Kompatibilitätsdefinition für Android 8.0

1. Einleitung

In diesem Dokument werden die Anforderungen aufgeführt, die erfüllt sein müssen, damit Geräte mit Android 8.0 kompatibel sind.

Die Verwendung von „MUSS“, „DÜRFEN NICHT“, „ERFORDERLICH“, „SOLL“, „SOLL NICHT“, „SOLLTE“, „SOLLTE NICHT“, „EMPFOHLEN“, „KANN“ und „OPTIONAL“ erfolgt gemäß der IETF Standard definiert in RFC2119 .

Wie in diesem Dokument verwendet, ist ein „Geräteimplementierer“ oder „Implementierer“ eine Person oder Organisation, die eine Hardware-/Softwarelösung mit Android 8.0 entwickelt. Eine „Geräteimplementierung“ oder „Implementierung“ ist die so entwickelte Hardware-/Softwarelösung.

Um als mit Android 8.0 kompatibel zu gelten, MÜSSEN Geräteimplementierungen die in dieser Kompatibilitätsdefinition dargelegten Anforderungen erfüllen, einschließlich aller durch Verweis einbezogenen Dokumente.

Wenn diese Definition oder die in Abschnitt 10 beschriebenen Softwaretests stillschweigend, mehrdeutig oder unvollständig sind, liegt es in der Verantwortung des Geräteimplementierers, die Kompatibilität mit bestehenden Implementierungen sicherzustellen.

Aus diesem Grund ist das Android Open Source Project sowohl die Referenz als auch die bevorzugte Implementierung von Android. Geräteimplementierern wird DRINGEND EMPFOHLEN, ihre Implementierungen so weit wie möglich auf dem „Upstream“-Quellcode zu basieren, der vom Android Open Source Project verfügbar ist. Obwohl einige Komponenten hypothetisch durch alternative Implementierungen ersetzt werden können, wird dringend davon abgeraten, diese Praxis zu befolgen, da das Bestehen der Softwaretests wesentlich schwieriger wird. Es liegt in der Verantwortung des Implementierers, die vollständige Verhaltenskompatibilität mit der Standard-Android-Implementierung sicherzustellen, einschließlich der Compatibility Test Suite und darüber hinaus. Beachten Sie abschließend, dass bestimmte Komponentenersetzungen und -modifikationen in diesem Dokument ausdrücklich verboten sind.

Viele der in diesem Dokument verlinkten Ressourcen stammen direkt oder indirekt vom Android SDK und sind funktional identisch mit den Informationen in der Dokumentation dieses SDK. In allen Fällen, in denen diese Kompatibilitätsdefinition oder die Kompatibilitätstestsuite nicht mit der SDK-Dokumentation übereinstimmen, gilt die SDK-Dokumentation als maßgeblich. Alle technischen Details, die in den verlinkten Ressourcen in diesem Dokument bereitgestellt werden, gelten durch die Aufnahme als Teil dieser Kompatibilitätsdefinition.

1.1 Dokumentstruktur

1.1.1. Anforderungen nach Gerätetyp

Abschnitt 2 enthält alle Anforderungen, die für einen bestimmten Gerätetyp gelten. Jeder Unterabschnitt von Abschnitt 2 ist einem bestimmten Gerätetyp gewidmet.

Alle anderen Anforderungen, die allgemein für alle Android-Geräteimplementierungen gelten, sind in den Abschnitten nach Abschnitt 2 aufgeführt. Diese Anforderungen werden in diesem Dokument als „Kernanforderungen“ bezeichnet.

1.1.2. Anforderungs-ID

Die Anforderungs-ID wird für MUSS-Anforderungen zugewiesen.

  • Die ID wird nur für MUST-Anforderungen vergeben.
  • DRINGEND EMPFOHLENE Anforderungen sind mit [SR] gekennzeichnet, es ist jedoch keine ID zugewiesen.
  • Die ID besteht aus: Gerätetyp-ID – Bedingungs-ID – Anforderungs-ID (z. B. C-0-1).

Jede ID ist wie folgt definiert:

  • Gerätetyp-ID (siehe mehr unter 2. Gerätetypen).
    • C: Core (Anforderungen, die für alle Android-Geräteimplementierungen gelten)
    • H: Android-Handgerät
    • T: Android-Fernsehgerät
    • A: Android Automotive-Implementierung
    • Tab: Android-Tablet-Implementierung
  • Bedingungs-ID
    • Wenn die Anforderung unbedingt ist, wird diese ID auf 0 gesetzt.
    • Wenn die Anforderung bedingt ist, wird 1 für die 1. Bedingung zugewiesen und die Zahl erhöht sich innerhalb desselben Abschnitts und desselben Gerätetyps um 1.
  • Anforderungs-ID
    • Diese ID beginnt bei 1 und erhöht sich innerhalb desselben Abschnitts und derselben Bedingung um 1.

1.1.3. Anforderungs-ID in Abschnitt 2

Die Anforderungs-ID in Abschnitt 2 beginnt mit der entsprechenden Abschnitts-ID, gefolgt von der oben beschriebenen Anforderungs-ID.

  • Die ID in Abschnitt 2 besteht aus: Abschnitts-ID / Gerätetyp-ID – Bedingungs-ID – Anforderungs-ID (z. B. 7.4.3/A-0-1).

2. Gerätetypen

Während das Android Open Source Project einen Software-Stack bereitstellt, der für eine Vielzahl von Gerätetypen und Formfaktoren verwendet werden kann, gibt es einige Gerätetypen, die über ein relativ besser etabliertes Ökosystem für die Anwendungsverteilung verfügen.

In diesem Abschnitt werden diese Gerätetypen sowie zusätzliche Anforderungen und Empfehlungen beschrieben, die für jeden Gerätetyp gelten.

Alle Android-Geräteimplementierungen, die nicht in einen der beschriebenen Gerätetypen passen, MÜSSEN dennoch alle Anforderungen in den anderen Abschnitten dieser Kompatibilitätsdefinition erfüllen.

2.1 Gerätekonfigurationen

Die wichtigsten Unterschiede in der Hardwarekonfiguration je nach Gerätetyp finden Sie in den folgenden gerätespezifischen Anforderungen in diesem Abschnitt.

2.2. Handheld-Anforderungen

Ein Android-Handgerät bezieht sich auf eine Android-Geräteimplementierung, die normalerweise verwendet wird, indem man es in der Hand hält, z. B. einen MP3-Player, ein Telefon oder ein Tablet.

Android-Geräteimplementierungen werden als Handheld klassifiziert, wenn sie alle folgenden Kriterien erfüllen:

  • Verfügen Sie über eine Stromquelle, die Mobilität ermöglicht, beispielsweise eine Batterie.
  • Sie verfügen über eine physische Bildschirmdiagonale im Bereich von 2,5 bis 8 Zoll.

Die zusätzlichen Anforderungen im Rest dieses Abschnitts gelten speziell für Android-Handheld-Geräteimplementierungen.

Hinweis: Anforderungen, die nicht für Android-Tablet-Geräte gelten, sind mit einem * gekennzeichnet.

2.2.1. Hardware

Implementierungen von Handheld-Geräten:

  • [ 7.1 .1.1/H-0-1] MUSS über einen Bildschirm mit einer physischen Diagonale von mindestens 2,5 Zoll verfügen.
  • [ 7.1 .1.3/H-SR] Werden DRINGEND EMPFOHLEN, um Benutzern die Möglichkeit zu geben, die Anzeigegröße zu ändern. (Bildschirmdichte)
  • [ 7.1 .5/H-0-1] MUSS Unterstützung für den Legacy-Anwendungskompatibilitätsmodus enthalten, wie er durch den Open-Source-Code des Upstream-Android implementiert wird. Das heißt, Geräteimplementierungen DÜRFEN NICHT die Auslöser oder Schwellenwerte ändern, bei denen der Kompatibilitätsmodus aktiviert wird, und DÜRFEN NICHT das Verhalten des Kompatibilitätsmodus selbst ändern.
  • [ 7.2 .1/H-0-1] MUSS Unterstützung für Input Method Editor (IME)-Anwendungen von Drittanbietern beinhalten.
  • [ 7.2 .3/H-0-1] MUSS die Funktionen „Home“, „Letzte“ und „Zurück“ bereitstellen.
  • [ 7.2 .3/H-0-2] MUSS sowohl das normale als auch das lange Drücken-Ereignis der Back-Funktion ( KEYCODE_BACK ) an die Vordergrundanwendung senden.
  • [ 7.2 .4/H-0-1] MUSS die Touchscreen-Eingabe unterstützen.
  • [ 7.3 .1/H-SR] Es wird DRINGEND EMPFOHLEN, einen 3-Achsen-Beschleunigungsmesser einzubinden.

Wenn Handheld-Geräteimplementierungen einen 3-Achsen-Beschleunigungsmesser umfassen, gilt Folgendes:

  • [ 7.3 .1/H-1-1] MUSS in der Lage sein, Ereignisse bis zu einer Frequenz von mindestens 100 Hz zu melden.

Wenn Handheld-Geräteimplementierungen ein Gyroskop enthalten, gilt Folgendes:

  • [ 7.3 .4/H-1-1] MUSS in der Lage sein, Ereignisse bis zu einer Frequenz von mindestens 100 Hz zu melden.

Implementierungen von Handheld-Geräten, die einen Sprachanruf tätigen und jeden anderen Wert als PHONE_TYPE_NONE in getPhoneType angeben können:

  • [ 7.3 .8/H] SOLLTE einen Näherungssensor enthalten.

Implementierungen von Handheld-Geräten:

  • [ 7.3 .12/H-SR] Es wird EMPFOHLEN, einen Posensensor mit 6 Freiheitsgraden zu unterstützen.
  • [ 7.4 .3/H] SOLLTE Unterstützung für Bluetooth und Bluetooth LE beinhalten.

Wenn Handheld-Geräteimplementierungen eine getaktete Verbindung umfassen, gilt Folgendes:

  • [ 7.4 .7/H-1-1] MUSS den Datensparmodus bereitstellen.

Implementierungen von Handheld-Geräten:

  • [ 7.6 .1/H-0-1] MÜSSEN über mindestens 4 GB nichtflüchtigen Speicher für private Anwendungsdaten verfügen (auch bekannt als „/data“-Partition).
  • [ 7.6 .1/H-0-2] MUSS „true“ für ActivityManager.isLowRamDevice() zurückgeben, wenn weniger als 1 GB Speicher für den Kernel und den Benutzerbereich verfügbar ist.

Wenn Handheld-Geräteimplementierungen 32-Bit sind:

  • [ 7.6 .1/H-1-1] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 512 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 280 dpi oder weniger auf kleinen/normalen Bildschirmen *
    • ldpi oder niedriger auf besonders großen Bildschirmen
    • mdpi oder niedriger auf großen Bildschirmen
  • [ 7.6 .1/H-2-1] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 608 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • xhdpi oder höher auf kleinen/normalen Bildschirmen *
    • hdpi oder höher auf großen Bildschirmen
    • mdpi oder höher auf besonders großen Bildschirmen
  • [ 7.6 .1/H-3-1] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 896 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 400 dpi oder höher auf kleinen/normalen Bildschirmen *
    • xhdpi oder höher auf großen Bildschirmen
    • tvdpi oder höher auf besonders großen Bildschirmen
  • [ 7.6 .1/H-4-1] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 1344 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 560 dpi oder höher auf kleinen/normalen Bildschirmen *
    • 400 dpi oder höher auf großen Bildschirmen
    • xhdpi oder höher auf besonders großen Bildschirmen

Wenn Handheld-Geräteimplementierungen 64-Bit sind:

  • [ 7.6 .1/H-5-1] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 816 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 280 dpi oder weniger auf kleinen/normalen Bildschirmen *
    • ldpi oder niedriger auf besonders großen Bildschirmen
    • mdpi oder niedriger auf großen Bildschirmen
  • [ 7.6 .1/H-6-1] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 944 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • xhdpi oder höher auf kleinen/normalen Bildschirmen *
    • hdpi oder höher auf großen Bildschirmen
    • mdpi oder höher auf besonders großen Bildschirmen
  • [ 7.6 .1/H-7-1] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 1280 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 400 dpi oder höher auf kleinen/normalen Bildschirmen *
    • xhdpi oder höher auf großen Bildschirmen
    • tvdpi oder höher auf besonders großen Bildschirmen
  • [ 7.6 .1/H-8-1] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 1824 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 560 dpi oder höher auf kleinen/normalen Bildschirmen *
    • 400 dpi oder höher auf großen Bildschirmen
    • xhdpi oder höher auf besonders großen Bildschirmen

Beachten Sie, dass sich der oben genannte „für den Kernel und den Benutzerbereich verfügbare Speicher“ auf den Speicherplatz bezieht, der zusätzlich zu dem Speicher bereitgestellt wird, der bereits für Hardwarekomponenten wie Radio, Video usw. reserviert ist und bei Geräteimplementierungen nicht unter der Kontrolle des Kernels steht.

