii wszystkich powiadomień, gdy są one publikowane lub aktualizowane. Implementacje urządzeń muszą poprawnie i niezwłocznie wysyłać powiadomienia w całości do wszystkich takich zainstalowanych i obsługujących użytkowników usług słuchaczy, w tym wszystkich i wszystkich metadanych dołączonych do obiektu powiadomienia.

Android obejmuje interfejsy API [ zasoby, 26 ], które pozwalają programistom włączyć wyszukiwanie do swoich aplikacji i ujawniać dane ich aplikacji do globalnego wyszukiwania systemu. Ogólnie rzecz biorąc, ta funkcjonalność składa się z jednego, całego systemu interfejsu użytkownika, który pozwala użytkownikom wprowadzać zapytania, wyświetla sugestie jako użytkowników i wyświetla wyniki. API Androida pozwalają programistom ponowne wykorzystanie tego interfejsu w celu zapewnienia wyszukiwania we własnych aplikacjach i umożliwiają programistom dostarczanie wyników do wspólnego globalnego interfejsu użytkownika wyszukiwania.

Implementacje urządzeń z Androidem powinny obejmować globalne wyszukiwanie, pojedynczy, udostępniony, ogólnosystemowy interfejs wyszukiwania użytkownika zdolnego do sugestii w czasie rzeczywistym w odpowiedzi na dane wejściowe użytkownika. Implementacje urządzeń powinny zaimplementować interfejsy API, które pozwalają programistom ponowne wykorzystanie tego interfejsu użytkownika w celu zapewnienia wyszukiwania we własnych aplikacjach. Implementacje urządzeń, które wdrażają globalny interfejs wyszukiwania, muszą zaimplementować interfejsy API, które pozwalają aplikacjom stron trzecich na dodanie sugestii do pola wyszukiwania, gdy jest on uruchomiony w trybie globalnym wyszukiwania. Jeśli nie są zainstalowane żadne aplikacje innych firm, które korzystają z tej funkcji, domyślnym zachowaniem powinno być wyświetlanie wyników i sugestii związanych z wyszukiwarką.

3.8.5. Tosty

Aplikacje mogą używać interfejsu API „Toast” do wyświetlania krótkich nie-modalnych ciągów użytkownikowi końcowemu, które znikają po krótkim czasie [ zasoby, 27 ]. Implementacje urządzeń muszą wyświetlać tosty od aplikacji do użytkowników końcowych w sposób o dużej widoczności.

3.8.6. Motywy

Android zapewnia „tematy” jako mechanizm zastosowań do stosowania stylów w całej aktywności lub aplikacji.

Android zawiera rodzinę motywów „holo” jako zestaw zdefiniowanych stylów dla programistów aplikacji, jeśli chcą dopasować wygląd i odczuwanie motywu Holo, zgodnie z definicją Android SDK [ zasoby, 28 ]. Implementacje urządzeń nie mogą zmieniać żadnego z atrybutów motywów Holo narażonych na aplikacje [ Zasoby, 29 ].

Android zawiera „materialną” rodzinę motywów jako zestaw zdefiniowanych stylów dla programistów aplikacji, jeśli chcą dopasować wygląd i wyczucie motywu projektowego w szerokiej gamie różnych typów urządzeń z Androidem. Implementacje urządzeń muszą obsługiwać rodzinę motywów „materialnych” i nie mogą zmieniać żadnego z istotnych atrybutów motywów lub ich aktywów narażonych na aplikacje [ Zasoby, 30 ].

Android zawiera również rodzinę motywów „urządzenia” jako zestaw zdefiniowanych stylów dla programistów aplikacji, jeśli chcą dopasować wygląd motywu urządzenia, zgodnie z definicją implementarza urządzenia. Implementacje urządzeń mogą modyfikować domyślne atrybuty motywu urządzenia narażone na aplikacje [ Zasoby, 29 ].

Android obsługuje nowy motyw wariantu z półprzezroczystymi paskami systemowymi, który pozwala programistom aplikacji wypełnić obszar za paskiem statusu i nawigacji z treścią aplikacji. Aby umożliwić spójne wrażenia programistów w tej konfiguracji, ważne jest, aby styl ikony paska stanu był utrzymywany w różnych implementacjach urządzeń. Dlatego implementacje urządzeń z Androidem muszą wykorzystywać białe ikony statusu systemu (takie jak siła sygnału i poziom baterii) i powiadomienia wydane przez system, chyba że ikona wskazuje na problematyczny status [ zasoby, 29 ].

3.8.7. Animowane tapety

Android definiuje typ komponentu oraz odpowiedni API i cykl życia, które pozwala aplikacjom na ujawnienie jednego lub więcej „żywych tapet” użytkownikowi końcowi [ zasoby, 31 ]. Tapety na żywo to animacje, wzory lub podobne obrazy z ograniczonymi możliwościami wejściowymi, które wyświetlają się jako tapeta za innymi aplikacjami.

Sprzęt jest uważany za zdolny do niezawodnego uruchamiania żywych tapet, jeśli może uruchamiać wszystkie żywe tapety, bez ograniczeń funkcjonalności, z rozsądną szybkością klatek bez negatywnych wpływów na inne aplikacje. Jeśli ograniczenia w sprzęcie powodują awarię tapet i/lub zastosowań, zużywają nadmierne procesory lub zasilanie baterii lub działać z niedopuszczalnie niskimi prędkościami klatek na sekundę, sprzęt jest uważany za niezdolny do uruchamiania tapety na żywo. Jako przykład, niektóre żywe tapety mogą używać kontekstu OpenGL 2.0 lub 3.x do renderowania ich treści. Tapeta na żywo nie będzie działać niezawodnie na sprzęcie, który nie obsługuje wielu kontekstów OpenGL, ponieważ użycie tapety na żywo w kontekście OpenGL może być sprzeczne z innymi aplikacjami, które również korzystają z kontekstu OpenGL.

Implementacje urządzeń zdolne do niezawodnego uruchamiania żywych tapet, jak opisano powyżej, powinny zaimplementować tapety na żywo, a po wdrożeniu muszą zgłosić flagę funkcji platformy Android.software.Live_WallPaper.

3.8.8. Przełączanie aktywności

Ponieważ najnowszy klucz nawigacyjny funkcji jest opcjonalny, wymagania dotyczące wdrożenia ekranu przeglądu są opcjonalne dla urządzeń telewizyjnych Android i urządzeń Android Watch.

Kod źródłowy na Androidzie z Android zawiera ekran przeglądu [ Zasoby, 32 ], interfejs użytkownika na poziomie systemu do przełączania zadań i wyświetlania niedawno dostępnych czynności i zadań przy użyciu miniatury stanu graficznego aplikacji w momencie, gdy użytkownik ostatnio opuścił aplikację. Implementacje urządzeń, w tym klucz do nawigacji funkcji Recoms, jak szczegółowo opisano w sekcji 7.2.3 , mogą zmieniać interfejs, ale muszą spełniać następujące wymagania:

  • Musi wyświetlać powiązane recenzenty jako grupa, która porusza się razem.
  • Musi obsługiwać co najmniej 20 wyświetlanych działań.
  • Powinien przynajmniej wyświetlić tytuł 4 działań jednocześnie.
  • Powinien wyświetlić kolor podświetlenia, ikonę, tytuł ekranu w Recents.
  • Musi zaimplementować zachowanie ekranu [ Zasoby, 33 ] i zapewnić użytkownikowi menu Ustawienia, aby przełączyć funkcję.
  • Powinien wyświetlić zamykającą afordancję („x”), ale może opóźniać to, dopóki użytkownik nie będzie w interakcjach z ekranami.

Implementacje urządzeń są silnie zachęcane do korzystania z interfejsu użytkownika Android z Android (lub podobnego interfejsu opartego na miniaturze) dla ekranu przeglądu.

3.8.9. Zarządzanie wejściem

Android zawiera obsługę zarządzania wejściową i obsługę dla redaktorów metod wejściowych stron trzecich [ Zasoby, 34 ]. Implementacje urządzeń, które pozwalają użytkownikom korzystać z metod wejściowych stron trzecich na urządzeniu, muszą zadeklarować funkcję platformy Android.software.input_methods i obsługiwać interfejsy API IME, zgodnie z definicją w dokumentacji Android SDK.

Implementacje urządzeń, które deklarują funkcję Android.software.input_methods, muszą zapewnić mechanizm dostępny dla użytkownika do dodawania i konfigurowania metod wejściowych stron trzecich. Implementacje urządzeń muszą wyświetlić interfejs ustawień w odpowiedzi na intencję Android.Settings.input_method_settings.

3.8.10. Blokada Kontrola nośnika

Interfejs API klienta zdalnego sterowania jest przestarzały z Android 5.0 na korzyść szablonu powiadomienia multimedialnego, który umożliwia aplikacjom multimedialnym integrację z elementami sterowania odtwarzaniem wyświetlanym na ekranie blokady [ zasoby, 35 ]. Implementacje urządzeń, które obsługują ekran blokady, chyba że implementacja motoryzacyjna Android lub Watch, muszą wyświetlić powiadomienia z zakresu blokady, w tym szablon powiadomienia multimedialnego.

3.8.11. Sny

Android zawiera obsługę interaktywnych zrzutów ekranu o nazwie Dreams [ Resources, 36 ]. Dreams umożliwia użytkownikom interakcję z aplikacjami, gdy urządzenie podłączone do źródła zasilania jest bezczynne lub zadokowane w dokach. Urządzenia z Android Watch mogą wdrażać marzenia, ale inne rodzaje implementacji urządzeń powinny zawierać obsługę marzeń i zapewnić użytkownikom opcję Ustawienia do konfigurowania marzeń w odpowiedzi na intencję Android.settings.Dream_settings.

3.8.12. Lokalizacja

Gdy urządzenie ma czujnik sprzętu (np. GPS), który jest w stanie zapewnić współrzędne lokalizacji, tryby lokalizacji muszą być wyświetlane w menu lokalizacji w ustawieniach [ Zasoby, 37 ].

3.8.13. Unicode i czcionka

Android zawiera obsługę kolorowych znaków emoji. Kiedy implementacje urządzeń z Androidem obejmują IME, urządzenia powinny dostarczyć użytkownikowi metodę wejściową dla znaków emoji zdefiniowanych w Unicode 6.1 [ zasoby, 38 ]. Wszystkie urządzenia muszą być zdolne do renderowania tych znaków emoji w kolorowym glifie.

Android zawiera obsługę czcionki Roboto 2 z różnymi wagami-Sans-Serif-cienki, bez-serif-lek, bez-serif-medium, bez Sans-Serif-Black, bez-seria Wszystkie muszą być uwzględnione w językach dostępnych na urządzeniu i pełnym zasięgu Unicode 7.0 w zakresie łacińskich, greckich i cyrylicy, w tym zakresów latynoskich A, B, C i D oraz wszystkich glifów w symboli walutowych bloku Unicode 7.0.

3.9. Administracja urządzenia

Android zawiera funkcje, które umożliwiają aplikacjom bezpieczeństwa wykonywanie funkcji administracji urządzeń na poziomie systemowym, takie jak egzekwowanie zasad haseł lub wykonywanie zdalnego WIPE, za pośrednictwem interfejsu API administracji urządzeń Android [ zasoby, 39 ]. Implementacje urządzeń muszą zapewnić implementację klasy DevicePolicyManager [ Resources, 40 ]. Implementacje urządzeń, które zawierają obsługę ekranów blokady opartych na PIN (numeryczne) lub hasła (alfanumeryczne), muszą obsługiwać pełny zakres zasad administracji urządzeń zdefiniowanych w dokumentacji Android SDK [ zasoby, 39 ] i zgłaszać funkcję platformy Android.software.Device_Admin.

Implementacje urządzeń mogą mieć wstępnie zainstalowaną aplikację wykonującą funkcje administrowania urządzeniami, ale tej aplikacji nie może być ustawiona poza pole jako domyślna aplikacja właściciela urządzenia [ zasoby, 41 ].

3.10. Dostępność

Android zapewnia warstwę dostępności, która pomaga użytkownikom niepełnosprawnym w łatwiejszym nawigacji w ich urządzeniach. Ponadto Android zapewnia interfejsy API platformy, które umożliwiają implementacje usług dostępu do odbierania zwrotów zwrotnych dla zdarzeń użytkownika i systemu oraz generowania alternatywnych mechanizmów sprzężenia zwrotnego, takich jak tekst na mowę, szybki sprzężenie zwrotne oraz nawigacja Trackball/D-Pad [ zasoby, 42 ].

Implementacje urządzeń obejmują następujące wymagania:

  • Implementacje Automotive Android powinny zapewnić wdrożenie ram dostępu Android zgodnie z domyślną implementacją Androida.
  • Implementacje urządzeń (wykluczone przez Android Automotive) muszą zapewnić wdrożenie ramek dostępności Androida zgodnej z domyślną implementacją Androida.
  • Implementacje urządzeń (wykluczone przez Android Automotive) muszą obsługiwać implementacje usług dostępnościowych stron trzecich za pośrednictwem interfejsów API Android.AccessibilityService [ Zasoby, 43 ]
  • Implementacje urządzeń (wykluczone przez Android Automotive) muszą generować dostęp do dostępu i dostarczać te zdarzenia do wszystkich zarejestrowanych implementacji dostępności w sposób zgodny z domyślną implementacją Androida
  • Implementacje urządzeń (urządzenia z Android Automotive i Android Watch bez wykluczonego wyjścia dźwiękowego) muszą zapewnić dostępny dla użytkownika mechanizm umożliwiający i wyłączający usługi dostępności oraz muszą wyświetlić ten interfejs w odpowiedzi na intencję Androida.Provider.settings.action_accessibility_settings.

Ponadto implementacje urządzeń powinny zapewnić wdrożenie usługi dostępności na urządzeniu i powinny zapewnić użytkownikom mechanizm umożliwiający usługę dostępności podczas konfiguracji urządzeń. Wdrożenie usługi dostępności jest dostępne w projekcie Eyes Free [ Resources, 44 ].

3.11. Tekst na mowę

Android obejmuje interfejsy API, które pozwalają aplikacjom korzystać z usług tekstowych (TTS) i pozwala dostawcom usług na dostarczenie wdrażania usług TTS [ zasoby, 45 ]. Implementacje urządzeń zgłaszające funkcję Android.hardware.audio.output musi spełniać te wymagania związane z ramą Android TTS.

Implementacje Automotive Android:

  • Musi obsługiwać interfejsy API z Android TTS.
  • Może obsługiwać instalację silników TTS innych firm. Jeśli są obsługiwani, partnerzy muszą dostarczyć interfejs dostępny dla użytkownika, który pozwala użytkownikowi wybrać silnik TTS do użytku na poziomie systemu.

Wszystkie inne implementacje urządzeń:

  • Musi obsługiwać interfejsy API Framework Android TTS i powinien zawierać silnik TTS obsługujący języki dostępne na urządzeniu. Należy pamiętać, że oprogramowanie open source z Androidem na Androidzie zawiera w pełni funkcjonalną implementację silnika TTS.
  • Musi obsługiwać instalację silników TTS innych firm
  • Musi zapewnić interfejs dostępny dla użytkownika, który pozwala użytkownikom wybrać silnik TTS do użytku na poziomie systemowym

3.12. Framework wejściowy telewizji

Framework wejściowy telewizji Android (TIF) upraszcza dostarczanie treści na żywo do urządzeń telewizyjnych Android. TIF zapewnia standardowy interfejs API do tworzenia modułów wejściowych, które kontrolują urządzenia telewizyjne z Androidem. Implementacje urządzeń telewizyjnych Android muszą obsługiwać programy wejściowe telewizyjne [ Zasoby, 46 ].

Implementacje urządzeń, które obsługują TIF, muszą zadeklarować funkcję platformy android.software.live_tv.

4. Kompatybilność opakowań aplikacji

Implementacje urządzeń muszą zainstalować i uruchamiać pliki „.APK”, generowane przez narzędzie „AAPT” zawarte w oficjalnym systemie Android SDK [ zasoby, 47 ].

Implementacje urządzeń nie mogą rozszerzać żadnego .APK [ Zasoby, 48 ], Androida Manifest [ Resources, 49 ], Dalvik ByteCode [ Zasoby, 20 ] lub renderskryptowe formaty bajt inne kompatybilne urządzenia.

5. Kompatybilność multimedialna

5.1. Kodeksy medialne

Implementacje urządzeń muszą obsługiwać podstawowe formaty mediów określone w dokumentacji Android SDK [ Zasoby, 50 ], z wyjątkiem przypadków, w których wyraźnie dozwolone w tym dokumencie. W szczególności implementacje urządzeń muszą obsługiwać formaty multimediów, enkodery, dekodery, typy plików i formaty kontenerów zdefiniowane w poniższych tabelach i zgłoszone za pośrednictwem MediaCodeclist [ Resources, 112 ]. Implementacje urządzeń muszą być również w stanie zdekodować wszystkie profile zgłoszone w swojej kamerze [ Zasoby, 113 ]. Wszystkie te kodeki są dostarczane jako implementacje oprogramowania w preferowanej implementacji Androida z projektu open source Android.

Należy pamiętać, że ani Google, ani Sojusz Open Słuchawki nie składają żadnych oświadczeń, że te kodeki są wolne od patentów stron trzecich. Osoby, które zamierzają korzystać z tego kodu źródłowego w sprzęcie lub oprogramowaniu, zaleca się, aby implementacje tego kodu, w tym w oprogramowaniu open source lub Shareware, mogą wymagać licencji patentowych od odpowiednich posiadaczy patentów.

5.1.1. Kodeksy audio

Format/kodek Koder Dekoder Detale Obsługiwane typy plików/formaty kontenera
Profil MPEG-4 AAC

(AAC LC)

Wymagane 1 WYMAGANY Obsługa zawartości mono/stereo/5.0/5.1 2 ze standardowymi szybkościami próbkowania od 8 do 48 kHz.
  • 3GPP (.3GP)
  • MPEG-4 (.mp4, .M4a)
  • ADTS RAW AAC (.AAC, Decode in Android 3.1+, koduj w Android 4.0+, ADIF nie jest obsługiwany)
  • MPEG-TS (.ts, nie można go szukać, Android 3.0+)
MPEG-4 Profil AAC (AAC+) Wymagane 1
(Android 4.1+)
WYMAGANY Obsługa zawartości mono/stereo/5.0/5.1 2 ze standardowymi szybkościami próbkowania od 16 do 48 kHz.
MPEG-4 on aacv2

Profil (ulepszony AAC+)

WYMAGANY Obsługa zawartości mono/stereo/5.0/5.1 2 ze standardowymi szybkościami próbkowania od 16 do 48 kHz.
AAC Eld (ulepszone niskie opóźnienie AAC) Wymagane 1

(Android 4.1+)

WYMAGANY

(Android 4.1+)

Obsługa zawartości mono/stereo ze standardowymi szybkościami próbkowania od 16 do 48 kHz.
AMR-NB Wymagane 3 Wymagane 3 4,75 do 12,2 kb / s próbował @ 8kHz 3GPP (.3GP)
AMR-WB Wymagane 3 Wymagane 3 9 stawek z 6,60 kbit/s do 23,85 kbit/s próbkowanych @ 16kHz
Flac WYMAGANY
(Android 3.1+)
Mono/stereo (bez multichannel). Szybkość próbkowania do 48 kHz (ale do 44,1 kHz jest zalecana na urządzeniach o wydajności 44,1 kHz, ponieważ spadek w dół 48 do 44,1 kHz nie zawiera filtra dolnoprzepustowego). 16-bitowy zalecany; Żaden dither nie ubiegał się o 24-bitowy. Tylko flac (.flac)
MP3 WYMAGANY Stała mono/stereo 8-320 kb/s (CBR) lub zmienna transmisja transmisji (VBR) MP3 (.mp3)
MIDI WYMAGANY MIDI Typ 0 i 1. DLS Wersja 1 i 2. XMF i Mobile XMF. Obsługa formatów dzwonków RTTTL/RTX, OTA i IMELODY
  • Typ 0 i 1 (.mid, .xmf, .mxmf)
  • Rtttl/rtx (.rtttl, .rtx)
  • OTA (.OTA)
  • Imelody (.Myy)
Vorbis WYMAGANY
  • OGG (.ogg)
  • Matroska (.MKV, Android 4.0+)
PCM/Wave Wymagane 4
(Android 4.1+)
WYMAGANY 16-bitowy liniowy PCM (stawki aż do granic sprzętu). Urządzenia muszą obsługiwać prędkości próbkowania w zakresie rejestrowania surowego PCM przy częstotliwościach 8000, 11025, 16000 i 44100 Hz. Fala (.wav)
Opus WYMAGANY
(Android 5.0+)
Matroska (.mkv)

1 Wymagane do implementacji urządzeń, które definiują Android.Hardware.mikrofon, ale opcjonalny dla implementacji urządzeń zegarek z Androidem.

2 Wymagane jest tylko spadek zawartości 5.0/5.1; Nagrywanie lub renderowanie więcej niż 2 kanałów jest opcjonalne.

3 Wymagane do implementacji urządzeń przenośnych Androida.

4 Wymagane do implementacji urządzeń, które definiują Android.Hardware.mikrofon, w tym implementacje urządzeń zegarka z Androidem.

5.1.2. Kodeksy obrazu

Format/kodek Koder Dekoder Detale Obsługiwane typy plików/formaty kontenera
JPG WYMAGANY WYMAGANY Baza+progresywna Jpeg (.jpg)
GIF-y WYMAGANY GIF (.gif)
Png WYMAGANY WYMAGANY Png (.png)
BMP WYMAGANY BMP (.bmp)
WebP WYMAGANY WYMAGANY WebP (.Webp)

5.1.3. Kodeksy wideo

Kodeksy wideo są opcjonalne w przypadku implementacji urządzeń z Androidem.

Format/kodek Koder Dekoder Detale Obsługiwane typy plików/
Formaty kontenera
H.263 Wymagane 1 Wymagane 2
  • 3GPP (.3GP)
  • MPEG-4 (.MP4)
H.264 AVC Wymagane 2 Wymagane 2 Szczegółowe informacje znajdują się w sekcji 5.2 i 5.3
  • 3GPP (.3GP)
  • MPEG-4 (.MP4)
  • MPEG-TS (.ts, AAC Audio, nie można go szukać, Android 3.0+)
H.265 HEVC Wymagane 5 Szczegółowe informacje znajdują się w sekcji 5.3 MPEG-4 (.MP4)
MPEG-4 sp Wymagane 2 3GPP (.3GP)
VP8 3 Wymagane 2

(Android 4.3+)

Wymagane 2

(Android 2.3.3+)

Szczegółowe informacje znajdują się w sekcji 5.2 i 5.3
  • Webm (.Webm) [ zasoby, 110
  • Matroska (.MKV, Android 4.0+) 4
VP9 Wymagane 2
(Android 4.4+)
Szczegółowe informacje znajdują się w sekcji 5.3
  • WebM (.Webm) [ Zasoby, 110 ]
  • Matroska (.MKV, Android 4.0+) 4

1 Wymagane do implementacji urządzeń, które obejmują sprzęt aparatu i definiują Android.hardware.camera lub Android.hardware.camera.front.

2 Wymagane do implementacji urządzeń z wyjątkiem urządzeń zegarka z Androidem.

3 Aby uzyskać akceptowalną jakość usług przesyłania strumieniowego wideo i konferencji wideo, implementacje urządzeń powinny korzystać z kodeka sprzętowego VP8, która spełnia wymagania w [ Zasoby, 51 ].

4 Implementacje urządzeń powinny obsługiwać pisanie plików Webm Matroska.

5 Zdecydowanie zalecane dla Android Automotive, opcjonalnie dla Android Watch i wymagane dla wszystkich innych typów urządzeń.

5.2. Kodowanie wideo

Kodeksy wideo są opcjonalne w przypadku implementacji urządzeń z Androidem.

Implementacje urządzeń z Androidem z obsługą H.264 Codec muszą obsługiwać bazowy profil poziom 3 i następujące profile kodowania wideo SD (standardowa definicja) i powinny obsługiwać główny poziom profilu 4 i następujące profile kodowania wideo HD (wysoka definicja). Urządzenia telewizyjne z Androidem są zdecydowanie zalecane do kodowania wideo HD 1080P przy 30 fps.

SD (niska jakość) SD (wysoka jakość) HD 720P1 HD 1080P1
Rozdzielczość wideo 320 x 240 px 720 x 480 px 1280 x 720 px 1920 x 1080 px
Ilość klatek 20 fps 30 fps 30 fps 30 fps
Szybkość wideo 384 kbps 2 Mbps 4 Mb/s 10 Mbps

1, gdy jest obsługiwany przez sprzęt, ale zdecydowanie zalecany dla urządzeń telewizyjnych z Androidem.

Implementacje urządzeń z Androidem z obsługą kodeku VP8 muszą obsługiwać profile kodowania wideo SD i powinny obsługiwać następujące profile kodowania wideo HD (wysoka rozdzielczość).

SD (niska jakość) SD (wysoka jakość) HD 720P1 HD 1080P1
Rozdzielczość wideo 320 x 180 px 640 x 360 px 1280 x 720 px 1920 x 1080 px
Ilość klatek 30 fps 30 fps 30 fps 30 fps
Szybkość wideo 800 kbps 2 Mbps 4 Mb/s 10 Mbps

1, gdy jest obsługiwany przez sprzęt.

5.3. Dekodowanie wideo

Kodeksy wideo są opcjonalne w przypadku implementacji urządzeń z Androidem.

Implementacje urządzeń muszą obsługiwać dynamiczne przełączanie rozdzielczości wideo w tym samym strumieniu dla wszystkich kodeków VP8, VP9, ​​H.264 i H.265 narażonych na programistów za pośrednictwem standardowych interfejsów API Androida.

Implementacje urządzeń z Androidem z dekoderami H.264 muszą obsługiwać podstawowy profil poziom 3 i następujące profile dekodowania wideo SD i powinny obsługiwać profile dekodowania HD. Urządzenia telewizyjne z Androidem muszą obsługiwać wysoki poziom 4.2 i profil dekodowania HD 1080P.

SD (niska jakość) SD (wysoka jakość) HD 720P1 HD 1080P1
Rozdzielczość wideo 320 x 240 px 720 x 480 px 1280 x 720 px 1920 x 1080 px
Ilość klatek 30 fps 30 fps 30 fps / 60 fps2 30 fps / 60 fps2
Szybkość wideo 800 kbps 2 Mbps 8 Mbps 20 Mb/s

1 Wymagane do implementacji urządzeń telewizyjnych z Androidem, ale dla innych typów urządzeń tylko w przypadku obsługi sprzętu.

2 Wymagane do implementacji urządzeń telewizyjnych Android.

Implementacje urządzeń z Androidem podczas obsługi kodeka VP8, jak opisano w sekcji 5.1.3 , muszą obsługiwać następujące profile dekodowania SD i powinny obsługiwać profile dekodowania HD. Urządzenia telewizyjne z Androidem muszą obsługiwać profil dekodowania HD 1080P.

SD (niska jakość) SD (wysoka jakość) HD 720P1 HD 1080P1
Rozdzielczość wideo 320 x 180 px 640 x 360 px 1280 x 720 px 1920 x 1080 px
Ilość klatek 30 fps 30 fps 30 fps / 60 fps2 30/60 fps2
Szybkość wideo 800 kbps 2 Mbps 8 Mbps 20 Mb/s

1 Wymagane do implementacji urządzeń telewizyjnych z Androidem, ale dla innych typów urządzeń tylko po obsłudze sprzętu.

2 Wymagane do implementacji urządzeń telewizyjnych Android.

Implementacje urządzeń z Androidem, obsługując kodek VP9, ​​jak opisano w sekcji 5.1.3 , muszą obsługiwać następujące profile dekodowania wideo SD i powinny obsługiwać profile dekodowania HD. Urządzenia telewizyjne z Androidem są zdecydowanie zalecane do obsługi profilu dekodowania HD 1080P i powinny obsługiwać profil dekodowania UHD. Gdy obsługiwany jest profil dekodowania wideo UHD, musi obsługiwać 8 -bitową głębokość kolorów.

SD (niska jakość) SD (wysoka jakość) HD 720P 1 HD 1080P 2 UHD 2
Rozdzielczość wideo 320 x 180 px 640 x 360 px 1280 x 720 px 1920 x 1080 px 3840 x 2160 px
Ilość klatek 30 fps 30 fps 30 fps 30 fps 30 fps
Szybkość wideo 600 kbps 1,6 Mbps 4 Mb/s 10 Mbps 20 Mb/s

1 Wymagane do implementacji urządzeń telewizyjnych z Androidem, ale dla innych typów urządzeń tylko po obsłudze sprzętu.

2 zdecydowanie zalecane do implementacji urządzeń telewizyjnych Android, gdy są obsługiwane przez sprzęt.

Implementacje urządzeń z Androidem, obsługując kodek H.265, jak opisano w sekcji 5.1.3 , muszą obsługiwać główny poziom głównego profilu 3 i następujące profile dekodowania wideo SD i powinny obsługiwać profile dekodowania HD. Urządzenia telewizyjne z Androidem powinny obsługiwać główny profil poziomu Main10 poziomu 5 i profil dekodowania UHD. Urządzenia telewizyjne z Androidem są zdecydowanie zalecane do obsługi profilu dekodowania HD 1080P. Jeśli obsługiwany jest profil dekodowania HD 1080P, musi obsługiwać główny poziom profilu 4.1

SD (niska jakość) SD (wysoka jakość) HD 720P 1 HD 1080P 2 UHD 2
Rozdzielczość wideo 352 x 288 px 640 x 360 px 1280 x 720 px 1920 x 1080 px 3840 x 2160 px
Ilość klatek 30 fps 30 fps 30 fps 30 fps 30 fps
Szybkość wideo 600 kbps 1,6 Mbps 4 Mb/s 10 Mbps 20 Mb/s

1 Wymagane do implementacji urządzeń telewizyjnych z Androidem, ale dla innych typów urządzeń tylko po obsłudze sprzętu.

2 zdecydowanie zalecane do implementacji urządzeń telewizyjnych Android, gdy są obsługiwane przez sprzęt.

5.4. Nagrywanie dźwięku

Podczas gdy niektóre wymagania przedstawione w tej sekcji są podawane tak, jak powinny od czasu Androida 4.3, planowana jest definicja kompatybilności dla przyszłej wersji, aby je zmienić. Zalecane są istniejące i nowe urządzenia z Androidem, aby spełnić te wymagania, które są podane tak, jak powinny, lub nie będą w stanie uzyskać kompatybilności z Androidem po zaktualizowaniu do przyszłej wersji.