Implementierungen von Handheld-Geräten:

  • [ 7.6 .2/H-0-1] DARF KEINEN gemeinsam genutzten Anwendungsspeicher bereitstellen, der kleiner als 1 GiB ist.
  • [ 7.7 .1/H] SOLLTE einen USB-Anschluss enthalten, der den Peripheriemodus unterstützt.

Wenn Handheld-Geräteimplementierungen über einen USB-Anschluss verfügen, der den Peripheriemodus unterstützt, gilt Folgendes:

  • [ 7.7 .1/H-1-1] MUSS die Android Open Accessoire (AOA) API implementieren.

Implementierungen von Handheld-Geräten:

  • [ 7.8 .1/H-0-1] MUSS ein Mikrofon enthalten.
  • [ 7.8 .2/H-0-1] MUSS über einen Audioausgang verfügen und android.hardware.audio.output deklarieren.

Wenn Handheld-Geräteimplementierungen den VR-Modus unterstützen, gilt:

  • [ 7.9 .1/H-1-1] MUSS die Funktion android.software.vr.mode deklarieren.

Wenn Geräteimplementierungen die Funktion android.software.vr.mode deklarieren, gilt Folgendes:

  • [ 7.9 .1/H-2-1] MUSS eine Anwendung enthalten, die android.service.vr.VrListenerService implementiert und von VR-Anwendungen über android.app.Activity#setVrModeEnabled aktiviert werden kann.

Wenn Handheld-Geräteimplementierungen in der Lage sind, alle Anforderungen zur Deklaration des Funktionsflags android.hardware.vr.high_performance zu erfüllen, gilt Folgendes:

  • [ 7.9 .2/-1-1] MUSS das Feature-Flag android.hardware.vr.high_performance deklarieren.

2.2.2. Multimedia

Implementierungen von Handheld-Geräten MÜSSEN die folgende Audiokodierung unterstützen:

  • [ 5.1 .1/H-0-1] AMR-NB
  • [ 5.1 .1/H-0-2] AMR-WB
  • [ 5.1 .1/H-0-3] MPEG-4 AAC-Profil (AAC LC)
  • [ 5.1 .1/H-0-4] MPEG-4 HE AAC-Profil (AAC+)
  • [ 5.1 .1/H-0-5] AAC ELD (erweiterte Low-Delay-AAC)

Implementierungen von Handheld-Geräten MÜSSEN die folgende Audiodekodierung unterstützen:

  • [ 5.1 .2/H-0-1] AMR-NB
  • [ 5.1 .2/H-0-2] AMR-WB

Implementierungen von Handheld-Geräten MÜSSEN die folgende Videokodierung unterstützen und für Anwendungen von Drittanbietern verfügbar machen:

  • [ 5.2 /H-0-1] H.264 AVC
  • [ 5.2 /H-0-2] VP8

Implementierungen von Handheld-Geräten MÜSSEN die folgende Videodekodierung unterstützen:

  • [ 5.3 /H-0-1] H.264 AVC
  • [ 5.3 /H-0-2] H.265 HEVC
  • [ 5.3 /H-0-3] MPEG-4 SP
  • [ 5.3 /H-0-4] VP8
  • [ 5.3 /H-0-5] VP9

2.2.3. Software

Implementierungen von Handheld-Geräten:

  • [ 3.4 .1/H-0-1] MUSS eine vollständige Implementierung der android.webkit.Webview API bereitstellen.
  • [ 3.4 .2/H-0-1] MUSS eine eigenständige Browseranwendung für das allgemeine Surfen im Internet durch Benutzer enthalten.
  • [ 3.8 .1/H-SR] Es wird DRINGEND EMPFOHLEN, einen Standard-Launcher zu implementieren, der das Anheften von Verknüpfungen und Widgets in der App unterstützt.
  • [ 3.8 .1/H-SR] Es wird DRINGEND EMPFOHLEN, einen Standard-Launcher zu implementieren, der schnellen Zugriff auf die zusätzlichen Verknüpfungen bietet, die von Drittanbieter-Apps über die ShortcutManager- API bereitgestellt werden.
  • [ 3.8 .1/H-SR] Es wird DRINGEND EMPFOHLEN, eine Standard-Launcher-App einzubinden, die Abzeichen für die App-Symbole anzeigt.
  • [ 3.8 .2/H-SR] Werden DRINGEND EMPFOHLEN, App-Widgets von Drittanbietern zu unterstützen.
  • [ 3.8 .3/H-0-1] MUSS Apps von Drittanbietern ermöglichen, Benutzer über die API-Klassen Notification und NotificationManager über wichtige Ereignisse zu benachrichtigen.
  • [ 3.8 .3/H-0-2] MUSS umfangreiche Benachrichtigungen unterstützen.
  • [ 3.8 .3/H-0-3] MUSS Heads-up-Benachrichtigungen unterstützen.
  • [ 3.8 .3/H-0-4] MUSS einen Benachrichtigungsschirm enthalten, der dem Benutzer die Möglichkeit gibt, die Benachrichtigungen über Benutzerfunktionen wie Aktionsschaltflächen oder das implementierte Bedienfeld direkt zu steuern (z. B. Antworten, Schlummern, Verwerfen, Blockieren). im AOSP.
  • [ 3.8 .4/H-SR] Es wird DRINGEND EMPFOHLEN, einen Assistenten auf dem Gerät zu implementieren, um die Assist-Aktion durchzuführen.

Wenn Android-Handheld-Geräteimplementierungen einen Sperrbildschirm unterstützen, gilt Folgendes:

  • [ 3.8 .10/H-1-1] MÜSSEN die Sperrbildschirm-Benachrichtigungen einschließlich der Medienbenachrichtigungsvorlage anzeigen.

Wenn Handheld-Geräteimplementierungen einen sicheren Sperrbildschirm unterstützen, gilt Folgendes:

Implementierungen von Handheld-Geräten:

  • [ 3.10 /H-0-1] MUSS Barrierefreiheitsdienste von Drittanbietern unterstützen.
  • [ 3.10 /H-SR] Es wird DRINGEND EMPFOHLEN, Barrierefreiheitsdienste auf dem Gerät vorab zu laden, die mit der Funktionalität der Barrierefreiheitsdienste Switch Access und TalkBack (für Sprachen, die von der vorinstallierten Text-to-Speech-Engine unterstützt werden) vergleichbar sind oder diese übertreffen, wie im Talkback Open bereitgestellt Quellprojekt .
  • [ 3.11 /H-0-1] MUSS die Installation von TTS-Engines von Drittanbietern unterstützen.
  • [ 3.11 /H-SR] Es wird DRINGEND EMPFOHLEN, eine TTS-Engine einzubinden, die die auf dem Gerät verfügbaren Sprachen unterstützt.
  • [ 3.13 /H-SR] Es wird DRINGEND EMPFOHLEN, eine UI-Komponente für Schnelleinstellungen einzuschließen.

Wenn Implementierungen von Android-Handgeräten die Unterstützung FEATURE_BLUETOOTH oder FEATURE_WIFI deklarieren, gilt Folgendes:

  • [ 3.15 /H-1-1] MUSS die Funktion zur Kopplung von Begleitgeräten unterstützen.

2.2.4. Leistung und Kraft

  • [ 8.1 /H-0-1] Konsistente Frame-Latenz . Eine inkonsistente Frame-Latenz oder eine Verzögerung beim Rendern von Frames DARF NICHT häufiger als 5 Frames pro Sekunde auftreten und SOLLTE unter 1 Frame pro Sekunde liegen.
  • [ 8.1 /H-0-2] Latenz der Benutzeroberfläche . Geräteimplementierungen MÜSSEN eine Benutzererfahrung mit geringer Latenz gewährleisten, indem sie eine Liste mit 10.000 Listeneinträgen gemäß der Definition der Android Compatibility Test Suite (CTS) in weniger als 36 Sekunden scrollen.
  • [ 8.1 /H-0-3] Aufgabenwechsel . Wenn mehrere Anwendungen gestartet wurden, MUSS der erneute Start einer bereits ausgeführten Anwendung nach dem Start weniger als 1 Sekunde dauern.

Implementierungen von Handheld-Geräten:

  • [ 8.2 /H-0-1] MUSS eine sequentielle Schreibleistung von mindestens 5 MB/s gewährleisten.
  • [ 8.2 /H-0-2] MUSS eine zufällige Schreibleistung von mindestens 0,5 MB/s gewährleisten.
  • [ 8.2 /H-0-3] MUSS eine sequentielle Leseleistung von mindestens 15 MB/s gewährleisten.
  • [ 8.2 /H-0-4] MUSS eine zufällige Leseleistung von mindestens 3,5 MB/s gewährleisten.
  • [ 8.3 /H-0-1] Alle Apps, die von den Energiesparmodi App Standby und Doze ausgenommen sind, MÜSSEN für den Endbenutzer sichtbar gemacht werden.
  • [ 8.3 /H-0-2] Die Auslöse-, Wartungs-, Weckalgorithmen und die Verwendung globaler Systemeinstellungen der Energiesparmodi App Standby und Doze DÜRFEN nicht vom Android Open Source Project abweichen.

Implementierungen von Handheld-Geräten:

  • [ 8.4 /H-0-1] MUSS ein Leistungsprofil pro Komponente bereitstellen, das den aktuellen Verbrauchswert für jede Hardwarekomponente und den ungefähren Batterieverbrauch definiert, der durch die Komponenten im Laufe der Zeit verursacht wird, wie auf der Website des Android Open Source Project dokumentiert.
  • [ 8.4 /H-0-2] MÜSSEN alle Stromverbrauchswerte in Milliamperestunden (mAh) angeben.
  • [ 8.4 /H-0-3] MUSS den CPU-Stromverbrauch pro UID jedes Prozesses angeben. Das Android Open Source-Projekt erfüllt die Anforderung durch die Implementierung des Kernelmoduls uid_cputime .
  • [ 8.4 /H-0-4] Dieser Stromverbrauch MUSS dem App-Entwickler über den Shell-Befehl adb shell dumpsys batterystats zur Verfügung gestellt werden.
  • [ 8.4 /H] SOLLTE der Hardwarekomponente selbst zugeschrieben werden, wenn der Stromverbrauch der Hardwarekomponente nicht einer Anwendung zugeordnet werden kann.

Wenn Handheld-Geräteimplementierungen einen Bildschirm- oder Videoausgang umfassen, gilt Folgendes:

2.2.5. Sicherheitsmodell

Implementierungen von Handheld-Geräten:

2.3. Fernsehanforderungen

Ein Android-Fernsehgerät bezieht sich auf eine Android-Geräteimplementierung, die eine Unterhaltungsschnittstelle zum Konsumieren digitaler Medien, Filme, Spiele, Apps und/oder Live-TV für Benutzer darstellt, die etwa drei Meter entfernt sitzen (ein „zurückgelehnter“ oder „10-Fuß-Benutzer“) Schnittstelle").

Implementierungen von Android-Geräten werden als Fernseher klassifiziert, wenn sie alle folgenden Kriterien erfüllen:

  • Wir haben einen Mechanismus zur Fernsteuerung der gerenderten Benutzeroberfläche auf dem Display bereitgestellt, das sich möglicherweise drei Meter vom Benutzer entfernt befindet.
  • Verfügen Sie über einen eingebetteten Bildschirm mit einer Diagonale von mehr als 24 Zoll ODER schließen Sie einen Videoausgangsanschluss wie VGA, HDMI, DisplayPort oder einen drahtlosen Anschluss für die Anzeige ein.