5.4.1. Surowe przechwytywanie dźwięku

Implementacje urządzeń, które deklarują Android.Hardware.mikrofon, muszą umożliwić przechwytywanie surowej zawartości dźwięku o następujących cechach:

  • Format : liniowy PCM, 16-bitowy
  • Szybkość próbkowania : 8000, 11025, 16000, 44100
  • Kanały : Mono

Implementacje urządzeń, które deklarują Android.Hardware.mikrofon powinien umożliwić przechwytywanie surowej zawartości dźwięku o następujących cechach:

  • Format : liniowy PCM, 16-bitowy
  • Szybkość próbkowania : 22050, 48000
  • Kanały : stereo

5.4.2. Capture for Voice Recognition

Oprócz powyższych specyfikacji nagrywania, gdy aplikacja zaczęła rejestrować strumień dźwięku za pomocą Android.media.mediarEcorder.audiOsource.voice_recognition Audio Źródło:

  • Urządzenie powinno wykazywać w przybliżeniu płaską amplitudę w porównaniu z charakterystyką częstotliwości: konkretnie, ± 3 dB, od 100 Hz do 4000 Hz.
  • Wrażliwość na wejście audio powinna być ustawiona tak, aby źródło mocy dźwięku 90 dB (SPL) przy 1000 Hz daje RMS 2500 dla próbek 16-bitowych.
  • Poziomy amplitudy PCM powinny liniowo śledzić zmiany wejściowe SPL w zakresie co najmniej 30 dB od -18 dB do +12 dB RE 90 dB SPL w mikrofonie.
  • Całkowite zniekształcenie harmoniczne powinno być mniejsze niż 1% dla 1 kHz przy poziomie wejściowym SPL 90 dB na mikrofonie.
  • Przetwarzanie redukcji szumów, jeśli jest obecne, musi być wyłączone.
  • Automatyczna kontrola wzmocnienia, jeśli jest obecna, musi być wyłączona

Jeśli platforma obsługuje technologie tłumienia szumu dostrojone do rozpoznawania mowy, efekt musi być kontrolowany z interfejsu API Android.Media.audiofx.noisesupressor. Co więcej, pole UUID dla deskryptora efektu tłumika szumu musi jednoznacznie zidentyfikować każdą implementację technologii tłumienia szumu.

5.4.3. Schwytanie do przekierowania odtwarzania

Klasa Android.media.mediarEcorder.audiOsource zawiera źródło audio Remote_SubMix. Urządzenia, które deklarują android.hardware.audio.output muszą poprawnie zaimplementować źródło audio remote_submix, aby gdy aplikacja korzysta z Android.media.AudiOreCord API do rejestrowania z tego źródła dźwięku, może uchwycić mieszankę wszystkich strumieni audio, z wyjątkiem poniższych :

  • Stream_ring
  • Stream_alarm
  • Stream_notification

5.5. Odtwarzanie audio

Implementacje urządzeń, które deklarują Android.hardware.audio.output, muszą spełniać wymagania w tej sekcji.

5.5.1. Raw odtwarzanie dźwięku

Urządzenie musi umożliwić odtwarzanie surowej zawartości dźwięku o następujących cechach:

  • Format : liniowy PCM, 16-bitowy
  • Szybkość próbkowania : 8000, 11025, 16000, 22050, 32000, 44100
  • Kanały : mono, stereo

Urządzenie powinno umożliwić odtwarzanie surowej zawartości dźwięku o następujących cechach:

  • Szybkość próbkowania : 24000, 48000

5.5.2. Efekty audio

Android zapewnia interfejs API dla efektów audio dla implementacji urządzeń [ zasoby, 52 ]. Implementacje urządzeń, które deklarują funkcję Android.hardware.audio.output:

  • Musi obsługiwać Effect_Type_equalizer i Effect_Type_Loudness_enhancer Implementacje kontrolowane za pośrednictwem podklas audioeffect, Loudnessenhancer.
  • Musi obsługiwać implementację API Visualizer, kontrolowaną za pośrednictwem klasy wizualizatora.
  • Powinien obsługiwać Effect_Type_Bass_Boost, Effect_Type_ENV_REVERB, EFECT_TYPE_PRESET_REVERB i EFECT_TYPE_VIRUTALIZER KONTRODOWANE ZADAWANIE PODSTAWKI AUDIOEFFECT BASSBOOST, EnvironmentalReverB, PresetReverB i Virtualizer.

5.5.3. Objętość wyjściowa dźwięku

Implementacje urządzeń telewizyjnych Android muszą zawierać obsługę głośności głównego systemu i tłumienia objętości cyfrowej dźwięku na obsługiwanych wyjściach, z wyjątkiem sprężonego wyjścia przechodzącego audio (gdzie na urządzeniu nie jest wykonywane dekodowanie audio).

5.6. Opóźnienie dźwięku

Opóźnienie dźwięku to opóźnienie czasowe, gdy sygnał audio przechodzi przez system. Wiele klas aplikacji opiera się na krótkich opóźnieniach, aby osiągnąć efekty dźwiękowe w czasie rzeczywistym.

Do celów niniejszej sekcji użyj następujących definicji:

  • opóźnienie wyjściowe . Odstęp między tym, gdy aplikacja zapisuje ramkę danych kodowanych przez PCM, a gdy odpowiedni dźwięk może być usłyszany przez zewnętrznego słuchacza lub obserwowany przez przetwornik.
  • Opóźnienie na zimno . Opóźnienie wyjściowe dla pierwszej ramki, gdy system wyjściowy audio był bezczynności i zasilany przed żądaniem.
  • ciągłe opóźnienie wyjściowe . Opóźnienie wyjściowe dla kolejnych ramek, po odtwarzaniu urządzenia dźwięku.
  • Opóźnienie wejściowe . Interwał między tym, gdy dźwięk zewnętrzny jest przedstawiony urządzeniu, a gdy aplikacja odczytuje odpowiedni ramkę danych kodowanych przez PCM.
  • Opóźnienie zimnego wejścia . The sum of lost input time and the input latency for the first frame, when the audio input system has been idle and powered down prior to the request.
  • continuous input latency . The input latency for subsequent frames, while the device is capturing audio.
  • cold output jitter . The variance among separate measurements of cold output latency values.
  • cold input jitter . The variance among separate measurements of cold input latency values.
  • continuous round-trip latency . The sum of continuous input latency plus continuous output latency plus 5 milliseconds.
  • OpenSL ES PCM buffer queue API . The set of PCM-related OpenSL ES APIs within Android NDK; see NDK_root/docs/opensles/index.html.

Device implementations that declare android.hardware.audio.output SHOULD meet or exceed these audio output requirements:

  • cold output latency of 100 milliseconds or less
  • continuous output latency of 45 milliseconds or less
  • minimize the cold output jitter

If a device implementation meets the requirements of this section after any initial calibration when using the OpenSL ES PCM buffer queue API, for continuous output latency and cold output latency over at least one supported audio output device, it MAY report support for low-latency audio, by reporting the feature android.hardware.audio.low_latency via the android.content.pm.PackageManager class [ Resources, 53 ]. Conversely, if the device implementation does not meet these requirements it MUST NOT report support for low-latency audio.

Device implementations that include android.hardware.microphone SHOULD meet these input audio requirements:

  • cold input latency of 100 milliseconds or less
  • continuous input latency of 30 milliseconds or less
  • continuous round-trip latency of 50 milliseconds or less
  • minimize the cold input jitter

5.7. Network Protocols

Devices MUST support the media network protocols for audio and video playback as specified in the Android SDK documentation [ Resources, 50 ]. Specifically, devices MUST support the following media network protocols:

  • RTSP (RTP, SDP)
  • HTTP(S) progressive streaming
  • HTTP(S) Live Streaming draft protocol, Version 3 [ Resources, 54 ]

5.8. Secure Media

Device implementations that support secure video output and are capable of supporting secure surfaces MUST declare support for Display.FLAG_SECURE. Device implementations that declare support for Display.FLAG_SECURE, if they support a wireless display protocol, MUST secure the link with a cryptographically strong mechanism such as HDCP 2.x or higher for Miracast wireless displays. Similarly if they support a wired external display, the device implementations MUST support HDCP 1.2 or higher. Android Television device implementations MUST support HDCP 2.2 for devices supporting 4K resolution and HDCP 1.4 or above for lower resolutions. The upstream Android open source implementation includes support for wireless (Miracast) and wired (HDMI) displays that satisfies this requirement.

6. Developer Tools and Options Compatibility

6.1. Narzędzia deweloperskie

Device implementations MUST support the Android Developer Tools provided in the Android SDK. Android compatible devices MUST be compatible with:

Device implementations MUST support all adb functions as documented in the Android SDK including dumpsys [ Resources, 56 ]. The device-side adb daemon MUST be inactive by default and there MUST be a user-accessible mechanism to turn on the Android Debug Bridge. If a device implementation omits USB peripheral mode, it MUST implement the Android Debug Bridge via local-area network (such as Ethernet or 802.11).

Android includes support for secure adb. Secure adb enables adb on known authenticated hosts. Device implementations MUST support secure adb.

Device implementations MUST support all ddms features as documented in the Android SDK. As ddms uses adb, support for ddms SHOULD be inactive by default, but MUST be supported whenever the user has activated the Android Debug Bridge, as above.

Device implementations MUST include the Monkey framework, and make it available for applications to use.

Device implementations MUST support systrace tool as documented in the Android SDK. Systrace must be inactive by default, and there MUST be a user-accessible mechanism to turn on Systrace.

Most Linux-based systems and Apple Macintosh systems recognize Android devices using the standard Android SDK tools, without additional support; however Microsoft Windows systems typically require a driver for new Android devices. (For instance, new vendor IDs and sometimes new device IDs require custom USB drivers for Windows systems.) If a device implementation is unrecognized by the adb tool as provided in the standard Android SDK, device implementers MUST provide Windows drivers allowing developers to connect to the device using the adb protocol. These drivers MUST be provided for Windows XP, Windows Vista, Windows 7, Windows 8, and Windows 9 in both 32-bit and 64-bit versions.

6.2. Opcje programistyczne

Android includes support for developers to configure application development-related settings. Device implementations MUST honor the android.settings.APPLICATION_DEVELOPMENT_SETTINGS intent to show application development-related settings [ Resources, 60 ]. The upstream Android implementation hides the Developer Options menu by default and enables users to launch Developer Options after pressing seven (7) times on the Settings > About Device > Build Number menu item. Device implementations MUST provide a consistent experience for Developer Options. Specifically, device implementations MUST hide Developer Options by default and MUST provide a mechanism to enable Developer Options that is consistent with the upstream Android implementation.

7. Hardware Compatibility

If a device includes a particular hardware component that has a corresponding API for third-party developers, the device implementation MUST implement that API as described in the Android SDK documentation. If an API in the SDK interacts with a hardware component that is stated to be optional and the device implementation does not possess that component:

  • Complete class definitions (as documented by the SDK) for the component APIs MUST still be presented.
  • The API's behaviors MUST be implemented as no-ops in some reasonable fashion.
  • API methods MUST return null values where permitted by the SDK documentation.
  • API methods MUST return no-op implementations of classes where null values are not permitted by the SDK documentation.
  • API methods MUST NOT throw exceptions not documented by the SDK documentation.

A typical example of a scenario where these requirements apply is the telephony API: even on non-phone devices, these APIs must be implemented as reasonable no-ops.

Device implementations MUST consistently report accurate hardware configuration information via the getSystemAvailableFeatures() and hasSystemFeature(String) methods on the android.content.pm.PackageManager class for the same build fingerprint. [ Resources, 53]

7.1. Display and Graphics

Android includes facilities that automatically adjust application assets and UI layouts appropriately for the device, to ensure that third-party applications run well on a variety of hardware configurations [ Resources, 61 ]. Devices MUST properly implement these APIs and behaviors, as detailed in this section.

The units referenced by the requirements in this section are defined as follows:

  • physical diagonal size . The distance in inches between two opposing corners of the illuminated portion of the display.
  • dots per inch (dpi) . The number of pixels encompassed by a linear horizontal or vertical span of 1”. Where dpi values are listed, both horizontal and vertical dpi must fall within the range.
  • aspect ratio . The ratio of the pixels of the longer dimension to the shorter dimension of the screen. For example, a display of 480x854 pixels would be 854/480 = 1.779, or roughly “16:9”.
  • density-independent pixel (dp) The virtual pixel unit normalized to a 160 dpi screen, calculated as: pixels = dps * (density/160).

7.1.1. Screen Configuration

7.1.1.1. Rozmiar ekranu

Android Watch devices (detailed in section 2 ) MAY have smaller screen sizes as described in this section.

The Android UI framework supports a variety of different screen sizes, and allows applications to query the device screen size (aka “screen layout") via android.content.res.Configuration.screenLayout with the SCREENLAYOUT_SIZE_MASK. Device implementations MUST report the correct screen size as defined in the Android SDK documentation [ Resources, 61 ] and determined by the upstream Android platform. Specifically, device implementations MUST report the correct screen size according to the following logical density-independent pixel (dp) screen dimensions.

  • Devices MUST have screen sizes of at least 426 dp x 320 dp ('small'), unless it is an Android Watch device.
  • Devices that report screen size 'normal' MUST have screen sizes of at least 480 dp x 320 dp.
  • Devices that report screen size 'large' MUST have screen sizes of at least 640 dp x 480 dp.
  • Devices that report screen size 'xlarge' MUST have screen sizes of at least 960 dp x 720 dp.

Ponadto,

  • Android Watch devices MUST have a screen with the physical diagonal size in the range from 1.1 to 2.5 inches.
  • Other types of Android device implementations, with a physically integrated screen, MUST have a screen at least 2.5 inches in physical diagonal size.

Devices MUST NOT change their reported screen size at any time.

Applications optionally indicate which screen sizes they support via the <supports-screens> attribute in the AndroidManifest.xml file. Device implementations MUST correctly honor applications' stated support for small, normal, large, and xlarge screens, as described in the Android SDK documentation.

7.1.1.2. Screen Aspect Ratio

Android Watch devices MAY have an aspect ratio of 1.0 (1:1).

The screen aspect ratio MUST be a value from 1.3333 (4:3) to 1.86 (roughly 16:9), but Android Watch devices MAY have an aspect ratio of 1.0 (1:1) because such a device implementation will use a UI_MODE_TYPE_WATCH as the android.content.res.Configuration.uiMode.

7.1.1.3. Screen Density

The Android UI framework defines a set of standard logical densities to help application developers target application resources. Device implementations MUST report only one of the following logical Android framework densities through the android.util.DisplayMetrics APIs, and MUST execute applications at this standard density and MUST NOT change the value at at any time for the default display.

  • 120 dpi (ldpi)
  • 160 dpi (mdpi)
  • 213 dpi (tvdpi)
  • 240 dpi (hdpi)
  • 280 dpi (280dpi)
  • 320 dpi (xhdpi)
  • 400 dpi (400dpi)
  • 480 dpi (xxhdpi)
  • 560 dpi (560dpi)
  • 640 dpi (xxxhdpi)

Device implementations SHOULD define the standard Android framework density that is numerically closest to the physical density of the screen, unless that logical density pushes the reported screen size below the minimum supported. If the standard Android framework density that is numerically closest to the physical density results in a screen size that is smaller than the smallest supported compatible screen size (320 dp width), device implementations SHOULD report the next lowest standard Android framework density.

7.1.2. Display Metrics

Device implementations MUST report correct values for all display metrics defined in android.util.DisplayMetrics [ Resources, 62 ] and MUST report the same values regardless of whether the embedded or external screen is used as the default display.

7.1.3. Orientacja ekranu

Devices MUST report which screen orientations they support (android.hardware.screen.portrait and/or android.hardware.screen.landscape) and MUST report at least one supported orientation. For example, a device with a fixed orientation landscape screen, such as a television or laptop, SHOULD only report android.hardware.screen.landscape.

Devices that report both screen orientations MUST support dynamic orientation by applications to either portrait or landscape screen orientation. That is, the device must respect the application's request for a specific screen orientation. Device implementations MAY select either portrait or landscape orientation as the default.

Devices MUST report the correct value for the device's current orientation, whenever queried via the android.content.res.Configuration.orientation, android.view.Display.getOrientation(), or other APIs.

Devices MUST NOT change the reported screen size or density when changing orientation.

7.1.4. 2D and 3D Graphics Acceleration

Device implementations MUST support both OpenGL ES 1.0 and 2.0, as embodied and detailed in the Android SDK documentations. Device implementations SHOULD support OpenGL ES 3.0 or 3.1 on devices capable of supporting it. Device implementations MUST also support Android RenderScript, as detailed in the Android SDK documentation [ Resources, 63 ].

Device implementations MUST also correctly identify themselves as supporting OpenGL ES 1.0, OpenGL ES 2.0, OpenGL ES 3.0 or OpenGL 3.1. To jest:

  • The managed APIs (such as via the GLES10.getString() method) MUST report support for OpenGL ES 1.0 and OpenGL ES 2.0.
  • The native C/C++ OpenGL APIs (APIs available to apps via libGLES_v1CM.so, libGLES_v2.so, or libEGL.so) MUST report support for OpenGL ES 1.0 and OpenGL ES 2.0.
  • Device implementations that declare support for OpenGL ES 3.0 or 3.1 MUST support the corresponding managed APIs and include support for native C/C++ APIs. On device implementations that declare support for OpenGL ES 3.0 or 3.1, libGLESv2.so MUST export the corresponding function symbols in addition to the OpenGL ES 2.0 function symbols.

In addition to OpenGL ES 3.1, Android provides an extension pack with Java interfaces [ Resources, 64 ] and native support for advanced graphics functionality such as tessellation and the ASTC texture compression format. Android device implementations MAY support this extension pack, and—only if fully implemented—MUST identify the support through the android.hardware.opengles.aep feature flag.

Also, device implementations MAY implement any desired OpenGL ES extensions. However, device implementations MUST report via the OpenGL ES managed and native APIs all extension strings that they do support, and conversely MUST NOT report extension strings that they do not support.

Note that Android includes support for applications to optionally specify that they require specific OpenGL texture compression formats. These formats are typically vendor-specific. Device implementations are not required by Android to implement any specific texture compression format. However, they SHOULD accurately report any texture compression formats that they do support, via the getString() method in the OpenGL API.

Android includes a mechanism for applications to declare that they want to enable hardware acceleration for 2D graphics at the Application, Activity, Window, or View level through the use of a manifest tag android:hardwareAccelerated or direct API calls [ Resources, 65 ].

Device implementations MUST enable hardware acceleration by default, and MUST disable hardware acceleration if the developer so requests by setting android:hardwareAccelerated="false” or disabling hardware acceleration directly through the Android View APIs.

In addition, device implementations MUST exhibit behavior consistent with the Android SDK documentation on hardware acceleration [ Resources, 65 ].

Android includes a TextureView object that lets developers directly integrate hardware-accelerated OpenGL ES textures as rendering targets in a UI hierarchy. Device implementations MUST support the TextureView API, and MUST exhibit consistent behavior with the upstream Android implementation.

Android includes support for EGL_ANDROID_RECORDABLE, an EGLConfig attribute that indicates whether the EGLConfig supports rendering to an ANativeWindow that records images to a video. Device implementations MUST support EGL_ANDROID_RECORDABLE extension [ Resources, 66 ].

7.1.5. Legacy Application Compatibility Mode

Android specifies a “compatibility mode” in which the framework operates in a 'normal' screen size equivalent (320dp width) mode for the benefit of legacy applications not developed for old versions of Android that pre-date screen-size independence.

  • Android Automotive does not support legacy compatibility mode.
  • All other device implementations MUST include support for legacy application compatibility mode as implemented by the upstream Android open source code. That is, device implementations MUST NOT alter the triggers or thresholds at which compatibility mode is activated, and MUST NOT alter the behavior of the compatibility mode itself.

7.1.6. Screen Technology

The Android platform includes APIs that allow applications to render rich graphics to the display. Devices MUST support all of these APIs as defined by the Android SDK unless specifically allowed in this document.

  • Devices MUST support displays capable of rendering 16-bit color graphics and SHOULD support displays capable of 24-bit color graphics.
  • Devices MUST support displays capable of rendering animations.
  • The display technology used MUST have a pixel aspect ratio (PAR) between 0.9 and 1.15. That is, the pixel aspect ratio MUST be near square (1.0) with a 10 ~ 15% tolerance.

7.1.7. Secondary Displays

Android includes support for secondary display to enable media sharing capabilities and developer APIs for accessing external displays. If a device supports an external display either via a wired, wireless, or an embedded additional display connection then the device implementation MUST implement the display manager API as described in the Android SDK documentation [ Resources, 67 ].

7.2. Urządzenia wejściowe

Devices MUST support a touchscreen or meet the requirements listed in 7.2.2 for non-touch navigation.

7.2.1. Klawiatura

Android Watch and Android Automotive implementations MAY implement a soft keyboard. All other device implementations MUST implement a soft keyboard and:

Device implementations:

  • MUST include support for the Input Management Framework (which allows third-party developers to create Input Method Editors—ie soft keyboard) as detailed at http://developer.android.com .
  • MUST provide at least one soft keyboard implementation (regardless of whether a hard keyboard is present) except for Android Watch devices where the screen size makes it less reasonable to have a soft keyboard.
  • MAY include additional soft keyboard implementations.
  • MAY include a hardware keyboard.
  • MUST NOT include a hardware keyboard that does not match one of the formats specified in android.content.res.Configuration.keyboard [ Resources, 68 ] (QWERTY or 12-key).

7.2.2. Non-touch Navigation

Android Television devices MUST support D-pad.

Device implementations:

  • MAY omit a non-touch navigation option (trackball, d-pad, or wheel) if the device implementation is not an Android Television device.
  • MUST report the correct value for android.content.res.Configuration.navigation [ Resources, 68 ].
  • MUST provide a reasonable alternative user interface mechanism for the selection and editing of text, compatible with Input Management Engines. The upstream Android open source implementation includes a selection mechanism suitable for use with devices that lack non-touch navigation inputs.

7.2.3. Navigation Keys

The availability and visibility requirement of the Home, Recents, and Back functions differ between device types as described in this section.

The Home, Recents, and Back functions (mapped to the key events KEYCODE_HOME, KEYCODE_APP_SWITCH, KEYCODE_BACK, respectively) are essential to the Android navigation paradigm and therefore:

  • Android Handheld device implementations MUST provide the Home, Recents, and Back functions.
  • Android Television device implementations MUST provide the Home and Back functions.
  • Android Watch device implementations MUST have the Home function available to the user, and the Back function except for when it is in UI_MODE_TYPE_WATCH.
  • Android Automotive implementations MUST provide the Home function and MAY provide Back and Recent functions.
  • All other types of device implementations MUST provide the Home and Back functions.

These functions MAY be implemented via dedicated physical buttons (such as mechanical or capacitive touch buttons), or MAY be implemented using dedicated software keys on a distinct portion of the screen, gestures, touch panel, etc. Android supports both implementations. All of these functions MUST be accessible with a single action (eg tap, double-click or gesture) when visible.

Recents function, if provided, MUST have a visible button or icon unless hidden together with other navigation functions in full-screen mode. This does not apply to devices upgrading from earlier Android versions that have physical buttons for navigation and no recents key.

The Home and Back functions, if provided, MUST each have a visible button or icon unless hidden together with other navigation functions in full-screen mode or when the uiMode UI_MODE_TYPE_MASK is set to UI_MODE_TYPE_WATCH.

The Menu function is deprecated in favor of action bar since Android 4.0. Therefore the new device implementations shipping with Android 5.0 and later MUST NOT implement a dedicated physical button for the Menu function. Older device implementations SHOULD NOT implement a dedicated physical button for the Menu function, but if the physical Menu button is implemented and the device is running applications with targetSdkVersion > 10, the device implementation:

  • MUST display the action overflow button on the action bar when it is visible and the resulting action overflow menu popup is not empty. For a device implementation launched before Android 4.4 but upgrading to Android 5.1, this is RECOMMENDED.
  • MUST NOT modify the position of the action overflow popup displayed by selecting the overflow button in the action bar.
  • MAY render the action overflow popup at a modified position on the screen when it is displayed by selecting the physical menu button.

For backwards compatibility, device implementations MUST make the Menu function available to applications when targetSdkVersion is less than 10, either by a physical button, a software key, or gestures. This Menu function should be presented unless hidden together with other navigation functions.

Android supports Assist action [ Resources, 69 ]. Android device implementations except for Android Watch devices MUST make the Assist action available to the user at all times when running applications. The Assist action SHOULD be implemented as a long-press on the Home button or a swipe-up gesture on the software Home key. This function MAY be implemented via another physical button, software key, or gesture, but MUST be accessible with a single action (eg tap, double-click, or gesture) when other navigation keys are visible.

Device implementations MAY use a distinct portion of the screen to display the navigation keys, but if so, MUST meet these requirements:

  • Device implementation navigation keys MUST use a distinct portion of the screen, not available to applications, and MUST NOT obscure or otherwise interfere with the portion of the screen available to applications.
  • Device implementations MUST make available a portion of the display to applications that meets the requirements defined in section 7.1.1 .
  • Device implementations MUST display the navigation keys when applications do not specify a system UI mode, or specify SYSTEM_UI_FLAG_VISIBLE.
  • Device implementations MUST present the navigation keys in an unobtrusive “low profile” (eg. dimmed) mode when applications specify SYSTEM_UI_FLAG_LOW_PROFILE.
  • Device implementations MUST hide the navigation keys when applications specify SYSTEM_UI_FLAG_HIDE_NAVIGATION.

7.2.4. Touchscreen Input

Android Handhelds and Watch Devices MUST support touchscreen input.

Device implementations SHOULD have a pointer input system of some kind (either mouse-like or touch). However, if a device implementation does not support a pointer input system, it MUST NOT report the android.hardware.touchscreen or android.hardware.faketouch feature constant. Device implementations that do include a pointer input system:

  • SHOULD support fully independently tracked pointers, if the device input system supports multiple pointers.
  • MUST report the value of android.content.res.Configuration.touchscreen [ Resources, 68 ] corresponding to the type of the specific touchscreen on the device.

Android includes support for a variety of touchscreens, touch pads, and fake touch input devices. Touchscreen based device implementations are associated with a display [ Resources, 70 ] such that the user has the impression of directly manipulating items on screen. Since the user is directly touching the screen, the system does not require any additional affordances to indicate the objects being manipulated. In contrast, a fake touch interface provides a user input system that approximates a subset of touchscreen capabilities. For example, a mouse or remote control that drives an on-screen cursor approximates touch, but requires the user to first point or focus then click. Numerous input devices like the mouse, trackpad, gyro-based air mouse, gyro-pointer, joystick, and multi-touch trackpad can support fake touch interactions. Android includes the feature constant android.hardware.faketouch, which corresponds to a high-fidelity non-touch (pointer-based) input device such as a mouse or trackpad that can adequately emulate touch-based input (including basic gesture support), and indicates that the device supports an emulated subset of touchscreen functionality. Device implementations that declare the fake touch feature MUST meet the fake touch requirements in section 7.2.5 .

Device implementations MUST report the correct feature corresponding to the type of input used. Device implementations that include a touchscreen (single-touch or better) MUST report the platform feature constant android.hardware.touchscreen. Device implementations that report the platform feature constant android.hardware.touchscreen MUST also report the platform feature constant android.hardware.faketouch. Device implementations that do not include a touchscreen (and rely on a pointer device only) MUST NOT report any touchscreen feature, and MUST report only android.hardware.faketouch if they meet the fake touch requirements in section 7.2.5 .

7.2.5. Fake Touch Input

Device implementations that declare support for android.hardware.faketouch:

  • MUST report the absolute X and Y screen positions of the pointer location and display a visual pointer on the screen [ Resources, 71 ].
  • MUST report touch event with the action code that specifies the state change that occurs on the pointer going down or up on the screen [ Resources, 71 ].
  • MUST support pointer down and up on an object on the screen, which allows users to emulate tap on an object on the screen.
  • MUST support pointer down, pointer up, pointer down then pointer up in the same place on an object on the screen within a time threshold, which allows users to emulate double tap on an object on the screen [ Resources, 71 ].
  • MUST support pointer down on an arbitrary point on the screen, pointer move to any other arbitrary point on the screen, followed by a pointer up, which allows users to emulate a touch drag.
  • MUST support pointer down then allow users to quickly move the object to a different position on the screen and then pointer up on the screen, which allows users to fling an object on the screen.

Devices that declare support for android.hardware.faketouch.multitouch.distinct MUST meet the requirements for faketouch above, and MUST also support distinct tracking of two or more independent pointer inputs.

7.2.6. Game Controller Support

Android Television device implementations MUST support button mappings for game controllers as listed below. The upstream Android implementation includes implementation for game controllers that satisfies this requirement.

7.2.6.1. Button Mappings

Android Television device implementations MUST support the following key mappings:

Przycisk HID Usage 2 Android Button
1 _ 0x09 0x0001 KEYCODE_BUTTON_A (96)
B 1 0x09 0x0002 KEYCODE_BUTTON_B (97)
X 1 0x09 0x0004 KEYCODE_BUTTON_X (99)
Y 1 0x09 0x0005 KEYCODE_BUTTON_Y (100)
D-pad up 1

D-pad down 1

0x01 0x0039 3 AXIS_HAT_Y 4
D-pad left 1

D-pad right 1

0x01 0x0039 3 AXIS_HAT_X 4
Left shoulder button 1 0x09 0x0007 KEYCODE_BUTTON_L1 (102)
Right shoulder button 1 0x09 0x0008 KEYCODE_BUTTON_R1 (103)
Left stick click 1 0x09 0x000E KEYCODE_BUTTON_THUMBL (106)
Right stick click 1 0x09 0x000F KEYCODE_BUTTON_THUMBR (107)
Dom 1 0x0c 0x0223 KEYCODE_HOME (3)
Back 1 0x0c 0x0224 KEYCODE_BACK (4)

1 [ Resources, 72 ]

2 The above HID usages must be declared within a Game pad CA (0x01 0x0005).

3 This usage must have a Logical Minimum of 0, a Logical Maximum of 7, a Physical Minimum of 0, a Physical Maximum of 315, Units in Degrees, and a Report Size of 4. The logical value is defined to be the clockwise rotation away from the vertical axis; for example, a logical value of 0 represents no rotation and the up button being pressed, while a logical value of 1 represents a rotation of 45 degrees and both the up and left keys being pressed.

4 [ Resources, 71 ]

Analog Controls 1 HID Usage Android Button
Lewy spust 0x02 0x00C5 AXIS_LTRIGGER
Right Trigger 0x02 0x00C4 AXIS_RTRIGGER
Left Joystick 0x01 0x0030

0x01 0x0031

AXIS_X

AXIS_Y

Right Joystick 0x01 0x0032

0x01 0x0035

AXIS_Z

AXIS_RZ

1 [ Resources, 71 ]

7.2.7. Pilot

Android Television device implementations SHOULD provide a remote control to allow users to access the TV interface. The remote control MAY be a physical remote or can be a software-based remote that is accessible from a mobile phone or tablet. The remote control MUST meet the requirements defined below.

  • Search affordance . Device implementations MUST fire KEYCODE_SEARCH when the user invokes voice search either on the physical or software-based remote.
  • Navigation . All Android Television remotes MUST include Back, Home, and Select buttons and support for D-pad events [ Resources, 72 ].

7.3. Czujniki

Android includes APIs for accessing a variety of sensor types. Devices implementations generally MAY omit these sensors, as provided for in the following subsections. If a device includes a particular sensor type that has a corresponding API for third-party developers, the device implementation MUST implement that API as described in the Android SDK documentation and the Android Open Source documentation on sensors [ Resources, 73 ]. For example, device implementations:

  • MUST accurately report the presence or absence of sensors per the android.content.pm.PackageManager class [ Resources, 53] .
  • MUST return an accurate list of supported sensors via the SensorManager.getSensorList() and similar methods.
  • MUST behave reasonably for all other sensor APIs (for example, by returning true or false as appropriate when applications attempt to register listeners, not calling sensor listeners when the corresponding sensors are not present; etc.).
  • MUST report all sensor measurements using the relevant International System of Units (metric) values for each sensor type as defined in the Android SDK documentation [ Resources, 74 ].
  • SHOULD report the event time in nanoseconds as defined in the Android SDK documentation, representing the time the event happened and synchronized with the SystemClock.elapsedRealtimeNano() clock. Existing and new Android devices are very strongly encouraged to meet these requirement so they will be able to upgrade to the future platform releases where this might become a REQUIRED component. The synchronization error SHOULD be below 100 milliseconds [ Resources, 75 ].