Die zusätzlichen Anforderungen im Rest dieses Abschnitts gelten speziell für Android-TV-Geräteimplementierungen.

2.3.1. Hardware

Implementierungen von Fernsehgeräten:

  • [ 7.2 .2/T-0-1] MUSS D-Pad unterstützen.
  • [ 7.2 .3/T-0-1] MUSS die Home- und Back-Funktionen bereitstellen.
  • [ 7.2 .3/T-0-2] MUSS sowohl das normale als auch das lange Drücken-Ereignis der Back-Funktion ( KEYCODE_BACK ) an die Vordergrundanwendung senden.
  • [ 7.2 .6.1/T-0-1] MUSS Unterstützung für Gamecontroller enthalten und das Feature-Flag android.hardware.gamepad deklarieren.
  • [ 7.2 .7/T] SOLLTE eine Fernbedienung bieten, über die Benutzer auf Eingaben für die berührungslose Navigation und die Kernnavigationstasten zugreifen können.

Wenn die Implementierung von Fernsehgeräten ein Gyroskop enthält, gilt Folgendes:

  • [ 7.3 .4/T-1-1] MUSS in der Lage sein, Ereignisse bis zu einer Frequenz von mindestens 100 Hz zu melden.

Implementierungen von Fernsehgeräten:

  • [ 7.4 .3/T-0-1] MUSS Bluetooth und Bluetooth LE unterstützen.
  • [ 7.6 .1/T-0-1] MÜSSEN über mindestens 4 GB nichtflüchtigen Speicher für private Anwendungsdaten verfügen (auch bekannt als „/data“-Partition).

Wenn TV-Geräteimplementierungen 32-Bit sind:

  • [ 7.6 .1/T-1-1] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 896 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 400 dpi oder höher auf kleinen/normalen Bildschirmen
    • xhdpi oder höher auf großen Bildschirmen
    • tvdpi oder höher auf besonders großen Bildschirmen

Wenn TV-Geräteimplementierungen 64-Bit sind:

  • [ 7.6 .1/T-2-1] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 1280 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 400 dpi oder höher auf kleinen/normalen Bildschirmen
    • xhdpi oder höher auf großen Bildschirmen
    • tvdpi oder höher auf besonders großen Bildschirmen

Beachten Sie, dass sich der oben genannte „für den Kernel und den Benutzerbereich verfügbare Speicher“ auf den Speicherplatz bezieht, der zusätzlich zu dem Speicher bereitgestellt wird, der bereits für Hardwarekomponenten wie Radio, Video usw. reserviert ist und bei Geräteimplementierungen nicht unter der Kontrolle des Kernels steht.

Implementierungen von Fernsehgeräten:

  • [ 7.8 .1/T] SOLLTE ein Mikrofon enthalten.
  • [ 7.8 .2/T-0-1] MUSS über einen Audioausgang verfügen und android.hardware.audio.output deklarieren.

2.3.2. Multimedia

Implementierungen von Fernsehgeräten MÜSSEN die folgende Audiokodierung unterstützen:

  • [ 5.1 /T-0-1] MPEG-4 AAC-Profil (AAC LC)
  • [ 5.1 /T-0-2] MPEG-4 HE AAC-Profil (AAC+)
  • [ 5.1 /T-0-3] AAC ELD (erweiterte Low-Delay-AAC)

Implementierungen von Fernsehgeräten MÜSSEN die folgende Videokodierung unterstützen:

  • [ 5.2 /T-0-1] H.264 AVC
  • [ 5.2 /T-0-2] VP8

Implementierungen von Fernsehgeräten:

  • [ 5.2 .2/T-SR] Es wird DRINGEND EMPFOHLEN, die H.264-Kodierung von Videos mit einer Auflösung von 720p und 1080p zu unterstützen.
  • [ 5.2 2/T-SR] Es wird DRINGEND EMPFOHLEN, die H.264-Kodierung von Videos mit einer Auflösung von 1080p und 30 Bildern pro Sekunde (fps) zu unterstützen.

Implementierungen von Fernsehgeräten MÜSSEN die folgende Videodekodierung unterstützen:

  • [ 5.3 /T-0-1] H.264 AVC
  • [ 5.3 /T-0-2] H.265 HEVC
  • [ 5.3 /T-0-3] MPEG-4 SP
  • [ 5.3 /T-0-4] VP8
  • [ 5.3 /T-0-5] VP9

Implementierungen von Fernsehgeräten werden DRINGEND EMPFOHLEN, um die folgende Videodekodierung zu unterstützen:

  • [ 5.3 /T-SR] MPEG-2

Wenn Implementierungen von Fernsehgeräten H.264-Decoder unterstützen, gilt Folgendes:

  • [ 5.3 .4/T-1-1] MUSS High Profile Level 4.2 und das HD 1080p-Dekodierungsprofil (bei 60 fps) unterstützen.
  • [ 5.3 .4/T-1-2] MUSS in der Lage sein, Videos mit beiden HD-Profilen zu dekodieren, wie in der folgenden Tabelle angegeben, und entweder mit dem Basisprofil, dem Hauptprofil oder dem High Profile Level 4.2 kodiert zu sein

Wenn Fernsehgeräteimplementierungen den H.265-Codec und das HD 1080p-Dekodierungsprofil unterstützen, gilt Folgendes:

  • [ 5.3 .5/T-1-1] MUSS die Hauptebene 4.1 des Hauptprofils unterstützen.
  • [ 5.3 .5/T-SR] Es wird DRINGEND EMPFOHLEN, eine Videobildrate von 60 fps für HD 1080p zu unterstützen.

Wenn Implementierungen von Fernsehgeräten den H.265-Codec und das UHD-Dekodierungsprofil unterstützen, gilt Folgendes:

  • [ 5.3 .5/T-2-1] Der Codec MUSS das Main10 Level 5 Main Tier-Profil unterstützen.

Wenn Implementierungen von Fernsehgeräten den VP8-Codec unterstützen, gilt Folgendes:

  • [ 5.3 .6/T-1-1] MUSS das HD 1080p60-Dekodierungsprofil unterstützen.

Wenn Fernsehgeräteimplementierungen den VP8-Codec und 720p unterstützen, gilt Folgendes:

  • [ 5.3 .6/T-2-1] MUSS das HD 720p60-Dekodierungsprofil unterstützen.

Wenn Implementierungen von Fernsehgeräten den VP9-Codec und die UHD-Videodekodierung unterstützen, gilt Folgendes:

  • [ 5.3 .7/T-1-1] MUSS 8-Bit-Farbtiefe unterstützen und SOLLTE VP9-Profil 2 (10-Bit) unterstützen.

Wenn Implementierungen von Fernsehgeräten den VP9-Codec, das 1080p-Profil und die VP9-Hardware-Dekodierung unterstützen, gilt Folgendes:

  • [ 5.3 .7/T-2-1] MUSS 60 fps für 1080p unterstützen.

Implementierungen von Fernsehgeräten:

  • [ 5.8 /T-SR] Werden DRINGEND EMPFOHLEN, um die gleichzeitige Dekodierung sicherer Streams zu unterstützen. Zumindest die gleichzeitige Dekodierung von zwei Steams wird DRINGEND EMPFOHLEN.

Wenn es sich bei den Geräteimplementierungen um Android-TV-Geräte handelt, die eine 4K-Auflösung unterstützen, gilt Folgendes:

  • [ 5.8 /T-1-1] MUSS HDCP 2.2 für alle kabelgebundenen externen Displays unterstützen.

Wenn Fernsehgeräteimplementierungen die 4K-Auflösung nicht unterstützen, gilt Folgendes:

  • [ 5.8 /T-2-1] MUSS HDCP 1.4 für alle kabelgebundenen externen Displays unterstützen.

Implementierungen von Fernsehgeräten:

  • [ 5.5 .3/T-0-1] MUSS Unterstützung für die System-Master-Lautstärke und die Lautstärkedämpfung des digitalen Audioausgangs an unterstützten Ausgängen beinhalten, mit Ausnahme der komprimierten Audio-Passthrough-Ausgabe (bei der keine Audiodekodierung auf dem Gerät erfolgt).

2.3.3. Software

Implementierungen von Fernsehgeräten:

  • [ 3 /T-0-1] MÜSSEN die Funktionen android.software.leanback und android.hardware.type.television deklarieren.
  • [ 3.4 .1/T-0-1] MUSS eine vollständige Implementierung der android.webkit.Webview API bereitstellen.

Wenn Android-TV-Geräteimplementierungen einen Sperrbildschirm unterstützen, gilt Folgendes:

  • [ 3.8 .10/T-1-1] MÜSSEN die Sperrbildschirm-Benachrichtigungen einschließlich der Medienbenachrichtigungsvorlage anzeigen.

Implementierungen von Fernsehgeräten:

  • [ 3.8 .14/T-SR] Werden DRINGEND EMPFOHLEN, den Bild-in-Bild-Modus (PIP) mit mehreren Fenstern zu unterstützen.
  • [ 3.10 /T-0-1] MUSS Barrierefreiheitsdienste von Drittanbietern unterstützen.
  • [ 3.10 /T-SR] Es wird DRINGEND EMPFOHLEN, Barrierefreiheitsdienste auf dem Gerät vorab zu laden, die mit der Funktionalität von Switch Access und TalkBack (für Sprachen, die von der vorinstallierten Text-to-Speech-Engine unterstützt werden) vergleichbar sind oder diese übertreffen, wie im Talkback Open bereitgestellt Quellprojekt .

Wenn Implementierungen von Fernsehgeräten die Funktion android.hardware.audio.output melden, gilt Folgendes:

  • [ 3.11 /T-SR] Es wird DRINGEND EMPFOHLEN, eine TTS-Engine einzubinden, die die auf dem Gerät verfügbaren Sprachen unterstützt.
  • [ 3.11 /T-1-1] MUSS die Installation von TTS-Engines von Drittanbietern unterstützen.

Implementierungen von Fernsehgeräten:

  • [ 3.12 /T-0-1] MUSS TV Input Framework unterstützen.

2.2.4. Leistung und Kraft

  • [ 8.1 /T-0-1] Konsistente Frame-Latenz . Eine inkonsistente Frame-Latenz oder eine Verzögerung beim Rendern von Frames DARF NICHT häufiger als 5 Frames pro Sekunde auftreten und SOLLTE unter 1 Frame pro Sekunde liegen.
  • [ 8.2 /T-0-1] MUSS eine sequentielle Schreibleistung von mindestens 5 MB/s gewährleisten.
  • [ 8.2 /T-0-2] MUSS eine zufällige Schreibleistung von mindestens 0,5 MB/s gewährleisten.
  • [ 8.2 /T-0-3] MUSS eine sequentielle Leseleistung von mindestens 15 MB/s gewährleisten.
  • [ 8.2 /T-0-4] MUSS eine zufällige Leseleistung von mindestens 3,5 MB/s gewährleisten.

  • [ 8.3 /T-0-1] Alle Apps, die von den Energiesparmodi App Standby und Doze ausgenommen sind, MÜSSEN für den Endbenutzer sichtbar gemacht werden.

  • [ 8.3 /T-0-2] Die Auslösung, Wartung, Weckalgorithmen und die Verwendung globaler Systemeinstellungen der Energiesparmodi App Standby und Doze DÜRFEN nicht vom Android Open Source Project abweichen.

Implementierungen von Fernsehgeräten:

  • [ 8.4 /T-0-1] MUSS ein Leistungsprofil pro Komponente bereitstellen, das den aktuellen Verbrauchswert für jede Hardwarekomponente und den ungefähren Batterieverbrauch definiert, der durch die Komponenten im Laufe der Zeit verursacht wird, wie auf der Website des Android Open Source Project dokumentiert.
  • [ 8.4 /T-0-2] MÜSSEN alle Stromverbrauchswerte in Milliamperestunden (mAh) angeben.
  • [ 8.4 /T-0-3] MUSS den CPU-Stromverbrauch pro UID jedes Prozesses angeben. Das Android Open Source-Projekt erfüllt die Anforderung durch die Implementierung des Kernelmoduls uid_cputime .
  • [ 8.4 /T] SOLLTE der Hardwarekomponente selbst zugeschrieben werden, wenn der Stromverbrauch der Hardwarekomponente nicht einer Anwendung zugeordnet werden kann.
  • [ 8.4 /T-0-4] Dieser Stromverbrauch MUSS dem App-Entwickler über den Shell-Befehl adb shell dumpsys batterystats zur Verfügung gestellt werden.