The list above is not comprehensive; the documented behavior of the Android SDK and the Android Open Source Documentations on Sensors [ Resources, 73 ] is to be considered authoritative.

Some sensor types are composite, meaning they can be derived from data provided by one or more other sensors. (Examples include the orientation sensor, and the linear acceleration sensor.) Device implementations SHOULD implement these sensor types, when they include the prerequisite physical sensors as described in [ Resources, 76 ]. If a device implementation includes a composite sensor it MUST implement the sensor as described in the Android Open Source documentation on composite sensors [ Resources, 76 ].

Some Android sensors support a “continuous” trigger mode, which returns data continuously [ Resources, 77 ]. For any API indicated by the Android SDK documentation to be a continuous sensor, device implementations MUST continuously provide periodic data samples that SHOULD have a jitter below 3%, where jitter is defined as the standard deviation of the difference of the reported timestamp values between consecutive wydarzenia.

Note that the device implementations MUST ensure that the sensor event stream MUST NOT prevent the device CPU from entering a suspend state or waking up from a suspend state.

Finally, when several sensors are activated, the power consumption SHOULD NOT exceed the sum of the individual sensor's reported power consumption.

7.3.1. Akcelerometr

Device implementations SHOULD include a 3-axis accelerometer. Android Handheld devices and Android Watch devices are strongly encouraged to include this sensor. If a device implementation does include a 3-axis accelerometer, it:

  • MUST implement and report TYPE_ACCELEROMETER sensor [ Resources, 78 ].
  • MUST be able to report events up to a frequency of at least 50 Hz for Android Watch devices as such devices have a stricter power constraint and 100 Hz for all other device types.
  • SHOULD report events up to at least 200 Hz.
  • MUST comply with the Android sensor coordinate system as detailed in the Android APIs [ Resources, 74 ].
  • MUST be capable of measuring from freefall up to four times the gravity (4g) or more on any axis.
  • MUST have a resolution of at least 8-bits and SHOULD have a resolution of at least 16-bits.
  • SHOULD be calibrated while in use if the characteristics changes over the life cycle and compensated, and preserve the compensation parameters between device reboots.
  • SHOULD be temperature compensated.
  • MUST have a standard deviation no greater than 0.05 m/s^, where the standard deviation should be calculated on a per axis basis on samples collected over a period of at least 3 seconds at the fastest sampling rate.
  • SHOULD implement the TYPE_SIGNIFICANT_MOTION, TYPE_TILT_DETECTOR, TYPE_STEP_DETECTOR, TYPE_STEP_COUNTER composite sensors as described in the Android SDK document. Existing and new Android devices are very strongly encouraged to implement the TYPE_SIGNIFICANT_MOTION composite sensor. If any of these sensors are implemented, the sum of their power consumption MUST always be less than 4 mW and SHOULD each be below 2 mW and 0.5 mW for when the device is in a dynamic or static condition.
  • If a gyroscope sensor is included, MUST implement the TYPE_GRAVITY and TYPE_LINEAR_ACCELERATION composite sensors and SHOULD implement the TYPE_GAME_ROTATION_VECTOR composite sensor. Existing and new Android devices are strongly encouraged to implement the TYPE_GAME_ROTATION_VECTOR sensor.
  • SHOULD implement a TYPE_ROTATION_VECTOR composite sensor, if a gyroscope sensor and a magnetometer sensor is also included.

7.3.2. Magnetometr

Device implementations SHOULD include a 3-axis magnetometer (compass). If a device does include a 3-axis magnetometer, it:

  • MUST implement the TYPE_MAGNETIC_FIELD sensor and SHOULD also implement TYPE_MAGNETIC_FIELD_UNCALIBRATED sensor. Existing and new Android devices are strongly encouraged to implement the TYPE_MAGNETIC_FIELD_UNCALIBRATED sensor.
  • MUST be able to report events up to a frequency of at least 10 Hz and SHOULD report events up to at least 50 Hz.
  • MUST comply with the Android sensor coordinate system as detailed in the Android APIs [ Resources, 74 ].
  • MUST be capable of measuring between -900 µT and +900 µT on each axis before saturating.
  • MUST have a hard iron offset value less than 700 µT and SHOULD have a value below 200 µT, by placing the magnetometer far from dynamic (current-induced) and static (magnet-induced) magnetic fields.
  • MUST have a resolution equal or denser than 0.6 µT and SHOULD have a resolution equal or denser than 0.2 µ.
  • SHOULD be temperature compensated.
  • MUST support online calibration and compensation of the hard iron bias, and preserve the compensation parameters between device reboots.
  • MUST have the soft iron compensation applied—the calibration can be done either while in use or during the production of the device.
  • SHOULD have a standard deviation, calculated on a per axis basis on samples collected over a period of at least 3 seconds at the fastest sampling rate, no greater than 0.5 µT.
  • SHOULD implement a TYPE_ROTATION_VECTOR composite sensor, if an accelerometer sensor and a gyroscope sensor is also included.
  • MAY implement the TYPE_GEOMAGNETIC_ROTATION_VECTOR sensor if an accelerometer sensor is also implemented. However if implemented, it MUST consume less than 10 mW and SHOULD consume less than 3 mW when the sensor is registered for batch mode at 10 Hz.

7.3.3. GPS

Device implementations SHOULD include a GPS receiver. If a device implementation does include a GPS receiver, it SHOULD include some form of“assisted GPS” technique to minimize GPS lock-on time.

7.3.4. Żyroskop

Device implementations SHOULD include a gyroscope (angular change sensor). Devices SHOULD NOT include a gyroscope sensor unless a 3-axis accelerometer is also included. If a device implementation includes a gyroscope, it:

  • MUST implement the TYPE_GYROSCOPE sensor and SHOULD also implement TYPE_GYROSCOPE_UNCALIBRATED sensor. Existing and new Android devices are strongly encouraged to implement the SENSOR_TYPE_GYROSCOPE_UNCALIBRATED sensor.
  • MUST be capable of measuring orientation changes up to 1,000 degrees per second.
  • MUST be able to report events up to a frequency of at least 50 Hz for Android Watch devices as such devices have a stricter power constraint and 100 Hz for all other device types.
  • SHOULD report events up to at least 200 Hz.
  • MUST have a resolution of 12-bits or more and SHOULD have a resolution of 16-bits or more.
  • MUST be temperature compensated.
  • MUST be calibrated and compensated while in use, and preserve the compensation parameters between device reboots.
  • MUST have a variance no greater than 1e-7 rad^2 / s^2 per Hz (variance per Hz, or rad^2 / s). The variance is allowed to vary with the sampling rate, but must be constrained by this value. In other words, if you measure the variance of the gyro at 1 Hz sampling rate it should be no greater than 1e-7 rad^2/s^2.
  • SHOULD implement a TYPE_ROTATION_VECTOR composite sensor, if an accelerometer sensor and a magnetometer sensor is also included.
  • If an accelerometer sensor is included, MUST implement the TYPE_GRAVITY and TYPE_LINEAR_ACCELERATION composite sensors and SHOULD implement the TYPE_GAME_ROTATION_VECTOR composite sensor. Existing and new Android devices are strongly encouraged to implement the TYPE_GAME_ROTATION_VECTOR sensor.

7.3.5. Barometr

Device implementations SHOULD include a barometer (ambient air pressure sensor). If a device implementation includes a barometer, it:

  • MUST implement and report TYPE_PRESSURE sensor.
  • MUST be able to deliver events at 5 Hz or greater.
  • MUST have adequate precision to enable estimating altitude.
  • MUST be temperature compensated.

7.3.6. Termometr

Device implementations MAY include an ambient thermometer (temperature sensor). If present, it MUST be defined as SENSOR_TYPE_AMBIENT_TEMPERATURE and it MUST measure the ambient (room) temperature in degrees Celsius.

Device implementations MAY but SHOULD NOT include a CPU temperature sensor. If present, it MUST be defined as SENSOR_TYPE_TEMPERATURE, it MUST measure the temperature of the device CPU, and it MUST NOT measure any other temperature. Note the SENSOR_TYPE_TEMPERATURE sensor type was deprecated in Android 4.0.

7.3.7. Fotometr

Device implementations MAY include a photometer (ambient light sensor).

7.3.8. Czujnik zbliżeniowy

Device implementations MAY include a proximity sensor. Devices that can make a voice call and indicate any value other than PHONE_TYPE_NONE in getPhoneType SHOULD include a proximity sensor. If a device implementation does include a proximity sensor, it:

  • MUST measure the proximity of an object in the same direction as the screen. That is, the proximity sensor MUST be oriented to detect objects close to the screen, as the primary intent of this sensor type is to detect a phone in use by the user. If a device implementation includes a proximity sensor with any other orientation, it MUST NOT be accessible through this API.
  • MUST have 1-bit of accuracy or more.

7.4. Łączność danych

7.4.1. Telefonia

“Telephony” as used by the Android APIs and this document refers specifically to hardware related to placing voice calls and sending SMS messages via a GSM or CDMA network. While these voice calls may or may not be packet-switched, they are for the purposes of Android considered independent of any data connectivity that may be implemented using the same network. In other words, the Android “telephony” functionality and APIs refer specifically to voice calls and SMS. For instance, device implementations that cannot place calls or send/receive SMS messages MUST NOT report the android.hardware.telephony feature or any subfeatures, regardless of whether they use a cellular network for data connectivity.

Android MAY be used on devices that do not include telephony hardware. That is, Android is compatible with devices that are not phones. However, if a device implementation does include GSM or CDMA telephony, it MUST implement full support for the API for that technology. Device implementations that do not include telephony hardware MUST implement the full APIs as no-ops.

7.4.2. IEEE 802.11 (Wi-Fi)

Android Television device implementations MUST include Wi-Fi support.

Android Television device implementations MUST include support for one or more forms of 802.11 (b/g/a/n, etc.) and other types of Android device implementation SHOULD include support for one or more forms of 802.11. If a device implementation does include support for 802.11 and exposes the functionality to a third-party application, it MUST implement the corresponding Android API and:

  • MUST report the hardware feature flag android.hardware.wifi.
  • MUST implement the multicast API as described in the SDK documentation [ Resources, 79 ].
  • MUST support multicast DNS (mDNS) and MUST NOT filter mDNS packets (224.0.0.251) at any time of operation including when the screen is not in an active state.

7.4.2.1. Bezpośrednie Wi-Fi

Device implementations SHOULD include support for Wi-Fi Direct (Wi-Fi peer-to-peer). If a device implementation does include support for Wi-Fi Direct, it MUST implement the corresponding Android API as described in the SDK documentation [ Resources, 80 ]. If a device implementation includes support for Wi-Fi Direct, then it:

  • MUST report the hardware feature android.hardware.wifi.direct.
  • MUST support regular Wi-Fi operation.
  • SHOULD support concurrent Wi-Fi and Wi-Fi Direct operation.

Android Television device implementations MUST include support for Wi-Fi Tunneled Direct Link Setup (TDLS).

Android Television device implementations MUST include support for Wi-Fi Tunneled Direct Link Setup (TDLS) and other types of Android device implementations SHOULD include support for Wi-Fi TDLS as described in the Android SDK Documentation [ Resources, 81 ]. If a device implementation does include support for TDLS and TDLS is enabled by the WiFiManager API, the device:

  • SHOULD use TDLS only when it is possible AND beneficial.
  • SHOULD have some heuristic and NOT use TDLS when its performance might be worse than going through the Wi-Fi access point.

7.4.3. Bluetooth

Android Watch and Automotive implementations MUST support Bluetooth. Android Television implementations MUST support Bluetooth and Bluetooth LE.

Android includes support for Bluetooth and Bluetooth Low Energy [ Resources, 82 ]. Device implementations that include support for Bluetooth and Bluetooth Low Energy MUST declare the relevant platform features (android.hardware.bluetooth and android.hardware.bluetooth_le respectively) and implement the platform APIs. Device implementations SHOULD implement relevant Bluetooth profiles such as A2DP, AVCP, OBEX, etc. as appropriate for the device. Android Television device implementations MUST support Bluetooth and Bluetooth LE.

Device implementations including support for Bluetooth Low Energy:

  • MUST declare the hardware feature android.hardware.bluetooth_le.
  • MUST enable the GATT (generic attribute profile) based Bluetooth APIs as described in the SDK documentation and [ Resources, 82 ].
  • SHOULD support offloading of the filtering logic to the bluetooth chipset when implementing the ScanFilter API [ Resources, 83 ], and MUST report the correct value of where the filtering logic is implemented whenever queried via the android.bluetooth.BluetoothAdapter.isOffloadedFilteringSupported() method.
  • SHOULD support offloading of the batched scanning to the bluetooth chipset, but if not supported, MUST report 'false' whenever queried via the android.bluetooth.BluetoothAdapater.isOffloadedScanBatchingSupported() method.
  • SHOULD support multi advertisement with at least 4 slots, but if not supported, MUST report 'false' whenever queried via the android.bluetooth.BluetoothAdapter.isMultipleAdvertisementSupported() method.

7.4.4. Near-Field Communications

Device implementations SHOULD include a transceiver and related hardware for Near-Field Communications (NFC). If a device implementation does include NFC hardware and plans to make it available to third-party apps, then it:

  • MUST report the android.hardware.nfc feature from the android.content.pm.PackageManager.hasSystemFeature() method [ Resources, 53 ].
  • MUST be capable of reading and writing NDEF messages via the following NFC standards:
    • MUST be capable of acting as an NFC Forum reader/writer (as defined by the NFC Forum technical specification NFCForum-TS-DigitalProtocol-1.0) via the following NFC standards:
      • NfcA (ISO14443-3A)
      • NfcB (ISO14443-3B)
      • NfcF (JIS 6319-4)
      • IsoDep (ISO 14443-4)
      • NFC Forum Tag Types 1, 2, 3, 4 (defined by the NFC Forum)
    • SHOULD be capable of reading and writing NDEF messages via the following NFC standards. Note that while the NFC standards below are stated as SHOULD, the Compatibility Definition for a future version is planned to change these to MUST. These standards are optional in this version but will be required in future versions. Existing and new devices that run this version of Android are very strongly encouraged to meet these requirements now so they will be able to upgrade to the future platform releases.
      • NfcV (ISO 15693)
    • MUST be capable of transmitting and receiving data via the following peer-to-peer standards and protocols:
      • ISO 18092
      • LLCP 1.0 (defined by the NFC Forum)
      • SDP 1.0 (defined by the NFC Forum)
      • NDEF Push Protocol [ Resources, 84 ]
      • SNEP 1.0 (defined by the NFC Forum)
    • MUST include support for Android Beam [ Resources, 85 ]:
      • MUST implement the SNEP default server. Valid NDEF messages received by the default SNEP server MUST be dispatched to applications using the android.nfc.ACTION_NDEF_DISCOVERED intent. Disabling Android Beam in settings MUST NOT disable dispatch of incoming NDEF message.
      • MUST honor the android.settings.NFCSHARING_SETTINGS intent to show NFC sharing settings [ Resources, 86 ].
      • MUST implement the NPP server. Messages received by the NPP server MUST be processed the same way as the SNEP default server.
      • MUST implement a SNEP client and attempt to send outbound P2P NDEF to the default SNEP server when Android Beam is enabled. If no default SNEP server is found then the client MUST attempt to send to an NPP server.
      • MUST allow foreground activities to set the outbound P2P NDEF message using android.nfc.NfcAdapter.setNdefPushMessage, and android.nfc.NfcAdapter.setNdefPushMessageCallback, and android.nfc.NfcAdapter.enableForegroundNdefPush.
      • SHOULD use a gesture or on-screen confirmation, such as 'Touch to Beam', before sending outbound P2P NDEF messages.
      • SHOULD enable Android Beam by default and MUST be able to send and receive using Android Beam, even when another proprietary NFC P2p mode is turned on.
      • MUST support NFC Connection handover to Bluetooth when the device supports Bluetooth Object Push Profile. Device implementations MUST support connection handover to Bluetooth when using android.nfc.NfcAdapter.setBeamPushUris, by implementing the “Connection Handover version 1.2” [ Resources, 87 ] and “Bluetooth Secure Simple Pairing Using NFC version 1.0” [ Resources, 88 ] specs from the NFC Forum. Such an implementation MUST implement the handover LLCP service with service name “urn:nfc:sn:handover” for exchanging the handover request/select records over NFC, and it MUST use the Bluetooth Object Push Profile for the actual Bluetooth data transfer. For legacy reasons (to remain compatible with Android 4.1 devices), the implementation SHOULD still accept SNEP GET requests for exchanging the handover request/select records over NFC. However an implementation itself SHOULD NOT send SNEP GET requests for performing connection handover.
    • MUST poll for all supported technologies while in NFC discovery mode.
    • SHOULD be in NFC discovery mode while the device is awake with the screen active and the lock-screen unlocked.

(Note that publicly available links are not available for the JIS, ISO, and NFC Forum specifications cited above.)

Android includes support for NFC Host Card Emulation (HCE) mode. If a device implementation does include an NFC controller chipset capable of HCE and Application ID (AID) routing, then it:

  • MUST report the android.hardware.nfc.hce feature constant.
  • MUST support NFC HCE APIs as defined in the Android SDK [ Resources, 10 ].

Additionally, device implementations MAY include reader/writer support for the following MIFARE technologies.

  • MIFARE Classic
  • MIFARE Ultralight
  • NDEF on MIFARE Classic

Note that Android includes APIs for these MIFARE types. If a device implementation supports MIFARE in the reader/writer role, it:

  • MUST implement the corresponding Android APIs as documented by the Android SDK.
  • MUST report the feature com.nxp.mifare from the android.content.pm.PackageManager.hasSystemFeature() meth od [Resources, 53] . Note that this is not a standard Android feature and as such does not appear as a constant on the PackageManager class.
  • MUST NOT implement the corresponding Android APIs nor report the com.nxp.mifare feature unless it also implements general NFC support as described in this section.

If a device implementation does not include NFC hardware, it MUST NOT declare the android.hardware.nfc feature from the android.content.pm.PackageManager.hasSystemFeature() method [ Resources, 53] , and MUST implement the Android NFC API as a no-op.

As the classes android.nfc.NdefMessage and android.nfc.NdefRecord represent a protocol-independent data representation format, device implementations MUST implement these APIs even if they do not include support for NFC or declare the android.hardware.nfc feature.

7.4.5. Minimum Network Capability

Device implementations MUST include support for one or more forms of data networking. Specifically, device implementations MUST include support for at least one data standard capable of 200Kbit/sec or greater. Examples of technologies that satisfy this requirement include EDGE, HSPA, EV-DO, 802.11g, Ethernet, Bluetooth PAN, etc.

Device implementations where a physical networking standard (such as Ethernet) is the primary data connection SHOULD also include support for at least one common wireless data standard, such as 802.11 (Wi-Fi).

Devices MAY implement more than one form of data connectivity.

7.4.6. Synchronizuj ustawienia

Device implementations MUST have the master auto-sync setting on by default so that the method getMasterSyncAutomatically() returns “true” [ Resources, 89 ].

7,5. Kamery

Device implementations SHOULD include a rear-facing camera and MAY include a front-facing camera. A rear-facing camera is a camera located on the side of the device opposite the display; that is, it images scenes on the far side of the device, like a traditional camera. A front-facing camera is a camera located on the same side of the device as the display; that is, a camera typically used to image the user, such as for video conferencing and similar applications.

If a device implementation includes at least one camera, it SHOULD be possible for an application to simultaneously allocate 3 bitmaps equal to the size of the images produced by the largest-resolution camera sensor on the device.

7.5.1. Rear-Facing Camera

Device implementations SHOULD include a rear-facing camera. If a device implementation includes at least one rear-facing camera, it:

  • MUST report the feature flag android.hardware.camera and android.hardware.camera.any.
  • MUST have a resolution of at least 2 megapixels.
  • SHOULD have either hardware auto-focus or software auto-focus implemented in the camera driver (transparent to application software).
  • MAY have fixed-focus or EDOF (extended depth of field) hardware.
  • MAY include a flash. If the Camera includes a flash, the flash lamp MUST NOT be lit while an android.hardware.Camera.PreviewCallback instance has been registered on a Camera preview surface, unless the application has explicitly enabled the flash by enabling the FLASH_MODE_AUTO or FLASH_MODE_ON attributes of a Camera.Parameters object. Note that this constraint does not apply to the device's built-in system camera application, but only to third-party applications using Camera.PreviewCallback.

7.5.2. Kamera przednia

Device implementations MAY include a front-facing camera. If a device implementation includes at least one front-facing camera, it:

  • MUST report the feature flag android.hardware.camera.any and android.hardware.camera.front.
  • MUST have a resolution of at least VGA (640x480 pixels).
  • MUST NOT use a front-facing camera as the default for the Camera API. The camera API in Android has specific support for front-facing cameras and device implementations MUST NOT configure the API to to treat a front-facing camera as the default rear-facing camera, even if it is the only camera on the device.
  • MAY include features (such as auto-focus, flash, etc.) available to rear-facing cameras as described in section 7.5.1 .
  • MUST horizontally reflect (ie mirror) the stream displayed by an app in a CameraPreview, as follows:
    • If the device implementation is capable of being rotated by user (such as automatically via an accelerometer or manually via user input), the camera preview MUST be mirrored horizontally relative to the device's current orientation.
    • If the current application has explicitly requested that the Camera display be rotated via a call to the android.hardware.Camera.setDisplayOrientation()[ Resources, 90 ] method, the camera preview MUST be mirrored horizontally relative to the orientation specified by the application.
    • Otherwise, the preview MUST be mirrored along the device's default horizontal axis.
  • MUST mirror the image displayed by the postview in the same manner as the camera preview image stream. If the device implementation does not support postview, this requirement obviously does not apply.
  • MUST NOT mirror the final captured still image or video streams returned to application callbacks or committed to media storage.

7.5.3. External Camera

Device implementations with USB host mode MAY include support for an external camera that connects to the USB port. If a device includes support for an external camera, it:

  • MUST declare the platform feature android.hardware.camera.external and android.hardware camera.any.
  • MUST support USB Video Class (UVC 1.0 or higher).
  • MAY support multiple cameras.

Video compression (such as MJPEG) support is RECOMMENDED to enable transfer of high-quality unencoded streams (ie raw or independently compressed picture streams). Camera-based video encoding MAY be supported. If so, a simultaneous unencoded/ MJPEG stream (QVGA or greater resolution) MUST be accessible to the device implementation.

7.5.4. Camera API Behavior

Android includes two API packages to access the camera, the newer android.hardware.camera2 API expose lower-level camera control to the app, including efficient zero-copy burst/streaming flows and per-frame controls of exposure, gain, white balance gains, color conversion, denoising, sharpening, and more.

The older API package, android.hardware.Camera, is marked as deprecated in Android 5.0 but as it should still be available for apps to use Android device implementations MUST ensure the continued support of the API as described in this section and in the Android SDK .

Device implementations MUST implement the following behaviors for the camera-related APIs, for all available cameras:

  • If an application has never called android.hardware.Camera.Parameters.setPreviewFormat(int), then the device MUST use android.hardware.PixelFormat.YCbCr_420_SP for preview data provided to application callbacks.
  • If an application registers an android.hardware.Camera.PreviewCallback instance and the system calls the onPreviewFrame() method when the preview format is YCbCr_420_SP, the data in the byte[] passed into onPreviewFrame() must further be in the NV21 encoding format. That is, NV21 MUST be the default.
  • For android.hardware.Camera, device implementations MUST support the YV12 format (as denoted by the android.graphics.ImageFormat.YV12 constant) for camera previews for both front- and rear-facing cameras. (The hardware video encoder and camera may use any native pixel format, but the device implementation MUST support conversion to YV12.)
  • For android.hardware.camera2, device implementations must support the android.hardware.ImageFormat.YUV_420_888 and android.hardware.ImageFormat.JPEG formats as outputs through the android.media.ImageReader API.

Device implementations MUST still implement the full Camera API included in the Android SDK documentation [ Resources, 91 ], regardless of whether the device includes hardware autofocus or other capabilities. For instance, cameras that lack autofocus MUST still call any registered android.hardware.Camera.AutoFocusCallback instances (even though this has no relevance to a non-autofocus camera.) Note that this does apply to front-facing cameras; for instance, even though most front-facing cameras do not support autofocus, the API callbacks must still be “faked” as described.

Device implementations MUST recognize and honor each parameter name defined as a constant on the android.hardware.Camera.Parameters class, if the underlying hardware supports the feature. If the device hardware does not support a feature, the API must behave as documented. Conversely, device implementations MUST NOT honor or recognize string constants passed to the android.hardware.Camera.setParameters() method other than those documented as constants on the android.hardware.Camera.Parameters. That is, device implementations MUST support all standard Camera parameters if the hardware allows, and MUST NOT support custom Camera parameter types. For instance, device implementations that support image capture using high dynamic range (HDR) imaging techniques MUST support camera parameter Camera.SCENE_MODE_HDR [ Resources, 92 ].

Because not all device implementations can fully support all the features of the android.hardware.camera2 API, device implementations MUST report the proper level of support with the android.info.supportedHardwareLevel property as described in the Android SDK [ Resources, 93] and report the appropriate framework feature flags [ Resources, 94] .

Device implementations MUST also declare its Individual camera capabilities of android.hardware.camera2 via the android.request.availableCapabilities property and declare the appropriate feature flags [ Resources, 94] ; a device must define the feature flag if any of its attached camera devices supports the feature.

Device implementations MUST broadcast the Camera.ACTION_NEW_PICTURE intent whenever a new picture is taken by the camera and the entry of the picture has been added to the media store.

Device implementations MUST broadcast the Camera.ACTION_NEW_VIDEO intent whenever a new video is recorded by the camera and the entry of the picture has been added to the media store.

7.5.5. Camera Orientation

Both front- and rear-facing cameras, if present, MUST be oriented so that the long dimension of the camera aligns with the screen's long dimension. That is, when the device is held in the landscape orientation, cameras MUST capture images in the landscape orientation. This applies regardless of the device's natural orientation; that is, it applies to landscape-primary devices as well as portrait-primary devices.

7.6. Memory and Storage

7.6.1. Minimum Memory and Storage

Android Television devices MUST have at least 5GB of non-volatile storage available for application private data.

The memory available to the kernel and userspace on device implementations MUST be at least equal or larger than the minimum values specified by the following table. (See section 7.1.1 for screen size and density definitions.)

Density and screen size 32-bit device 64-bit device
Android Watch devices (due to smaller screens) 416MB Nie dotyczy
  • 280dpi or lower on small/normal screens
  • mdpi or lower on large screens
  • ldpi or lower on extra large screens
424MB 704MB
  • xhdpi or higher on small/normal screens
  • hdpi or higher on large screens
  • mdpi or higher on extra large screens
512MB 832MB
  • 400dpi or higher on small/normal screens
  • xhdpi or higher on large screens
  • tvdpi or higher on extra large screens
896MB 1280MB
  • 560dpi or higher on small/normal screens
  • 400dpi or higher on large screens
  • xhdpi or higher on extra large screens
1344MB 1824MB

The minimum memory values MUST be in addition to any memory space already dedicated to hardware components such as radio, video, and so on that is not under the kernel's control.

Device implementations with less than 512MB of memory available to the kernel and userspace, unless an Android Watch, MUST return the value "true" for ActivityManager.isLowRamDevice().

Android Television devices MUST have at least 5GB and other device implementations MUST have at least 1.5GB of non-volatile storage available for application private data. That is, the /data partition MUST be at least 5GB for Android Television devices and at least 1.5GB for other device implementations. Device implementations that run Android are very strongly encouraged to have at least 3GB of non-volatile storage for application private data so they will be able to upgrade to the future platform releases.

The Android APIs include a Download Manager that applications MAY use to download data files [ Resources, 95 ]. The device implementation of the Download Manager MUST be capable of downloading individual files of at least 100MB in size to the default “cache" location.

7.6.2. Application Shared Storage

Device implementations MUST offer shared storage for applications also often referred as “shared external storage”.

Device implementations MUST be configured with shared storage mounted by default, “out of the box”. If the shared storage is not mounted on the Linux path /sdcard, then the device MUST include a Linux symbolic link from /sdcard to the actual mount point.

Device implementations MAY have hardware for user-accessible removable storage, such as a Secure Digital (SD) card slot. If this slot is used to satisfy the shared storage requirement, the device implementation:

  • MUST implement a toast or pop-up user interface warning the user when there is no SD card.
  • MUST include a FAT-formatted SD card 1GB in size or larger OR show on the box and other material available at time of purchase that the SD card has to be separately purchased.
  • MUST mount the SD card by default.

Alternatively, device implementations MAY allocate internal (non-removable) storage as shared storage for apps as included in the upstream Android Open Source Project; device implementations SHOULD use this configuration and software implementation. If a device implementation uses internal (non-removable) storage to satisfy the shared storage requirement, while that storage MAY share space with the application private data, it MUST be at least 1GB in size and mounted on /sdcard (or /sdcard MUST be a symbolic link to the physical location if it is mounted elsewhere).

Device implementations MUST enforce as documented the android.permission.WRITE_EXTERNAL_STORAGE permission on this shared storage. Shared storage MUST otherwise be writable by any application that obtains that permission.

Device implementations that include multiple shared storage paths (such as both an SD card slot and shared internal storage) MUST allow only pre-installed and privileged Android applications with the WRITE_EXTERNAL_STORAGE permission to write to the secondary external storage, except when writing to their package-specific directories or within the URI returned by firing the ACTION_OPEN_DOCUMENT_TREE intent.

However, device implementations SHOULD expose content from both storage paths transparently through Android's media scanner service and android.provider.MediaStore.

Regardless of the form of shared storage used, if the device implementation has a USB port with USB peripheral mode support, it MUST provide some mechanism to access the contents of shared storage from a host computer. Device implementations MAY use USB mass storage, but SHOULD use Media Transfer Protocol to satisfy this requirement. If the device implementation supports Media Transfer Protocol, it:

  • SHOULD be compatible with the reference Android MTP host, Android File Transfer [ Resources, 96 ].
  • SHOULD report a USB device class of 0x00.
  • SHOULD report a USB interface name of 'MTP'.

7.7. USB

Device implementations SHOULD support USB peripheral mode and SHOULD support USB host mode.

If a device implementation includes a USB port supporting peripheral mode:

  • The port MUST be connectable to a USB host that has a standard type-A or type -C USB port.
  • The port SHOULD use micro-B, micro-AB or Type-C USB form factor. Existing and new Android devices are STRONGLY RECOMMENDED to meet these requirements so they will be able to upgrade to future platform releases.
  • The port SHOULD either be located on the bottom of the device (according to natural orientation) or enable software screen rotation for all apps (including home screen), so that the display draws correctly when the device is oriented with the port at bottom. Existing and new Android devices are STRONGLY RECOMMENDED to meet these requirements so they will be able to upgrade to future platform releases.
  • It SHOULD implement the Android Open Accessory (AOA) API and specification as documented in the Android SDK documentation, and if it is an Android Handheld device it MUST implement the AOA API. Device implementations implementing the AOA specification:
    • MUST declare support for the hardware feature android.hardware.usb.accessory [ Resources, 97 ].
    • MUST implement the USB audio class as documented in the Android SDK documentation [ Resources, 98 ].
  • It SHOULD implement support to draw 1.5 A current during HS chirp and traffic as specified in the USB Battery Charging Specification, Revision 1.2 [ Resources, 99 ]. Existing and new Android devices are STRONGLY RECOMMENDED to meet these requirements so they will be able to upgrade to the future platform releases.
  • The value of iSerialNumber in USB standard device descriptor MUST be equal to the value of android.os.Build.SERIAL.