2.4. Anforderungen ansehen

Ein Android Watch-Gerät bezieht sich auf eine Android-Geräteimplementierung, die dazu gedacht ist, am Körper, möglicherweise am Handgelenk, getragen zu werden.

Android-Geräteimplementierungen werden als Watch klassifiziert, wenn sie alle folgenden Kriterien erfüllen:

  • Verfügen Sie über einen Bildschirm mit einer physikalischen Diagonallänge im Bereich von 1,1 bis 2,5 Zoll.
  • Halten Sie einen Mechanismus bereit, der am Körper getragen werden kann.

Die zusätzlichen Anforderungen im Rest dieses Abschnitts gelten speziell für Android Watch-Geräteimplementierungen.

2.4.1. Hardware

Geräteimplementierungen ansehen:

  • [ 7.1 .1.1/W-0-1] MUSS über einen Bildschirm mit einer physischen Diagonale im Bereich von 1,1 bis 2,5 Zoll verfügen.

  • [ 7.2 .3/W-0-1] MUSS über die Home-Funktion und die Back-Funktion für den Benutzer verfügen, außer wenn sie sich im UI_MODE_TYPE_WATCH befindet.

  • [ 7.2 .4/W-0-1] MUSS die Touchscreen-Eingabe unterstützen.

  • [ 7.3 .1/W-SR] Es wird DRINGEND EMPFOHLEN, einen 3-Achsen-Beschleunigungsmesser einzubinden.

  • [ 7.4 .3/W-0-1] MUSS Bluetooth unterstützen.

  • [ 7.6 .1/W-0-1] MUSS über mindestens 1 GB nichtflüchtigen Speicher für private Anwendungsdaten verfügen (auch bekannt als „/data“-Partition).

  • [ 7.6 .1/W-0-2] MUSS über mindestens 416 MB Speicher für den Kernel und den Benutzerbereich verfügen.

  • [ 7.8 .1/W-0-1] MUSS ein Mikrofon enthalten.

  • [ 7.8 .2/W] KANN über eine Audioausgabe verfügen, SOLLTE aber NICHT.

2.4.2. Multimedia

Keine zusätzlichen Anforderungen.

2.4.3. Software

Geräteimplementierungen ansehen:

  • [ 3 /W-0-1] MUSS die Funktion android.hardware.type.watch deklarieren.
  • [ 3 /W-0-2] MUSS uiMode = UI_MODE_TYPE_WATCH unterstützen.

Geräteimplementierungen ansehen:

  • [ 3.8 .4/W-SR] Es wird DRINGEND EMPFOHLEN, einen Assistenten auf dem Gerät zu implementieren, um die Assist-Aktion durchzuführen.

Sehen Sie sich Geräteimplementierungen an, die das Feature-Flag android.hardware.audio.output deklarieren:

  • [ 3.10 /W-1-1] MUSS Barrierefreiheitsdienste von Drittanbietern unterstützen.
  • [ 3.10 /W-SR] Es wird DRINGEND EMPFOHLEN, Barrierefreiheitsdienste auf dem Gerät vorab zu laden, die mit der Funktionalität der im Talkback Open bereitgestellten Barrierefreiheitsdienste Switch Access und TalkBack (für Sprachen, die von der vorinstallierten Text-to-Speech-Engine unterstützt werden) vergleichbar sind oder diese übertreffen Quellprojekt .

Wenn Watch-Geräteimplementierungen die Funktion android.hardware.audio.output melden, tun sie Folgendes:

  • [ 3.11 /W-SR] Es wird DRINGEND EMPFOHLEN, eine TTS-Engine einzubinden, die die auf dem Gerät verfügbaren Sprachen unterstützt.

  • [ 3.11 /W-0-1] MUSS die Installation von TTS-Engines von Drittanbietern unterstützen.

2.5. Automotive-Anforderungen

Unter Android Automotive-Implementierung versteht man eine Fahrzeug-Headunit, auf der Android als Betriebssystem für einen Teil oder die gesamte System- und/oder Infotainment-Funktionalität läuft.

Android-Geräteimplementierungen werden als Automotive klassifiziert, wenn sie die Funktion android.hardware.type.automotive deklarieren oder alle folgenden Kriterien erfüllen.

  • Sind als Teil eines Kraftfahrzeugs eingebettet oder an dieses ansteckbar.
  • Verwenden Sie einen Bildschirm in der Fahrersitzreihe als primäre Anzeige.

Die zusätzlichen Anforderungen im Rest dieses Abschnitts gelten speziell für Android Automotive-Geräteimplementierungen.

2.5.1. Hardware

Implementierungen von Automobilgeräten:

  • [ 7.1 .1.1/A-0-1] MUSS über einen Bildschirm mit einer physischen Diagonale von mindestens 6 Zoll verfügen.
  • [ 7.1 .1.1/A-0-2] MUSS eine Bildschirmgröße von mindestens 750 dp x 480 dp haben.

  • [ 7.2 .3/A-0-1] MUSS die Home-Funktion bereitstellen und KANN die Funktionen „Zurück“ und „Zuletzt verwendet“ bereitstellen.

  • [ 7.2 .3/A-0-2] MUSS sowohl das normale als auch das lange Drücken-Ereignis der Back-Funktion ( KEYCODE_BACK ) an die Vordergrundanwendung senden.

  • [ 7.3 .1/A-SR] Es wird DRINGEND EMPFOHLEN, einen 3-Achsen-Beschleunigungsmesser einzubinden.

Wenn Automotive-Geräteimplementierungen einen 3-Achsen-Beschleunigungsmesser umfassen, gilt Folgendes:

  • [ 7.3 .1/A-1-1] MUSS in der Lage sein, Ereignisse bis zu einer Frequenz von mindestens 100 Hz zu melden.
  • [ 7.3 .1/A-1-2] MUSS dem Android- Autosensor-Koordinatensystem entsprechen.

Wenn Automotive-Geräteimplementierungen einen GPS/GNSS-Empfänger enthalten und die Funktion über das Feature-Flag android.hardware.location.gps an Anwendungen melden:

  • [ 7.3 .3/A-1-1] Die Generation der GNSS-Technologie MUSS das Jahr „2017“ oder neuer sein.

Wenn Automotive-Geräteimplementierungen ein Gyroskop umfassen, gilt Folgendes:

  • [ 7.3 .4/A-1-1] MUSS in der Lage sein, Ereignisse bis zu einer Frequenz von mindestens 100 Hz zu melden.

Implementierungen von Automobilgeräten:

  • [ 7.3 .11/A] SOLLTE den aktuellen Gang als SENSOR_TYPE_GEAR bereitstellen.

Implementierungen von Automobilgeräten:

  • [ 7.3 .11.2/A-0-1] MUSS den Tag-/Nachtmodus unterstützen, der als SENSOR_TYPE_NIGHT definiert ist.
  • [ 7.3 .11.2/A-0-2] Der Wert des SENSOR_TYPE_NIGHT Flags MUSS mit dem Tag-/Nachtmodus des Armaturenbretts übereinstimmen und SOLLTE auf der Eingabe des Umgebungslichtsensors basieren.
  • Der zugrunde liegende Umgebungslichtsensor könnte derselbe sein wie das Photometer .

  • [ 7.3 .11.3/A-0-1] MUSS den Fahrstatus unterstützen, der als SENSOR_TYPE_DRIVING_STATUS definiert ist, mit dem Standardwert DRIVE_STATUS_UNRESTRICTED , wenn das Fahrzeug vollständig angehalten und geparkt ist. Es liegt in der Verantwortung der Gerätehersteller, SENSOR_TYPE_DRIVING_STATUS in Übereinstimmung mit allen Gesetzen und Vorschriften zu konfigurieren, die für Märkte gelten, in denen das Produkt versendet wird.

  • [ 7.3 .11.4/A-0-1] MUSS die Fahrzeuggeschwindigkeit liefern, die als SENSOR_TYPE_CAR_SPEED definiert ist.

  • [ 7.4 .3/A-0-1] MUSS Bluetooth unterstützen und SOLLTE Bluetooth LE unterstützen.

  • [ 7.4 .3/A-0-2] Android Automotive-Implementierungen MÜSSEN die folgenden Bluetooth-Profile unterstützen:
    • Telefonieren über Hands-Free Profile (HFP).
    • Medienwiedergabe über Audio Distribution Profile (A2DP).
    • Steuerung der Medienwiedergabe über Remote Control Profile (AVRCP).
    • Kontaktfreigabe mithilfe des Phone Book Access Profile (PBAP).
  • [ 7.4 .3/A] SOLLTE Message Access Profile (MAP) unterstützen.

  • [ 7.4 .5/A] SOLLTE Unterstützung für zellulare Netzwerk-basierte Datenkonnektivität beinhalten.

  • [ 7.6 .1/A-0-1] MÜSSEN über mindestens 4 GB nichtflüchtigen Speicher für private Anwendungsdaten verfügen (auch bekannt als „/data“-Partition).

Wenn Automotive-Geräteimplementierungen 32-Bit sind:

  • [ 7.6 .1/A-1-1] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 512 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 280 dpi oder weniger auf kleinen/normalen Bildschirmen
    • ldpi oder niedriger auf besonders großen Bildschirmen
    • mdpi oder niedriger auf großen Bildschirmen
  • [ 7.6 .1/A-1-2] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 608 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • xhdpi oder höher auf kleinen/normalen Bildschirmen
    • hdpi oder höher auf großen Bildschirmen
    • mdpi oder höher auf besonders großen Bildschirmen
  • [ 7.6 .1/A-1-3] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 896 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 400 dpi oder höher auf kleinen/normalen Bildschirmen
    • xhdpi oder höher auf großen Bildschirmen
    • tvdpi oder höher auf besonders großen Bildschirmen
  • [ 7.6 .1/A-1-4] Der für den Kernel und den Benutzerbereich verfügbare Speicher MUSS mindestens 1344 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 560 dpi oder höher auf kleinen/normalen Bildschirmen
    • 400 dpi oder höher auf großen Bildschirmen
    • xhdpi oder höher auf besonders großen Bildschirmen

Wenn Automotive-Geräteimplementierungen 64-Bit sind:

  • [ 7.6 .1/a-2-1] Der Speicher, der dem Kernel und dem Benutzerspace zur Verfügung steht, muss mindestens 816 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 280dpi oder niedriger auf kleinen/normalen Bildschirmen
    • LDPI oder niedriger auf extra großen Bildschirmen
    • MDPI oder niedriger auf großen Bildschirmen
  • [ 7.6 .1/a-2-2] Der Speicher, der dem Kernel und dem Benutzerspace zur Verfügung steht, muss mindestens 944 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • XHDPI oder höher auf kleinen/normalen Bildschirmen
    • HDPI oder höher auf großen Bildschirmen
    • MDPI oder höher auf extra großen Bildschirmen
  • [ 7.6 .1/A-2-3] Der Speicher, der dem Kernel und dem Benutzerspace zur Verfügung steht, muss mindestens 1280 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 400DPI oder höher auf kleinen/normalen Bildschirmen
    • XHDPI oder höher auf großen Bildschirmen
    • TVDPI oder höher auf extra großen Bildschirmen
  • [ 7.6 .1/A-2-4] Der Speicher, der dem Kernel und dem Benutzerspace zur Verfügung steht, muss mindestens 1824 MB betragen, wenn eine der folgenden Dichten verwendet wird:

    • 560DPI oder höher auf kleinen/normalen Bildschirmen
    • 400DPI oder höher auf großen Bildschirmen
    • XHDPI oder höher auf extra großen Bildschirmen

Beachten Sie, dass sich der "Speicher, der dem Kernel und dem UserSpace verfügbar ist" oben zur Verfügung steht, auf den Speicherplatz, der zusätzlich zu jedem Speicher, der bereits Hardwarekomponenten wie Radio, Video usw. gewidmet ist, bereitgestellt wird, und so nicht unter der Steuerung des Kernels auf Geräteimplementierungen.

Implementierungen des Automobilgeräts:

  • [ 7.7 .1/a] sollte einen USB -Anschluss enthalten, der den peripheren Modus unterstützt.

Implementierungen des Automobilgeräts:

  • [ 7.8 .1/A-0-1] muss ein Mikrofon enthalten.

Implementierungen des Automobilgeräts:

  • [ 7.8 .2/A-0-1] muss über eine Audioausgabe verfügen und android.hardware.audio.output deklarieren.

2.5.2. Multimedia

Implementierungen des Automobilgeräts müssen die folgende Audio -Codierung unterstützen:

  • [ 5.1 /A-0-1] MPEG-4 AAC-Profil (AAC LC)
  • [ 5.1 /A-0-2] MPEG-4 HE AAC-Profil (AAC+)
  • [ 5.1 /A-0-3] AAC-ELD (verstärkte AAC-Verzögerung mit niedriger Verzögerung)

Implementierungen für Automobilgeräte müssen die folgende Videocodierung unterstützen:

  • [ 5.2 /a-0-1] H.264 AVC
  • [ 5.2 /A-0-2] VP8

Implementierungen des Automobilgeräts müssen die folgende Video -Dekodierung unterstützen:

  • [ 5.3 /a-0-1] H.264 AVC
  • [ 5.3 /A-0-2] MPEG-4 SP
  • [ 5.3 /A-0-3] VP8
  • [ 5.3 /A-0-4] VP9

Implementierungen für Automobilgeräte werden dringend empfohlen, um die folgende Video -Dekodierung zu unterstützen:

  • [ 5.3 /a-sr] H.265 HEVC

2.5.3. Software

Implementierungen des Automobilgeräts:

  • [ 3 /a-0-1] Muss die Funktion android.hardware.type.automotive deklarieren.
  • [ 3 /a-0-2] muss uimode = ui_mode_type_car unterstützen.
  • [ 3 /A-0-3] Android Automotive-Implementierungen müssen alle öffentlichen APIs in android.car.* Namespace.

  • [ 3.4 .1/a-0-1] muss eine vollständige Implementierung der API von android.webkit.Webview bereitstellen.

  • [ 3.8 .3/a-0-1] MÜSSEN Benachrichtigungen anzeigen, die die API von Notification.CarExtender verwenden.

  • [ 3.8 .4/a-0-1] muss einen Assistenten auf dem Gerät implementieren, um die Assist-Aktion zu verarbeiten.

  • [ 3.14 /a-0-1] muss ein UI-Framework enthalten, um Apps von Drittanbietern zu unterstützen, die die Medien-APIs wie in Abschnitt 3.14 beschrieben beschrieben haben.

2.2.4. Leistung und Kraft

Implementierungen des Automobilgeräts:

  • [ 8.3 /a-0-1] Alle Apps, die von den App-Standby- und Doze-Power-Sparmodi ausgenommen sind, müssen für den Endbenutzer sichtbar gemacht werden.
  • [ 8.3 /A-0-2] Die Auslöser-, Wartungs-, Weckalgorithmen und die Verwendung globaler Systemeinstellungen von App-Standby- und Doze-Power-Sparmodi dürfen nicht vom Android Open Source-Projekt abweichen.

  • [ 8.4 /A-0-1] muss ein pro-Komponenten-Leistungsprofil bereitstellen, das den aktuellen Verbrauchswert für jede Hardwarekomponente und den ungefähren Batterie-Abfluss definiert, der durch die Komponenten im Laufe der Zeit verursacht wird, wie auf dem Android Open Source-Projektort dokumentiert.

  • [ 8.4 /A-0-2] MÜSSEN alle Stromverbrauchswerte in Milliampere Stunden (MAH) melden.
  • [ 8.4 /A-0-3] Muss den CPU-Stromverbrauch pro UID jedes Prozesses melden. Das Android Open Source -Projekt erfüllt die Anforderung über die Implementierung von uid_cputime Kernel -Modul.
  • [ 8.4 /a] sollte der Hardwarekomponente selbst zugeordnet werden, wenn es einer Anwendung die Nutzung von Hardwarekomponenten nicht zuordnen kann.
  • [ 8.4 /A-0-4] muss diese Stromverbrauch über den adb shell dumpsys batterystats Shell-Befehl dem App-Entwickler verfügbar machen.

2.2.5. Sicherheitsmodell

Wenn Automobilgeräteimplementierungen mehrere Benutzer enthalten, sind sie:

  • [ 9.5 /a-1-1] muss ein Gastkonto enthalten, mit dem alle vom Fahrzeugsystem bereitgestellten Funktionen ohne Anmeldung ein Benutzer erforderlich sind.

Implementierungen des Automobilgeräts:

  • [ 9.14 /A-0-1] Muss Meldungen von Android Framework Vehicle-Subsystemen, z. B. Zulassungsliste zulässigen Nachrichtentypen und Nachrichtenquellen.
  • [ 9.14 /A-0-2] Muss gegen die Ablehnung von Dienstangaben aus den Apps von Android Framework oder Drittanbietern Watchdog. Diese schützt gegen böswillige Software, die das Fahrzeugnetzwerk mit Verkehr überflutet, was zu fehlerhaften Fahrzeugsubsystemen führen kann.

2.6. Tablet -Anforderungen

Ein Android-Tablet-Gerät bezieht sich auf eine Android-Geräteimplementierung, die normalerweise durch Halten in beiden Händen und nicht in einem Clamshell-Formfaktor verwendet wird.

Die Implementierungen von Android -Geräten werden als Tablet eingestuft, wenn sie alle folgenden Kriterien erfüllen:

  • Haben Sie eine Stromquelle, die Mobilität wie eine Batterie bietet.
  • Eine physikalische diagonale Bildschirmgröße im Bereich von 7 bis 18 Zoll haben.

Tablet -Geräteimplementierungen haben ähnliche Anforderungen an Handheld -Geräteimplementierungen. Die Ausnahmen sind in diesem Abschnitt und in diesem Abschnitt angegeben und als Referenz in diesem Abschnitt festgestellt.

2.4.1. Hardware

Bildschirmgröße

  • [ 7.1 .1.1/tab-0-1] muss einen Bildschirm im Bereich von 7 bis 18 Zoll haben.

Mindestspeicher und Speicher (Abschnitt 7.6.1)

Die Bildschirmdichten, die für kleine/normale Bildschirme in den Handheldanforderungen aufgeführt sind, gelten nicht für Tablets.

USB -Peripherie -Modus (Abschnitt 7.7.1)

Wenn die Implementierungen von Tablet -Geräten einen USB -Anschluss enthalten, der den Peripheriemodus unterstützt, ist dies:

  • [ 7.7.1 /tab] kann die API von Android Open Accessoire (AOA) implementieren.

Virtual Reality -Modus (Abschnitt 7.9.1)

Hochleistungsvirtuelle Realität (Abschnitt 7.9.2)

Virtuelle Realitätsanforderungen gelten nicht für Tablets.

3. Software

3.1. Verwaltete API-Kompatibilität

Die verwaltete Dalvik -Bytecode -Ausführungsumgebung ist das primäre Fahrzeug für Android -Anwendungen. Die Android Application Programming Interface (API) ist der Satz von Android -Plattform -Schnittstellen, die Anwendungen ausgesetzt sind, die in der verwalteten Laufzeitumgebung ausgeführt werden.

  • [C-0-1] Geräteimplementierungen müssen vollständige Implementierungen, einschließlich aller dokumentierten Verhaltensweisen, der dokumentierten API bereitstellen, die vom Android SDK oder einer API, die mit dem Marker „@SystemAPI“ im vorgelagerten Android-Quellcode dekoriert ist, entlarvt wird.

  • [C-0-2] Geräteimplementierungen müssen alle Klassen, Methoden und zugeordneten Elemente unterstützen/bewahren, die durch die TestAPI-Annotation (@Testapi) gekennzeichnet sind.

  • [C-0-3] Geräteimplementierungen dürfen keine verwalteten APIs, API-Schnittstellen oder Signaturen verändern, vom dokumentierten Verhalten abweichen oder keine OPs einschließen, außer wenn diese Kompatibilitätsdefinition ausdrücklich zulässig ist.

  • [C-0-4] Geräteimplementierungen müssen die APIs weiterhin angeben und sich auf vernünftige Weise verhalten, auch wenn einige Hardwarefunktionen, für die Android APIs enthält, weggelassen werden. In Abschnitt 7 finden Sie spezifische Anforderungen für dieses Szenario.

3.1.1. Android -Erweiterungen

Android beinhaltet die Unterstützung der Erweiterung der verwalteten APIs und beibehalten der gleichen API -Level -Version.

  • [C-0-1] Implementierungen von Android-Geräten müssen die AOSP-Implementierung sowohl der ExtShared Bibliothek als auch der Dienste ExtServices mit Versionen höher als oder gleich den minimalen Versionen pro API-Ebene vorladen. Beispielsweise müssen Android 7.0 -Geräteimplementierungen, die die API -Ebene 24 ausführen, mindestens Version 1 enthalten.

3.2. Soft-API-Kompatibilität

Zusätzlich zu den verwalteten APIs aus Abschnitt 3.1 enthält Android auch eine signifikante „Soft“ -API nur für Laufzeit, in Form von Dingen wie Absichten, Berechtigungen und ähnlichen Aspekten von Android-Anwendungen, die zur Anwendungskompilierung nicht durchgesetzt werden können.

3.2.1. Berechtigungen

  • [C-0-1] Geräteimplementierer müssen alle Berechtigungskonstanten unterstützen und durchsetzen, wie sie auf der Aufbereitungsreferenzseite dokumentiert sind. Beachten Sie, dass in Abschnitt 9 zusätzliche Anforderungen im Zusammenhang mit dem Android -Sicherheitsmodell aufgeführt sind.

3.2.2. Build-Parameter

Die Android -APIs enthalten eine Reihe von Konstanten in der Android.OS.Build -Klasse , die das aktuelle Gerät beschreiben sollen.