If a device implementation includes a USB port supporting host mode, it:

  • SHOULD use a type-C USB port, if the device implementation supports USB 3.1.
  • MAY use a non-standard port form factor, but if so MUST ship with a cable or cables adapting the port to a standard type-A or type-C USB port.
  • MAY use a micro-AB USB port, but if so SHOULD ship with a cable or cables adapting the port to a standard type-A or type-C USB port.
  • is very strongly RECOMMENDED to implement the USB audio class as documented in the Android SDK documentation [ Resources, 98 ].
  • MUST implement the Android USB host API as documented in the Android SDK, and MUST declare support for the hardware feature android.hardware.usb.host [ Resources, 100 ].
  • SHOULD support the Charging Downstream Port output current range of 1.5 A ~ 5 A as specified in the USB Battery Charging Specification, Revision 1.2 [ Resources, 99 ].

7.8. Audio

7.8.1. Mikrofon

Android Handheld, Watch, and Automotive implementations MUST include a microphone.

Device implementations MAY omit a microphone. However, if a device implementation omits a microphone, it MUST NOT report the android.hardware.microphone feature constant, and MUST implement the audio recording API at least as no-ops, per section 7 . Conversely, device implementations that do possess a microphone:

  • MUST report the android.hardware.microphone feature constant
  • MUST meet the audio recording requirements in section 5.4
  • MUST meet the audio latency requirements in section 5.6

7.8.2. Wyjście audio

Android Watch devices MAY include an audio output.

Device implementations including a speaker or with an audio/multimedia output port for an audio output peripheral as a headset or an external speaker:

  • MUST report the android.hardware.audio.output feature constant.
  • MUST meet the audio playback requirements in section 5.5 .
  • MUST meet the audio latency requirements in section 5.6 .

Conversely, if a device implementation does not include a speaker or audio output port, it MUST NOT report the android.hardware.audio output feature, and MUST implement the Audio Output related APIs as no-ops at least.

Android Watch device implementation MAY but SHOULD NOT have audio output, but other types of Android device implementations MUST have an audio output and declare android.hardware.audio.output.

7.8.2.1. Analog Audio Ports

In order to be compatible with the headsets and other audio accessories using the 3.5mm audio plug across the Android ecosystem [ Resources, 101 ], if a device implementation includes one or more analog audio ports, at least one of the audio port(s) SHOULD be a 4 conductor 3.5mm audio jack. If a device implementation has a 4 conductor 3.5mm audio jack, it:

  • MUST support audio playback to stereo headphones and stereo headsets with a microphone, and SHOULD support audio recording from stereo headsets with a microphone.
  • MUST support TRRS audio plugs with the CTIA pin-out order, and SHOULD support audio plugs with the OMTP pin-out order.
  • MUST support the detection of microphone on the plugged in audio accessory, if the device implementation supports a microphone, and broadcast the android.intent.action.HEADSET_PLUG with the extra value microphone set as 1.
  • SHOULD support the detection and mapping to the keycodes for the following 3 ranges of equivalent impedance between the microphone and ground conductors on the audio plug:
    • 70 ohm or less : KEYCODE_HEADSETHOOK
    • 210-290 Ohm : KEYCODE_VOLUME_UP
    • 360-680 Ohm : KEYCODE_VOLUME_DOWN
  • SHOULD support the detection and mapping to the keycode for the following range of equivalent impedance between the microphone and ground conductors on the audio plug:
    • 110-180 Ohm: KEYCODE_VOICE_ASSIST
  • MUST trigger ACTION_HEADSET_PLUG upon a plug insert, but only after all contacts on plug are touching their relevant segments on the jack.
  • MUST be capable of driving at least 150mV +/- 10% of output voltage on a 32 Ohm speaker impedance.
  • MUST have a microphone bias voltage between 1.8V ~ 2.9V.

8. Performance Compatibility

Some minimum performance criteria are critical to the user experience and impacts the baseline assumptions developers would have when developing an app. Android Watch devices SHOULD and other type of device implementations MUST meet the following criteria:

8.1. User Experience Consistency

Device implementations MUST provide a smooth user interface by ensuring a consistent frame rate and response times for applications and games. Device implementations MUST meet the following requirements:

  • Consistent frame latency . Inconsistent frame latency or a delay to render frames MUST NOT happen more often than 5 frames in a second, and SHOULD be below 1 frames in a second.
  • User interface latency . Device implementations MUST ensure low latency user experience by scrolling a list of 10K list entries as defined by the Android Compatibility Test Suite (CTS) in less than 36 secs.
  • Przełączanie zadań . When multiple applications have been launched, re-launching an already-running application after it has been launched MUST take less than 1 second.

8.2. File I/O Access Performance

Device implementations MUST ensure internal storage file access performance consistency for read and write operations.

  • Sequential write . Device implementations MUST ensure a sequential write performance of at least 5MB/s for a 256MB file using 10MB write buffer.
  • Random write . Device implementations MUST ensure a random write performance of at least 0.5MB/s for a 256MB file using 4KB write buffer.
  • Sequential read . Device implementations MUST ensure a sequential read performance of at least 15MB/s for a 256MB file using 10MB write buffer.
  • Random read . Device implementations MUST ensure a random read performance of at least 3.5MB/s for a 256MB file using 4KB write buffer.

9. Security Model Compatibility

Device implementations MUST implement a security model consistent with the Android platform security model as defined in Security and Permissions reference document in the APIs [ Resources, 102 ] in the Android developer documentation. Device implementations MUST support installation of self-signed applications without requiring any additional permissions/certificates from any third parties/authorities. Specifically, compatible devices MUST support the security mechanisms described in the follow subsections.

9.1. Uprawnienia

Device implementations MUST support the Android permissions model as defined in the Android developer documentation [ Resources, 102 ]. Specifically, implementations MUST enforce each permission defined as described in the SDK documentation; no permissions may be omitted, altered, or ignored. Implementations MAY add additional permissions, provided the new permission ID strings are not in the android.* namespace.

9.2. UID and Process Isolation

Device implementations MUST support the Android application sandbox model, in which each application runs as a unique Unixstyle UID and in a separate process. Device implementations MUST support running multiple applications as the same Linux user ID, provided that the applications are properly signed and constructed, as defined in the Security and Permissions reference [ Resources, 102 ].

9.3. Filesystem Permissions

Device implementations MUST support the Android file access permissions model as defined in the Security and Permissions reference [ Resources, 102 ].

9.4. Alternate Execution Environments

Device implementations MAY include runtime environments that execute applications using some other software or technology than the Dalvik Executable Format or native code. However, such alternate execution environments MUST NOT compromise the Android security model or the security of installed Android applications, as described in this section.

Alternate runtimes MUST themselves be Android applications, and abide by the standard Android security model, as described elsewhere in section 9 .

Alternate runtimes MUST NOT be granted access to resources protected by permissions not requested in the runtime's AndroidManifest.xml file via the <uses-permission> mechanism.

Alternate runtimes MUST NOT permit applications to make use of features protected by Android permissions restricted to system applications.

Alternate runtimes MUST abide by the Android sandbox model. Specifically, alternate runtimes:

  • SHOULD install apps via the PackageManager into separate Android sandboxes ( Linux user IDs, etc.).
  • MAY provide a single Android sandbox shared by all applications using the alternate runtime.
  • and installed applications using an alternate runtime, MUST NOT reuse the sandbox of any other app installed on the device, except through the standard Android mechanisms of shared user ID and signing certificate.
  • MUST NOT launch with, grant, or be granted access to the sandboxes corresponding to other Android applications.
  • MUST NOT be launched with, be granted, or grant to other applications any privileges of the superuser (root), or of any other user ID.

The .apk files of alternate runtimes MAY be included in the system image of a device implementation, but MUST be signed with a key distinct from the key used to sign other applications included with the device implementation.

When installing applications, alternate runtimes MUST obtain user consent for the Android permissions used by the application. If an application needs to make use of a device resource for which there is a corresponding Android permission (such as Camera, GPS, etc.), the alternate runtime MUST inform the user that the application will be able to access that resource. If the runtime environment does not record application capabilities in this manner, the runtime environment MUST list all permissions held by the runtime itself when installing any application using that runtime.

9,5. Multi-User Support

This feature is optional for all device types.

Android includes support for multiple users and provides support for full user isolation [ Resources, 103] . Device implementations MAY enable multiple users, but when enabled MUST meet the following requirements related to multi-user support [ Resources, 104 ]:

  • Device implementations that do not declare the android.hardware.telephony feature flag MUST support restricted profiles, a feature that allows device owners to manage additional users and their capabilities on the device. With restricted profiles, device owners can quickly set up separate environments for additional users to work in, with the ability to manage finer-grained restrictions in the apps that are available in those environments.
  • Conversely device implementations that declare the android.hardware.telephony feature flag MUST NOT support restricted profiles but MUST align with the AOSP implementation of controls to enable /disable other users from accessing the voice calls and SMS.
  • Device implementations MUST, for each user, implement a security model consistent with the Android platform security model as defined in Security and Permissions reference document in the APIs [ Resources, 102 ].
  • Device implementations MAY support creating users and managed profiles via the android.app.admin.DevicePolicyManager APIs, and if supported, MUST declare the platform feature flag android.software.managed_users.
  • Device implementations that declare the feature flag android.software.managed_users MUST use the upstream AOSP icon badge to represent the managed applications and other badge UI elements like Recents & Notifications.
  • Each user instance on an Android device MUST have separate and isolated external storage directories. Device implementations MAY store multiple users' data on the same volume or filesystem. However, the device implementation MUST ensure that applications owned by and running on behalf a given user cannot list, read, or write to data owned by any other user. Note that removable media, such as SD card slots, can allow one user to access another's data by means of a host PC. For this reason, device implementations that use removable media for the primary external storage APIs MUST encrypt the contents of the SD card if multiuser is enabled using a key stored only on non-removable media accessible only to the system. As this will make the media unreadable by a host PC, device implementations will be required to switch to MTP or a similar system to provide host PCs with access to the current user's data. Accordingly, device implementations MAY but SHOULD NOT enable multi-user if they use removable media [ Resources, 105 ] for primary external storage.

9.6. Premium SMS Warning

Android includes support for warning users of any outgoing premium SMS message [ Resources, 106 ] . Premium SMS messages are text messages sent to a service registered with a carrier that may incur a charge to the user. Device implementations that declare support for android.hardware.telephony MUST warn users before sending a SMS message to numbers identified by regular expressions defined in /data/misc/sms/codes.xml file in the device. The upstream Android Open Source Project provides an implementation that satisfies this requirement.

9.7. Kernel Security Features

The Android Sandbox includes features that can use the Security-Enhanced Linux (SELinux) mandatory access control (MAC) system and other security features in the Linux kernel. SELinux or any other security features, if implemented below the Android framework:

  • MUST maintain compatibility with existing applications.
  • MUST NOT have a visible user interface when a security violation is detected and successfully blocked, but MAY have a visible user interface when an unblocked security violation occurs resulting in a successful exploit.
  • SHOULD NOT be user or developer configurable.

If any API for configuration of policy is exposed to an application that can affect another application (such as a Device Administration API), the API MUST NOT allow configurations that break compatibility.

Devices MUST implement SELinux or an equivalent mandatory access control system if using a kernel other than Linux and meet the following requirements, which are satisfied by the reference implementation in the upstream Android Open Source Project.

Device implementations:

  • MUST support a SELinux policy that allows the SELinux mode to be set on a per-domain basis, and MUST configure all domains in enforcing mode. No permissive mode domains are allowed, including domains specific to a device/vendor.
  • SHOULD load policy from /sepolicy file on the device.
  • MUST NOT modify, omit, or replace the neverallow rules present within the sepolicy file provided in the upstream Android Open Source Project (AOSP) and the policy MUST compile with all neverallow present, for both AOSP SELinux domains as well as device/vendor specific domains .
  • MUST support dynamic updates of the SELinux policy file without requiring a system image update.

Device implementations SHOULD retain the default SELinux policy provided in the upstream Android Open Source Project, until they have first audited their additions to the SELinux policy. Device implementations MUST be compatible with the upstream Android Open Source Project.

9,8. Prywatność

If the device implements functionality in the system that captures the contents displayed on the screen and/or records the audio stream played on the device, it MUST continuously notify the user whenever this functionality is enabled and actively capturing/recording.

If a device implementation has a mechanism that routes network data traffic through a proxy server or VPN gateway by default (for example, preloading a VPN service with android.permission.CONTROL_VPN granted), the device implementation MUST ask for the user's consent before enabling that mechanizm.

9,9. Full-Disk Encryption

Optional for Android device implementations without a lock screen.

If the device implementation supports a lock screen with PIN (numeric) or PASSWORD (alphanumeric), the device MUST support full-disk encryption of the application private data (/data partition), as well as the SD card partition if it is a permanent, non-removable part of the device [ Resources, 107 ]. For devices supporting full-disk encryption, the full-disk encryption SHOULD be enabled all the time after the user has completed the out-of-box experience. While this requirement is stated as SHOULD for this version of the Android platform, it is very strongly RECOMMENDED as we expect this to change to MUST in the future versions of Android. Encryption MUST use AES with a key of 128-bits (or greater) and a mode designed for storage (for example, AES-XTS, AES-CBC-ESSIV). The encryption key MUST NOT be written to storage at any time without being encrypted. Other than when in active use, the encryption key SHOULD be AES encrypted with the lockscreen passcode stretched using a slow stretching algorithm (eg PBKDF2 or scrypt). If the user has not specified a lockscreen passcode or has disabled use of the passcode for encryption, the system SHOULD use a default passcode to wrap the encryption key. If the device provides a hardware-backed keystore, the password stretching algorithm MUST be cryptographically bound to that keystore. The encryption key MUST NOT be sent off the device (even when wrapped with the user passcode and/or hardware bound key). The upstream Android Open Source project provides a preferred implementation of this feature based on the linux kernel feature dm-crypt.

9.10. Verified Boot

Verified boot is a feature that guarantees the integrity of the device software. If a device implementation supports the feature, it MUST:

  • Declare the platform feature flag android.software.verified_boot
  • Perform verification on every boot sequence
  • Start verification from a hardware key that is the root of trust, and go all the way up to the system partition
  • Implement each stage of verification to check the integrity and authenticity of all the bytes in the next stage before executing the code in the next stage
  • Use verification algorithms as strong as current recommendations from NIST for hashing algorithms (SHA-256) and public key sizes (RSA-2048)

Device implementations SHOULD support verified boot for device integrity. While this requirement is SHOULD for this version of the Android platform, it is strongly RECOMMENDED as we expect this to change to MUST in future versions of Android. The upstream Android Open Source Project provides a preferred implementation of this feature based on the linux kernel feature dm-verity.

10. Software Compatibility Testing

Device implementations MUST pass all tests described in this section.

However, note that no software test package is fully comprehensive. For this reason, device implementers are very strongly encouraged to make the minimum number of changes as possible to the reference and preferred implementation of Android available from the Android Open Source Project. This will minimize the risk of introducing bugs that create incompatibilities requiring rework and potential device updates.

10.1. Compatibility Test Suite

Device implementations MUST pass the Android Compatibility Test Suite (CTS) [ Resources, 108 ] available from the Android Open Source Project, using the final shipping software on the device. Additionally, device implementers SHOULD use the reference implementation in the Android Open Source tree as much as possible, and MUST ensure compatibility in cases of ambiguity in CTS and for any reimplementations of parts of the reference source code.

The CTS is designed to be run on an actual device. Like any software, the CTS may itself contain bugs. The CTS will be versioned independently of this Compatibility Definition, and multiple revisions of the CTS may be released for Android 5.1. Device implementations MUST pass the latest CTS version available at the time the device software is completed.