  • [C-0-1] Um konsistente, aussagekräftige Werte über Geräteimplementierungen hinweg bereitzustellen, enthält die folgende Tabelle zusätzliche Einschränkungen für die Formate dieser Werte, denen die Geräteimplementierungen entsprechen müssen.
Parameter Einzelheiten
Version.Release Die Version des aktuell ausgeführten Android-Systems im für Menschen lesbaren Format. Dieses Feld muss einen der in 8.0 definierten Stringwerte haben.
Version.sdk Die Version des aktuell ausgeführten Android-Systems in einem Format, auf das Anwendungscode von Drittanbietern zugreifen kann. Für Android 8.0 muss dieses Feld den Ganzzahlwert 8.0_int haben.
Version.sdk_int Die Version des aktuell ausgeführten Android-Systems in einem Format, auf das Anwendungscode von Drittanbietern zugreifen kann. Für Android 8.0 muss dieses Feld den Ganzzahlwert 8.0_int haben.
Version.incremental Ein vom Geräteimplementierer ausgewählter Wert, der den spezifischen Build des aktuell ausgeführten Android-Systems in einem für Menschen lesbaren Format angibt. Dieser Wert darf nicht für verschiedene Builds wiederverwendet werden, die den Endbenutzern zur Verfügung gestellt werden. Eine typische Verwendung dieses Felds besteht darin, anzugeben, welche Build-Nummer oder welche Quellcodeverwaltungs-Änderungskennung zum Generieren des Builds verwendet wurde. Es gibt keine Anforderungen an das spezifische Format dieses Feldes, außer dass es NICHT NULL oder eine leere Zeichenfolge („“) sein darf.
PLANKE Ein vom Geräteimplementierer ausgewählter Wert, der die spezifische interne Hardware identifiziert, die vom Gerät verwendet wird, in einem für Menschen lesbaren Format. Eine mögliche Verwendung dieses Feldes besteht darin, die spezifische Revision der Platine anzugeben, die das Gerät mit Strom versorgt. Der Wert dieses Feldes muss als 7-Bit-ASCII codierbar sein und dem regulären Ausdruck "^[a-za-z0-9 _-]+$" übereinstimmen.
MARKE Ein Wert, der den Markennamen widerspiegelt, der dem Gerät zugeordnet ist, wie es den Endbenutzern bekannt ist. Muss im menschlich lesbaren Format sein und sollte den Hersteller des Geräts oder der Marke Unternehmen darstellen, unter der das Gerät vermarktet wird. Der Wert dieses Feldes muss als 7-Bit-ASCII codierbar sein und dem regulären Ausdruck "^[a-za-z0-9 _-]+$" übereinstimmen.
Unterstützt_abis Der Name des Befehlssatzes (CPU -Typ + ABI -Konvention) des nativen Code. Siehe Abschnitt 3.3. Native API -Kompatibilität .
Unterstützung_32_bit_abis Der Name des Befehlssatzes (CPU -Typ + ABI -Konvention) des nativen Code. Siehe Abschnitt 3.3. Native API -Kompatibilität .
Unterstützung_64_bit_abis Der Name des zweiten Anweisungssatzes (CPU -Typ + ABI -Konvention) des nativen Code. Siehe Abschnitt 3.3. Native API -Kompatibilität .
Cpu_abi Der Name des Befehlssatzes (CPU -Typ + ABI -Konvention) des nativen Code. Siehe Abschnitt 3.3. Native API -Kompatibilität .
Cpu_abi2 Der Name des zweiten Anweisungssatzes (CPU -Typ + ABI -Konvention) des nativen Code. Siehe Abschnitt 3.3. Native API -Kompatibilität .
GERÄT Ein von dem Geräteimplementierer gewählter Wert, der den Entwicklungsnamen oder den Codenamen enthält, der die Konfiguration der Hardwarefunktionen und des industriellen Designs des Geräts identifiziert. Der Wert dieses Feldes muss als 7-Bit-ASCII codierbar sein und dem regulären Ausdruck "^[a-za-z0-9 _-]+$" übereinstimmen. Dieser Gerätename darf sich während der Lebensdauer des Produkts nicht ändern.
FINGERABDRUCK Eine Zeichenfolge, die diesen Build eindeutig identifiziert. Es SOLLTE für Menschen einigermaßen lesbar sein. Es MUSS dieser Vorlage folgen:

$ (Brand)/$ (Produkt)//
$ (Gerät): $ (Version.Release)/$ (ID)/$ (Version.incremental): $ (Typ)/$ (Tags)

Zum Beispiel:

Acme/MyProduct/
mydevice: 8.0/lmyxx/3359: userDebug/test-keys

Der Fingerabdruck DARF KEINE Leerzeichen enthalten. Wenn andere in der obigen Vorlage enthaltene Felder Leerzeichen enthalten, MÜSSEN diese im Build-Fingerabdruck durch ein anderes Zeichen ersetzt werden, beispielsweise durch den Unterstrich („_“). Der Wert dieses Feldes muss als 7-Bit-ASCII codierbar sein.

HARDWARE Der Name der Hardware (aus der Kernel -Befehlszeile oder /Proc). Es SOLLTE für Menschen einigermaßen lesbar sein. Der Wert dieses Feldes muss als 7-Bit-ASCII codierbar sein und dem regulären Ausdruck "^[a-za-z0-9 _-]+$" übereinstimmen.
GASTGEBER Eine Saite, die den Host, auf dem der Build eindeutig identifiziert wurde, in einem menschlich-lesbaren Format aufgebaut wurde. Es gibt keine Anforderungen an das spezifische Format dieses Feldes, außer dass es NICHT NULL oder eine leere Zeichenfolge („“) sein darf.
AUSWEIS Eine vom Geräteimplementierer ausgewählte Kennung, um auf eine bestimmte Version im menschlich lesbaren Format zu verweisen. Dieses Feld kann mit android.os.Build.VERSION.INCREMENTAL identisch sein, SOLLTE jedoch ein ausreichend aussagekräftiger Wert sein, damit Endbenutzer zwischen Software-Builds unterscheiden können. Der Wert dieses Feldes muss als 7-Bit-ASCII codierbar sein und mit dem regulären Ausdruck "^[a-za-z0-9 ._-]+$" übereinstimmen.
HERSTELLER Der Handelsname des ursprünglichen Ausrüstungsherstellers (OEM) des Produkts. Es gibt keine Anforderungen an das spezifische Format dieses Feldes, außer dass es NICHT NULL oder eine leere Zeichenfolge („“) sein darf. Dieses Feld darf sich während der Lebensdauer des Produkts nicht ändern.
MODELL Ein vom Geräteimplementierer ausgewählter Wert, der den Namen des Geräts enthält, wie er dem Endbenutzer bekannt ist. Dies SOLLTE derselbe Name sein, unter dem das Gerät vermarktet und an Endbenutzer verkauft wird. Es gibt keine Anforderungen an das spezifische Format dieses Feldes, außer dass es NICHT NULL oder eine leere Zeichenfolge („“) sein darf. Dieses Feld darf sich während der Lebensdauer des Produkts nicht ändern.
PRODUKT Ein von dem Geräteimplementierer gewählter Wert, der den Entwicklungsnamen oder den Codenamen des spezifischen Produkts (SKU) enthält, der innerhalb derselben Marke eindeutig sein muss. MUSS für Menschen lesbar sein, ist aber nicht unbedingt für die Anzeige durch Endbenutzer gedacht. Der Wert dieses Feldes muss als 7-Bit-ASCII codierbar sein und dem regulären Ausdruck "^[a-za-z0-9 _-]+$" übereinstimmen. Dieser Produktname darf sich während der Lebensdauer des Produkts nicht ändern.
Serie Eine Hardware -Seriennummer, die über Geräte mit demselben Modell und Hersteller hinweg verfügbar und einzigartig sein muss. Der Wert dieses Feldes muss als 7-Bit-ASCII codierbar sein und mit dem regulären Ausdruck "^([a-za-z0-9] {6,20}) $" übereinstimmen.
STICHWORTE Eine von dem von dem Geräte-Implementierer ausgewählte Liste von Tags, die den Build weiter unterscheidet. Dieses Feld muss einen der Werte haben, die den drei typischen Konfigurationen für Android-Plattform-Signierstoffe entsprechen: Release-Keys, Dev-Keys, Test-Keys.
ZEIT Ein Wert, der den Zeitstempel des Buildvorgangs darstellt.
TYP Ein vom Geräteimplementierer ausgewählter Wert, der die Laufzeitkonfiguration des Builds angibt. Dieses Feld muss einen der Werte haben, die den drei typischen Android -Laufzeitkonfigurationen entsprechen: Benutzer, UserDebug oder ENG.
BENUTZER Ein Name oder eine Benutzer-ID des Benutzers (oder automatisierten Benutzers), der den Build generiert hat. Es gibt keine Anforderungen an das spezifische Format dieses Feldes, außer dass es NICHT NULL oder eine leere Zeichenfolge („“) sein darf.
Security_Patch Ein Wert, der die Sicherheitspatch -Ebene eines Builds angibt. Es muss bedeuten, dass der Build in keiner Weise für eines der Probleme des benannten Bulletin für öffentliche Sicherheit von Android Public Security anfällig ist. Es muss im Format [yyyy-mm-dd] sein und eine definierte Zeichenfolge übereinstimmen, die im Android Public Security Bulletin oder in der Android Security Advisory dokumentiert ist, z. B. "2015-11-01".
Basis_os Ein Wert, der den Fingerabdruckparameter des Builds darstellt, der ansonsten mit diesem Build identisch ist, mit Ausnahme der Patches im Android Public Security Bulletin. Es muss den richtigen Wert melden und wenn ein solcher Build nicht vorhanden ist, melden Sie eine leere Zeichenfolge ("").
Bootloader Ein von dem Geräte-Implementierer gewählter Wert, der die im Gerät verwendete spezifische interne Bootloaderversion im humanletbaren Format identifiziert. Der Wert dieses Feldes muss als 7-Bit-ASCII codierbar sein und mit dem regulären Ausdruck "^[a-za-z0-9 ._-]+$" übereinstimmen.
GetRadioversion () Muss (sein oder zurückgeben) ein von dem Geräte-Implementierer gewählter Wert, der die im Gerät verwendete spezifische interne Funk-/Modemversion im humanlesenen Format identifiziert. Wenn ein Gerät kein internes Radio/Modem hat, muss es NULL zurückgeben. Der Wert dieses Feldes muss als 7-Bit-ASCII codierbar sein und mit dem regulären Ausdruck "^[a-za-z0-9 ._-,]+$" übereinstimmen.

3.2.3. Absichtskompatibilität

3.2.3.1. Kernanwendungsabsichten

Mit Android -Absichten können Anwendungskomponenten Funktionen von anderen Android -Komponenten anfordern. Das Android -Upstream -Projekt enthält eine Liste von Anwendungen, die als Kern -Android -Anwendungen bezeichnet werden, was mehrere Absichtsmuster implementiert, um gemeinsame Aktionen auszuführen.

  • [C-0-1] Die Geräteimplementierungen müssen diese Anwendungen, Servicekomponenten oder zumindest einen Handler für alle Filtermuster der öffentlichen Absichten enthalten, die durch die folgenden Kernanwendungen in AOSP definiert sind:

    • Tischuhr
    • Browser
    • Kalender
    • Kontakte
    • Galerie
    • GlobalSearch
    • Startprogramm
    • Musik
    • Einstellungen
3.2.3.2. Absichtserklärung
  • [C-0-1] Da Android eine erweiterbare Plattform ist, müssen Geräteimplementierungen jedes Absichtsmuster ermöglichen, auf das in Abschnitt 3.2.3.3 verwiesen wird. Die vorgelagerte Android Open Source -Implementierung ermöglicht dies standardmäßig.
  • [C-0-2] DVICE-Implementierer dürfen keine speziellen Berechtigungen an die Verwendung dieser Absichtsmuster durch die Systemanwendungen anschließen oder an Anwendungen von Drittanbietern an die Bindung und Annahme der Kontrolle dieser Muster verhindern. Dieses Verbot umfasst, aber nicht darauf beschränkt, die Benutzeroberfläche „Chooser“ zu deaktivieren, die es dem Benutzer ermöglicht, zwischen mehreren Anwendungen auszuwählen, die alle das gleiche Absichtsmuster verarbeiten.

  • [C-0-3] Geräteimplementierungen müssen eine Benutzeroberfläche bereitstellen, damit Benutzer die Standardaktivität für Absichten ändern können.

  • Geräteimplementierungen können jedoch Standardaktivitäten für bestimmte URI -Muster (z. B. http://play.google.com) liefern, wenn die Standardaktivität ein spezifischeres Attribut für das Data URI bietet. Beispielsweise ist ein Absichtsfiltermuster, das die Daten URI „http://www.android.com“ angibt, genauer als das Kernabsichtsmuster des Browsers für „http: //“.

Android enthält auch einen Mechanismus für Apps von Drittanbietern, um eine maßgebliche Standard -App-Verknüpfungsverhalten für bestimmte Arten von Web-URI-Absichten zu deklarieren. Wenn solche maßgeblichen Erklärungen in den Absichtsfiltermustern einer App definiert sind, sind Geräteimplementierungen:

  • [C-0-4] muss versuchen, alle Absichtsfilter zu validieren, indem die in der Spezifikation Digital Asset Links festgelegten Validierungsschritte implementiert werden, die vom Paketmanager im vorgelagerten Android Open Source-Projekt implementiert wurden.
  • [C-0-5] muss versuchen, die Absichtsfilter während der Installation der Anwendung zu validieren und alle erfolgreich validierten URI-Absichtsfilter als Standard-App-Handler für ihre URIs festzulegen.
  • Kann bestimmte URI -Absichten als Standard -App -Handler für ihre URIs festlegen, wenn sie erfolgreich überprüft werden, andere Kandidaten -URI -Filter nicht überprüft werden. Wenn eine Geräteimplementierung dies tut, muss sie dem benutzer geeigneten Pro-URI-Muster-Überschreibungen im Menü Einstellungen bereitstellen.
  • Muss dem Benutzer wie folgt die Steuerelemente pro-App-App-Links in den Einstellungen zur Verfügung stellen:
    • [C-0-6] Der Benutzer muss in der Lage sein, das Verhalten von Standard-Apps, das eine App links ist, ganzheitlich überschreiben können: Immer öffnen, immer fragen oder niemals geöffnet werden, die für alle Kandidaten-URI-Absichten gleichen zutreffen müssen.
    • [C-0-7] Der Benutzer muss in der Lage sein, eine Liste der Kandidaten-URI-Intent-Filter anzusehen.
    • Die Geräteimplementierung kann dem Benutzer die Möglichkeit bieten, bestimmte URI-Absichtsfilter, die erfolgreich überprüft wurden, auf einer filterbasis pro-Inentent-Filter zu überschreiben.
    • [C-0-8] Die Geräteimplementierung muss den Benutzern die Möglichkeit bieten, bestimmte URI-Absichtsfilter anzusehen und zu überschreiben, wenn die Geräteimplementierung einige Kandidaten-URI-Absichtsfilter erfolgreich ermöglichen, während einige andere versagen können.
3.2.3.3. Absichts-Namespaces
  • [C-0-1] Geräteimplementierungen dürfen keine Android-Komponente enthalten, die neue Absichten oder Sendungsabsichten mithilfe einer Aktion, Kategorie oder einer anderen Schlüsselzeichenfolge in der Android ausgezeichnet. oder com.android. Namespace.
  • [C-0-2] Geräteimplementierer dürfen keine Android-Komponenten enthalten, die neue Absichten oder Sendungsabsichten unter Verwendung einer Aktion, einer Kategorie oder einer anderen Schlüsselzeichenfolge in einem Paketraum, das zu einer anderen Organisation gehören, ehren.
  • [C-0-3] Geräteimplementierer dürfen keine der Absichtsmuster ändern oder erweitern, die von den in Abschnitt 3.2.3.1 aufgeführten Kern-Apps verwendet werden.
  • Geräteimplementierungen können Absichtsmuster unter Verwendung von Namespaces klar und offensichtlich mit ihrer eigenen Organisation unter Verwendung von Namenspaces enthalten. Dieses Verbot ist analog zu dem für Java -Sprachklassen in Abschnitt 3.6 angegeben.
3.2.3.4. Sendeabsichten

Anwendungen von Drittanbietern verlassen sich auf die Plattform, um bestimmte Absichten zu übertragen, um sie über Änderungen in der Hardware- oder Softwareumgebung zu informieren.

Geräteimplementierungen:

  • [C-0-1] muss die öffentlichen Broadcast-Absichten als Reaktion auf geeignete Systemereignisse übertragen, wie in der SDK-Dokumentation beschrieben. Beachten Sie, dass diese Anforderung nicht mit Abschnitt 3.5 widerspricht, da die Einschränkung für Hintergrundanwendungen auch in der SDK -Dokumentation beschrieben wird.
3.2.3.5. Standard -App -Einstellungen

Android enthält Einstellungen, die den Benutzern eine einfache Möglichkeit bieten, ihre Standardanwendungen auszuwählen, beispielsweise für Startbildschirm oder SMS.

Wenn es sinnvoll ist, müssen Geräteimplementierungen ein ähnliches Einstellungsmenü bereitstellen und mit dem Absichtsfiltermuster und den in der SDK -Dokumentation wie unten beschriebenen API -Methoden kompatibel sein.

Wenn Geräteimplementierungen android.software.home_screen melden, dann:

Wenn Geräteimplementierungen android.hardware.telephony melden, sind sie:

Wenn Geräteimplementierungen android.hardware.nfc.hce melden, sind sie:

Wenn Geräteimplementierungen android.hardware.telephony melden, sind sie:

Wenn Geräteimplementierungen den VoiceInteractionService unterstützen, sind sie:

3.2.4. Aktivitäten auf sekundären Displays

Wenn Geräteimplementierungen das Starten normaler Android -Aktivitäten auf sekundären Anzeigen ermöglichen, dann:

  • [C-1-1] muss das Feature-Flag android.software.activities_on_secondary_displays festlegen.
  • [C-1-2] muss eine API-Kompatibilität garantieren, die einer Aktivität ähnelt, die auf der Primäranzeige ausgeführt wird.
  • [C-1-3] muss die neue Aktivität auf derselben Anzeige wie die Aktivität landen, die sie gestartet hat, wenn die neue Aktivität ohne Angabe einer Zielanzeige über die ActivityOptions.setLaunchDisplayId() eingeführt wird.
  • [C-1-4] muss alle Aktivitäten zerstören, wenn eine Anzeige mit der Display.FLAG_PRIVATE Flag entfernt wird.
  • [C-1-5] muss die Größe entsprechend alle Aktivitäten in einem VirtualDisplay ändern, wenn die Anzeige selbst geändert wird.
  • Kann einen IME (Eingabethodeneditor, eine Benutzersteuerung ermöglicht, mit der Benutzer Text eingeben können) in der primären Anzeige, wenn sich ein Texteingangsfeld auf eine sekundäre Anzeige konzentriert.
  • Sollte die Eingabefokus auf die sekundäre Anzeige unabhängig von der Primäranzeige implementieren, wenn Berührungen oder Schlüsseleingänge unterstützt werden.
  • Sollte android.content.res.Configuration haben, was dieser Anzeige entspricht, um angezeigt, korrekt zu arbeiten und die Kompatibilität beizubehalten, wenn eine Aktivität auf der sekundären Anzeige gestartet wird.

Wenn Geräteimplementierungen das Starten normaler Android -Aktivitäten auf sekundären Displays sowie primäre und sekundäre Anzeigen auf unterschiedliche Android.util.DisplayMetrics ermöglichen:

  • [C-2-1] Nicht-Resesizezibilitätsaktivitäten (bei der resizeableActivity=false in AndroidManifest.xml ) und Apps auf API-Stufe 23 oder niedriger auf sekundären Anzeigen nicht zulässig sind.

Wenn Geräteimplementierungen das Starten normaler Android -Aktivitäten auf sekundären Anzeigen ermöglichen, und ein sekundäres Display enthält das Flag von Android.view.display.flag_private :

  • [C-3-1] Nur der Eigentümer dieses Displays, dieses Systems und der bereits in dieser Anzeige enthaltenen Aktivitäten müssen in der Lage sein, darauf zu starten. Jeder kann auf ein Display starten, das Android.view.display.flag_public Flag hat.

3.3. Native API-Kompatibilität

Die Kompatibilität mit nativem Code ist eine Herausforderung. Aus diesem Grund sind Geräteimplementierer:

  • [SR] empfohlen dringend, die Implementierungen der unten aufgeführten Bibliotheken aus dem vorgelagerten Android Open Source -Projekt zu verwenden.

3.3.1. Anwendung Binäre Schnittstellen

Managed Dalvik Bytecode kann in den in der Anwendung .apk -Datei bereitgestellten Code als .so -Datei aufrufen. Da der native Code in hohem Maße von der zugrunde liegenden Prozessor -Technologie abhängt, definiert Android eine Reihe von Anwendungs ​​-Binärschnittstellen (ABIS) in der Android NDK.

Geräteimplementierungen:

  • [C-0-1] muss mit einem oder mehreren definierten ABIs kompatibel sein und die Kompatibilität mit dem Android NDK implementieren.
  • [C-0-2] muss die Unterstützung für Code enthalten, die in der verwalteten Umgebung ausgeführt werden, um den nativen Code unter Verwendung der Semantik der Standard-Java Native Interface (JNI) aufzurufen.
  • [C-0-3] muss mit jeder erforderlichen Bibliothek in der folgenden Liste eine Quellenkompatibel (dh Header-kompatibel) und binär-kompatibel sein (für die ABI).
  • [C-0-4] muss das äquivalente 32-Bit-ABI unterstützen, wenn ein 64-Bit-ABI unterstützt wird.
  • [C-0-5] Muss die vom Gerät unterstützte native Anwendung Binary Interface (ABI) über die android.os.Build.SUPPORTED_ABIS , android.os.Build.SUPPORTED_32_BIT_ABIS sowie android.os.Build.SUPPORTED_64_BIT_ABIS -Parameter-Parameter unterstützt. , jeweils eine von der Kommas getrennte Liste von ABIS, die von den am wenigsten zu den am wenigsten bevorzugten bestellt wurden.
  • [C-0-6] muss über die oben genannten Parameter nur die in der neuesten Dokumentation von Android NDK ABI-Management dokumentierten und beschriebenen ABIs melden und die Unterstützung für die Erweiterung Advanced SIMD (AKA Neon) enthalten.
  • [C-0-7] muss alle folgenden Bibliotheken erstellen und native APIs bereitstellen, die Apps mit nativem Code enthalten:

    • libaaudio.so (Aaudio Native Audio Support)
    • Libandroid.so (Native Android -Aktivitätsunterstützung)
    • libc (C-Bibliothek)
    • libcamera2ndk.so
    • libdl (dynamischer Linker)
    • libegl.so (native OpenGL -Oberflächenmanagement)
    • libglesv1_cm.so (OpenGL es 1.x)
    • libglesv2.so (OpenGL ES 2.0)
    • libglesv3.so (OpenGL es 3.x)
    • libicui18n.so
    • libicuuc.so
    • libjnigraphics.so
    • liblog (Android-Protokollierung)
    • libmediandk.so (Support für native Medien -APIs)
    • libm (Mathebibliothek)
    • libopenmaxal.so (OpenMAX AL 1.0.1 Unterstützung)
    • libopensles.so (öffnet ES 1.0.1 Audiounterstützung)
    • librs.so
    • libstdc ++ (minimale Unterstützung für C ++)
    • libvulkan.so (vulkan)
    • libz (Zlib-Komprimierung)
    • JNI-Schnittstelle
  • [C-0-8] darf die öffentlichen Funktionen für die oben aufgeführten nativen Bibliotheken nicht hinzufügen oder entfernen.

  • [C-0-9] müssen zusätzliche Nicht-AOSP-Bibliotheken auflisten, die direkt an Drittanbieter-Apps in /vendor/etc/public.libraries.txt ausgesetzt sind.
  • [C-0-10] dürfen keine anderen nativen nativen Bibliotheken, die in AOSP als Systembibliotheken implementiert und bereitgestellt werden, Apps von Drittanbietern auf die API-Ebene 24 oder höher aussetzen.
  • [C-0-11] müssen alle OpenGL ES 3.1- und Android-Erweiterungspaket -Funktionssymbole wie in der NDK über die Bibliothek libGLESv3.so exportieren. Beachten Sie, dass zwar alle Symbole vorhanden sein müssen, in Abschnitt 7.1.4.1 die Anforderungen für die vollständige Implementierung jeder entsprechenden Funktionen ausführlicher beschreibt.
  • [C-0-12] Muss Funktionsymbole für die Core Vulkan 1.0-Funktionssymbbls sowie die VK_KHR_surface , VK_KHR_android_surface , VK_KHR_swapchain , VK_KHR_maintenance1 und VK_KHR_get_physical_device_properties2 und libvulkan.so exportieren. Beachten Sie, dass zwar alle Symbole vorhanden sein müssen, in Abschnitt 7.1.4.2 detaillierter die Anforderungen für die vollständige Implementierung jeder entsprechenden Funktionen erwartet werden.
  • Sollte mit den Quellcode- und Header -Dateien erstellt werden, die im vorgelagerten Android Open Source -Projekt verfügbar sind

Beachten Sie, dass zukünftige Veröffentlichungen des Android -NDK möglicherweise Unterstützung für zusätzliche ABIs führen.

3.3.2. 32-Bit-ARM Native Codekompatibilität

Wenn Geräteimplementierungen 64-Bit-Armgeräte sind, dann:

  • [C-1-1] Obwohl die ARMV8-Architektur mehrere CPU-Operationen abzeichnet, einschließlich einiger im vorhandener nationaler Code verwendeter Operationen, müssen die folgenden verwerteten Operationen 32-Bit-Native ARM-Code zur Verfügung stehen, entweder durch native CPU-Unterstützung oder durch Software-Emulation:

    • SWP- und SWPB -Anweisungen
    • Setend -Anweisung
    • CP15ISB-, CP15DSB- und CP15DMB -Barrierebetriebe

Wenn Geräteimplementierungen einen 32-Bit-Arm ABI enthalten, sind sie:

  • [C-2-1] müssen die folgenden Zeilen in /proc/cpuinfo enthalten, wenn es von 32-Bit-ARM-Anwendungen gelesen wird, um die Kompatibilität mit Anwendungen sicherzustellen, die unter Verwendung von Legacy-Versionen von Android NDK erstellt wurden.