10.2. CTS Verifier

Device implementations MUST correctly execute all applicable cases in the CTS Verifier. The CTS Verifier is included with the Compatibility Test Suite, and is intended to be run by a human operator to test functionality that cannot be tested by an automated system, such as correct functioning of a camera and sensors.

The CTS Verifier has tests for many kinds of hardware, including some hardware that is optional. Device implementations MUST pass all tests for hardware that they possess; for instance, if a device possesses an accelerometer, it MUST correctly execute the Accelerometer test case in the CTS Verifier. Test cases for features noted as optional by this Compatibility Definition Document MAY be skipped or omitted.

Every device and every build MUST correctly run the CTS Verifier, as noted above. However, since many builds are very similar, device implementers are not expected to explicitly run the CTS Verifier on builds that differ only in trivial ways. Specifically, device implementations that differ from an implementation that has passed the CTS Verifier only by the set of included locales, branding, etc. MAY omit the CTS Verifier test.

11. Updatable Software

Device implementations MUST include a mechanism to replace the entirety of the system software. The mechanism need not perform “live” upgrades—that is, a device restart MAY be required.

Any method can be used, provided that it can replace the entirety of the software preinstalled on the device. For instance, any of the following approaches will satisfy this requirement:

  • “Over-the-air (OTA)” downloads with offline update via reboot
  • “Tethered” updates over USB from a host PC
  • “Offline” updates via a reboot and update from a file on removable storage

However, if the device implementation includes support for an unmetered data connection such as 802.11 or Bluetooth PAN (Personal Area Network) profile:

  • Android Automotive implementations SHOULD support OTA downloads with offline update via reboot.
  • All other device implementations MUST support OTA downloads with offline update via reboot.

The update mechanism used MUST support updates without wiping user data. That is, the update mechanism MUST preserve application private data and application shared data. Note that the upstream Android software includes an update mechanism that satisfies this requirement.

For device implementations that are launching with Android 5.1 and later, the update mechanism SHOULD support verifying that the system image is binary identical to expected result following an OTA. The block-based OTA implementation in the upstream Android Open Source Project, added since Android 5.1, satisfies this requirement.

If an error is found in a device implementation after it has been released but within its reasonable product lifetime that is determined in consultation with the Android Compatibility Team to affect the compatibility of third-party applications, the device implementer MUST correct the error via a software update available that can be applied per the mechanism just described.

12. Document Changelog

The following table contains a summary of the changes to the Compatibility Definition in this release.

Sekcja Summary of change
2. Device Types Added definition for Android automotive implementation.
2.1 Device Configurations Added column for Android automotive implementation.
3.3.2. 32-bit ARM Native Code Compatibility New section added.
3.4.1. WebView Compatibility Updated webview user agent string requirement to accommodate upstream implementation change.
3.4.2. Browser compatibility Added Android automotive implementations as another case that MAY omit a browser application.
3.7. Runtime Compatibility Updated required runtime heap size for smaller screens and added requirement for the new dpi bucket (280dpi).
3.8.3. Powiadomienia Clarified notification requirement for Android Watch, Television and Automotive implementations.
3.8.8. Activity Switching Relax Overview title count requirement.
3.8.10. Lock Screen Media Control Clarified requirement for Android Watch and Automotive implementations.
3.8.13. Unicode and font Relaxed Emoji character input method requirement.
3.9. Device Administration Clarified condition when the full range of device administration policies has to be supported.
3.10. Dostępność Added Android automotive requirements.
3.11. Tekst na mowę Added Android automotive requirements.
5.1. Media Codecs Mandated decoding support for codecs reported by CamcorderProfile.
5.1.3 Video Codecs Added Android automotive requirements.
5.4. Nagrywanie dźwięku Clarified language at the beginning of the section to ensure MUST requirements are read as REQUIRED.
7.1.1.3. Screen Density Added a new screen dpi (280dpi).
7.1.5. Legacy Application Compatibility Mode Added Android automotive requirements.
7.2 Input Devices Added general introduction statement.
7.2.1. Klawiatura Added Android Automotive requirements.
7.2.3. Navigation Keys Added Android Automotive requirements.
7.3.1. Akcelerometr Relaxed requirement for reporting frequency on Android Watch.
7.3.4. Żyroskop Relaxed requirement for reporting frequency on Android Watch.
7.4.3 Bluetooth Added Android Automotive requirements.
7.4.4. Near-Field Communications Clarified condition for when Host Card Emulation is a requirement.
7.6.1. Minimum Memory and Storage Updated minimum memory requirements for lower resolution screen devices and added hard-limit requirement isLowRamDevice().
7.6.2. Application Shared Storage Updated requirements when support for host machine access is mandatory.
7.7 USB Fixing typos in USB section
7.6.2. Application Shared Storage Updated requirements that pre-installed system apps may write to secondary external storage.
7.6.2. Application Shared Storage Apps can use ACTION_OPEN_DOCUMENT_TREE to write to secondary ext. składowanie
7.6.2. Application Shared Storage Clarify that /sdcard can share storage with /data
7.7 USB Remove redundant requirement on UMS/MTP from 7.7
7.8.1. Mikrofon Added Android Automotive requirements.
8.2. File I/O Access Performance Clarified requirements.
9,5. Multi-User Support SD card encryption required for the primary external storage.
9,8. Prywatność Added privacy requirement for preloaded VPNs.
9,9. Full-Disk Encryption Clarified condition when Full-Disk encryption support is mandatory.
9.10. Verified Boot Clarified definition of verified boot.
11. Updatable Software Clarified the OTA download requirement is allowed but not mandatory for Android Automotive implementations.

13. Contact Us

You can join the android-compatibility forum [Resources, 109 ] and ask for clarifications or bring up any issues that you think the document does not cover.

14. Resources

1. IETF RFC2119 Requirement Levels: http://www.ietf.org/rfc/rfc2119.txt

2. Android Open Source Project: http://source.android.com/

3. Android Television features: http://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_LEANBACK

4. Android Watch feature: http://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_WATCH

5. API definitions and documentation: http://developer.android.com/reference/packages.html

6. Android Permissions reference: http://developer.android.com/reference/android/Manifest.permission.html

7. android.os.Build reference: http://developer.android.com/reference/android/os/Build.html

8. Android 5.1 allowed version strings: http://source.android.com/compatibility/5.1/versions.html

9. Telephony Provider: http://developer.android.com/reference/android/provider/Telephony.html

10. Host-based Card Emulation: http://developer.android.com/guide/topics/connectivity/nfc/hce.html

11. Android Extension Pack: http://developer.android.com/guide/topics/graphics/opengl.html#aep

12. android.webkit.WebView class: http://developer.android.com/reference/android/webkit/WebView.html

13. WebView compatibility: http://www.chromium.org/

14. HTML5: http://html.spec.whatwg.org/multipage/

15. HTML5 offline capabilities: http://dev.w3.org/html5/spec/Overview.html#offline

16. HTML5 video tag: http://dev.w3.org/html5/spec/Overview.html#video

17. HTML5/W3C geolocation API: http://www.w3.org/TR/geolocation-API/

18. HTML5/W3C webstorage API: http://www.w3.org/TR/webstorage/

19. HTML5/W3C IndexedDB API: http://www.w3.org/TR/IndexedDB/

20. Dalvik Executable Format and bytecode specification: available in the Android source code, at dalvik/docs

21. AppWidgets: http://developer.android.com/guide/practices/ui_guidelines/widget_design.html

22. Notifications: http://developer.android.com/guide/topics/ui/notifiers/notifications.html

23. Application Resources: https://developer.android.com/guide/topics/resources/available-resources.html

24. Status Bar icon style guide: http://developer.android.com/design/style/iconography.html

25. Notifications Resources: https://developer.android.com/design/patterns/notifications.html

26. Search Manager: http://developer.android.com/reference/android/app/SearchManager.html

27. Toasts: http://developer.android.com/reference/android/widget/Toast.html

28. Themes: http://developer.android.com/guide/topics/ui/themes.html

29. R.style class: http://developer.android.com/reference/android/R.style.html

30. Material design: http://developer.android.com/reference/android/R.style.html#Theme_Material

31. Live Wallpapers: http://developer.android.com/reference/android/service/wallpaper/WallpaperService.html

32. Overview screen resources: http://developer.android.com/guide/components/recents.html

33. Screen pinning: https://developer.android.com/about/versions/android-5.0.html#ScreenPinning

34. Input methods: http://developer.android.com/guide/topics/text/creating-input-method.html

35. Media Notification: https://developer.android.com/reference/android/app/Notification.MediaStyle.html

36. Dreams: http://developer.android.com/reference/android/service/dreams/DreamService.html

37. Settings.Secure LOCATION_MODE:

http://developer.android.com/reference/android/provider/Settings.Secure.html#LOCATION_MODE

38. Unicode 6.1.0: http://www.unicode.org/versions/Unicode6.1.0/

39. Android Device Administration: http://developer.android.com/guide/topics/admin/device-admin.html

40. DevicePolicyManager reference: http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html

41. Android Device Owner App:

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isDeviceOwnerApp(java.lang.String)

42. Android Accessibility Service APIs: http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html

43. Android Accessibility APIs: http://developer.android.com/reference/android/view/accessibility/package-summary.html

44. Eyes Free project: http://code.google.com/p/eyes-free

45. Text-To-Speech APIs: http://developer.android.com/reference/android/speech/tts/package-summary.html

46. Television Input Framework: /devices/tv/index.html

47. Reference tool documentation (for adb, aapt, ddms, systrace): http://developer.android.com/tools/help/index.html

48. Android apk file description: http://developer.android.com/guide/components/fundamentals.html

49. Manifest files: http://developer.android.com/guide/topics/manifest/manifest-intro.html

50. Android Media Formats: http://developer.android.com/guide/appendix/media-formats.html

51. RTC Hardware Coding Requirements: http://www.webmproject.org/hardware/rtc-coding-requirements/

52. AudioEffect API: http://developer.android.com/reference/android/media/audiofx/AudioEffect.html

53. Android android.content.pm.PackageManager class and Hardware Features List:

http://developer.android.com/reference/android/content/pm/PackageManager.html

54. HTTP Live Streaming Draft Protocol: http://tools.ietf.org/html/draft-pantos-http-live-streaming-03

55. ADB: http://developer.android.com/tools/help/adb.html

56. Dumpsys: /devices/input/diagnostics.html

57. DDMS: http://developer.android.com/tools/debugging/ddms.html

58. Monkey testing tool: http://developer.android.com/tools/help/monkey.html

59. SysyTrace tool: http://developer.android.com/tools/help/systrace.html

60. Android Application Development-Related Settings:

http://developer.android.com/reference/android/provider/Settings.html#ACTION_APPLICATION_DEVELOPMENT_SETTINGS

61. Supporting Multiple Screens: http://developer.android.com/guide/practices/screens_support.html

62. android.util.DisplayMetrics: http://developer.android.com/reference/android/util/DisplayMetrics.html

63. RenderScript: http://developer.android.com/guide/topics/renderscript/

64. Android extension pack for OpenGL ES: https://developer.android.com/reference/android/opengl/GLES31Ext.html

65. Hardware Acceleration: http://developer.android.com/guide/topics/graphics/hardware-accel.html

66. EGL Extension-EGL_ANDROID_RECORDABLE:

http://www.khronos.org/registry/egl/extensions/ANDROID/EGL_ANDROID_recordable.txt

67. Display Manager: http://developer.android.com/reference/android/hardware/display/DisplayManager.html

68. android.content.res.Configuration: http://developer.android.com/reference/android/content/res/Configuration.html

69. Action Assist: http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST

70. Touch Input Configuration: http://source.android.com/devices/tech/input/touch-devices.html

71. Motion Event API: http://developer.android.com/reference/android/view/MotionEvent.html

72. Key Event API: http://developer.android.com/reference/android/view/KeyEvent.html

73. Android Open Source sensors: http://source.android.com/devices/sensors

74. android.hardware.SensorEvent: http://developer.android.com/reference/android/hardware/SensorEvent.html

75. Timestamp sensor event: http://developer.android.com/reference/android/hardware/SensorEvent.html#timestamp

76. Android Open Source composite sensors: /devices/sensors/sensor-types.html#composite_sensor_type_summary

77. Continuous trigger mode: /docs/core/interaction/sensors/report-modes#continuous

78. Accelerometer sensor: http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ACCELEROMETER

79. Wi-Fi Multicast API: http://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock.html

80. Wi-Fi Direct (Wi-Fi P2P): http://developer.android.com/reference/android/net/wifi/p2p/WifiP2pManager.html

81. WifiManager API: http://developer.android.com/reference/android/net/wifi/WifiManager.html

82. Bluetooth API: http://developer.android.com/reference/android/bluetooth/package-summary.html

83. Bluetooth ScanFilter API: https://developer.android.com/reference/android/bluetooth/le/ScanFilter.html

84. NDEF Push Protocol: http://source.android.com/compatibility/ndef-push-protocol.pdf

85. Android Beam: http://developer.android.com/guide/topics/connectivity/nfc/nfc.html

86. Android NFC Sharing Settings:

http://developer.android.com/reference/android/provider/Settings.html#ACTION_NFCSHARING_SETTINGS

87. NFC Connection Handover: http://members.nfc-forum.org/specs/spec_list/#conn_handover

88. Bluetooth Secure Simple Pairing Using NFC: http://members.nfc-forum.org/apps/group_public/download.php/18688/NFCForum-AD-BTSSP_1_1.pdf

89. Content Resolver: http://developer.android.com/reference/android/content/ContentResolver.html

90. Camera orientation API: http://developer.android.com/reference/android/hardware/Camera.html#setDisplayOrientation(int)

91. Camera: http://developer.android.com/reference/android/hardware/Camera.html

92. Camera: http://developer.android.com/reference/android/hardware/Camera.Parameters.html

93. Camera hardware level: https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html#INFO_SUPPORTED_HARDWARE_LEVEL

94. Camera version support: http://source.android.com/devices/camera/versioning.html

95. Android DownloadManager: http://developer.android.com/reference/android/app/DownloadManager.html

96. Android File Transfer: http://www.android.com/filetransfer

97. Android Open Accessories: http://developer.android.com/guide/topics/connectivity/usb/accessory.html

98. Android USB Audio: http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO

99. USB Charging Specification: http://www.usb.org/developers/docs/devclass_docs/USB_Battery_Charging_1.2.pdf

100. USB Host API: http://developer.android.com/guide/topics/connectivity/usb/host.html

101. Wired audio headset: http://source.android.com//docs/core/interaction/accessories/headset/plug-headset-spec.html

102. Android Security and Permissions reference: http://developer.android.com/guide/topics/security/permissions.html

103. UserManager reference: http://developer.android.com/reference/android/os/UserManager.html

104. External Storage reference: http://source.android.com/docs/core/storage

105. External Storage APIs: http://developer.android.com/reference/android/os/Environment.html

106. SMS Short Code: http://en.wikipedia.org/wiki/Short_code

107. Android Open Source Encryption: http://source.android.com/docs/security/features/encryption

108. Android Compatibility Program Overview: http://source.android.com//docs/compatibility

109. Android Compatibility forum: https://groups.google.com/forum/#!forum/android-compatibility

110. WebM project: http://www.webmproject.org/

111. Android UI_MODE_TYPE_CAR API: http://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_CAR

112. Android MediaCodecList API: http://developer.android.com/reference/android/media/MediaCodecList.html

113. Android CamcorderProfile API: http://developer.android.com/reference/android/media/CamcorderProfile.html

Many of these resources are derived directly or indirectly from the Android SDK, and will be functionally identical to the information in that SDK's documentation. In any cases where this Compatibility Definition or the Compatibility Test Suite disagrees with the SDK documentation, the SDK documentation is considered authoritative. Any technical details provided in the references included above are considered by inclusion to be part of this Compatibility Definition.