    • Features: gefolgt von einer Liste der vom Gerät unterstützten optionalen ARMV7 -CPU -Funktionen.
    • CPU architecture: gefolgt von einer Ganzzahl, die die höchste unterstützte Armarchitektur des Geräts beschreibt (z. B. "8" für ARMV8 -Geräte).
  • Sollte sich nicht ändern /proc/cpuinfo , wenn Sie von 64-Bit-Arm- oder Nicht-Arm-Anwendungen gelesen werden.

3.4. Webkompatibilität

3.4.1. WebView-Kompatibilität

Wenn Geräteimplementierungen eine vollständige Implementierung der API von android.webkit.Webview bieten, sind sie:

  • [C-1-1] Muss android.software.webview melden.
  • [C-1-2] muss das Chrom- Projektbau aus dem vorgelagerten Android Open-Source-Projekt in der Android 8.0-Filiale zur Implementierung des android.webkit.WebView API verwenden.
  • [C-1-3] Die von der WebView gemeldete Benutzeragentenzeichenfolge muss in diesem Format vorliegen:

    Mozilla/5.0 (Linux; Android $ (Version); $ (Modell) Build/$ (Build); WV) Applewebkit/537,36 (KHTML, wie Gecko) Version/4.0 $ (Chromium_ver) Mobile Safari/537.36

    • Der Wert der $ (Version) String muss dem Wert für Android.os.build.version.Release übereinstimmen.
    • Der Wert der $ (Modell) String muss dem Wert für Android.os.build.model übereinstimmen.
    • Der Wert der $ (Build) -Sache muss dem Wert für android.os.build.id übereinstimmen.
    • Der Wert der $ (chromium_ver) -Sache muss die Version von Chrom im vorgelagerten Android Open Source -Projekt sein.
    • Geräteimplementierungen können Mobilgeräte in der Benutzeragentenzeichenfolge auslassen.
  • Die WebView -Komponente sollte Unterstützung für möglichst viele HTML5 -Funktionen wie möglich enthalten. Wenn sie unterstützt, sollte die Funktion der HTML5 -Spezifikation entsprechen.

3.4.2. Browser-Kompatibilität

Wenn Geräteimplementierungen eine eigenständige Browseranwendung für das allgemeine Webbrowsingen enthalten, sind sie:

  • [C-1-1] muss jede dieser APIs unterstützen, die mit HTML5 verbunden sind:
  • [C-1-2] muss die HTML5/W3C- Webstorage-API unterstützen und sollte die HTML5/W3C- IndexedDB-API unterstützen. Beachten Sie, dass die Körpers für Webentwicklungsstandards in einer zukünftigen Version von Android zu einer erforderlichen Komponente werden, wenn die Körper für Webentwicklungsstandards umgehen, um IndexedDB gegenüber Webstorage zu bevorzugen.
  • Kann eine benutzerdefinierte Benutzeragentenzeichenfolge in der eigenständigen Browseranwendung versenden.
  • Sollte Unterstützung für möglichst viel HTML5 in der eigenständigen Browseranwendung implementieren (unabhängig davon, ob sie auf der vorgelagerten Webkit-Browser-Anwendung oder einem Ersatz von Drittanbietern basiert).

Wenn jedoch Geräteimplementierungen keine eigenständige Browseranwendung enthalten, sind sie jedoch:

3.5. API-Verhaltenskompatibilität

Das Verhalten der einzelnen API -Typen (verwaltet, weich, nativ und web) muss mit der bevorzugten Implementierung des vorgelagerten Android -Open -Source -Projekts übereinstimmen. Einige spezifische Kompatibilitätsbereiche sind:

  • [C-0-1] Geräte dürfen das Verhalten oder die Semantik einer Standardabsicht nicht ändern.
  • [C-0-2] Geräte dürfen die Lebenszyklus- oder Lebenszyklus-Semantik einer bestimmten Art von Systemkomponente (wie Service, Aktivität, ContentProvider usw.) nicht verändern.
  • [C-0-3] Geräte dürfen die Semantik einer Standardgenehmigung nicht ändern.
  • Geräte dürfen die Einschränkungen, die bei Hintergrundanträgen erzwungen werden, nicht ändern. Insbesondere für Hintergrund -Apps:
    • [C-0-4] Sie müssen aufhören, Rückrufe auszuführen, die von der App registriert sind, um Ausgänge von der GnssMeasurement und GnssNavigationMessage zu erhalten.
    • [C-0-5] Sie müssen die Häufigkeit von Aktualisierungen bewerten, die der App über die LocationManager API-Klasse oder die Methode WifiManager.startScan() bereitgestellt werden.
    • [C-0-6] Wenn die App auf die API-Ebene 25 oder höher abzielt, dürfen sie keine Broadcast-Empfänger für die impliziten Sendungen von Standard-Android-Absichten im Manifest der App registrieren, sofern die Sendungsabsicht eine "signature" oder "oder "signatureOrSystem" protectionLevel -Erlaubnis oder befinden sich auf der Ausnahmeriste .
    • [C-0-7] Wenn die App auf die API-Stufe 25 oder höher abzielt, müssen sie die Hintergrunddienste der App anhalten, so wie die App die Methode der Dienste stopSelf() bezeichnet hätte, es sei denn Um eine Aufgabe zu erledigen, die für den Benutzer sichtbar ist.
    • [C-0-8] Wenn die App auf die API-Ebene 25 oder höher abzielt, müssen sie die Wakelocks, die die App hält, freigeben.

Die obige Liste ist nicht umfassend. Die Compatibility Test Suite (CTS) testet wesentliche Teile der Plattform auf Verhaltenskompatibilität, jedoch nicht alle. Es liegt in der Verantwortung des Implementierers, die Verhaltenskompatibilität mit dem Android Open Source Project sicherzustellen. Aus diesem Grund SOLLTEN Geräteimplementierer nach Möglichkeit den über das Android Open Source Project verfügbaren Quellcode verwenden, anstatt wesentliche Teile des Systems neu zu implementieren.

3.6. API-Namespaces

Android folgt den von der Programmiersprache Java definierten Paket- und Klassen-Namespace-Konventionen. Um die Kompatibilität mit Anwendungen von Drittanbietern sicherzustellen, DÜRFEN Geräteimplementierer KEINE verbotenen Änderungen (siehe unten) an diesen Paket-Namespaces vornehmen:

  • java.*
  • javax.*
  • sun.*
  • android.*
  • com.android.*

Das heißt, sie:

  • [C-0-1] darf die öffentlich freigelegten APIs auf der Android-Plattform nicht durch Ändern einer Methode oder Klassensignaturen oder durch Entfernen von Klassen oder Klassenfeldern ändern.
  • [C-0-2] dürfen keine öffentlich exponierten Elemente (wie Klassen oder Schnittstellen oder Felder oder Methoden zu vorhandenen Klassen oder Schnittstellen) oder Test- oder System-APIs für die APIs in den oben genannten Namespaces hinzufügen. Ein "öffentlich exponiertes Element" ist ein Konstrukt, das nicht mit dem "@Hide" -Marker dekoriert ist, wie im vorgelagerten Android -Quellcode verwendet.

Geräteimplementierer können die zugrunde liegende Implementierung der APIs ändern, jedoch solche Änderungen:

  • [C-0-3] dürfen sich nicht auf das angegebene Verhalten und die Java-Sprache von öffentlich freigelegten APIs auswirken.
  • [C-0-4] darf nicht den Entwicklern beworben oder anderweitig ausgesetzt werden.

Geräteimplementierer können jedoch benutzerdefinierte APIs außerhalb des Standard -Android -Namespace hinzufügen, jedoch die benutzerdefinierten APIs:

  • [C-0-5] darf sich nicht in einem Namespace befinden oder sich auf eine andere Organisation beziehen. Beispielsweise dürfen Geräteimplementierer dem com.google.* Oder einen ähnlichen Namespace: Nur Google kann dies tun. Ebenso DARF Google KEINE APIs zu den Namespaces anderer Unternehmen hinzufügen.
  • [C-0-6] müssen in einer Android-Shared-Bibliothek verpackt werden, so dass nur Apps, die sie explizit verwenden (über den Mechanismus für die <-Verwendungsbibliotheks>), durch die erhöhte Speicherverwendung solcher APIs beeinflusst werden.

Wenn ein Geräteimplementierer vorschlägt, einen der oben genannten Paketnamensräume zu verbessern (z. B. durch das Hinzufügen nützlicher neuer Funktionen zu einer vorhandenen API oder das Hinzufügen einer neuen API), SOLLTE der Implementierer source.android.com besuchen und mit dem Prozess zum Einbringen von Änderungen beginnen Code, gemäß den Informationen auf dieser Website.

Beachten Sie, dass die oben genannten Einschränkungen den Standardkonventionen für die Benennung von APIs in der Programmiersprache Java entsprechen; Dieser Abschnitt zielt lediglich darauf ab, diese Konventionen zu verstärken und sie durch Einbeziehung in diese Kompatibilitätsdefinition zu verbinden.

3.7. Laufzeitkompatibilität

Geräteimplementierungen:

  • [C-0-1] muss das vollständige Format und die Dalvik-Bytecode-Spezifikation und die Semantik des Dalvik Executable (DEX) unterstützen.

  • [C-0-2] MUST configure Dalvik runtimes to allocate memory in accordance with the upstream Android platform, and as specified by the following table. (See section 7.1.1 for screen size and screen density definitions.)

  • SHOULD use Android RunTime (ART), the reference upstream implementation of the Dalvik Executable Format, and the reference implementation's package management system.

  • SHOULD run fuzz tests under various modes of execution and target architectures to assure the stability of the runtime. Refer to JFuzz and DexFuzz in the Android Open Source Project website.

Note that memory values specified below are considered minimum values and device implementations MAY allocate more memory per application.

Bildschirmgestaltung Bildschirmdichte Minimum Application Memory
Android Watch 120 dpi (ldpi) 32 MB
160 dpi (mdpi)
213 dpi (tvdpi)
240 dpi (hdpi) 36 MB
280 dpi (280dpi)
320 dpi (xhdpi) 48MB
360 dpi (360dpi)
400 dpi (400dpi) 56 MB
420 dpi (420dpi) 64 MB
480 dpi (xxhdpi) 88MB
560 dpi (560dpi) 112MB
640 dpi (xxxhdpi) 154MB
small/normal 120 dpi (ldpi) 32 MB
160 dpi (mdpi)
213 dpi (tvdpi) 48MB
240 dpi (hdpi)
280 dpi (280dpi)
320 dpi (xhdpi) 80MB
360 dpi (360dpi)
400 dpi (400dpi) 96MB
420 dpi (420dpi) 112MB
480 dpi (xxhdpi) 128 MB
560 dpi (560dpi) 192MB
640 dpi (xxxhdpi) 256 MB
groß 120 dpi (ldpi) 32 MB
160 dpi (mdpi) 48MB
213 dpi (tvdpi) 80MB
240 dpi (hdpi)
280 dpi (280dpi) 96MB
320 dpi (xhdpi) 128 MB
360 dpi (360dpi) 160 MB
400 dpi (400dpi) 192MB
420 dpi (420dpi) 228MB
480 dpi (xxhdpi) 256 MB
560 dpi (560dpi) 384MB
640 dpi (xxxhdpi) 512 MB
xlarge 120 dpi (ldpi) 48MB
160 dpi (mdpi) 80MB
213 dpi (tvdpi) 96MB
240 dpi (hdpi)
280 dpi (280dpi) 144MB
320 dpi (xhdpi) 192MB
360 dpi (360dpi) 240 MB
400 dpi (400dpi) 288MB
420 dpi (420dpi) 336 MB
480 dpi (xxhdpi) 384MB
560 dpi (560dpi) 576MB
640 dpi (xxxhdpi) 768MB

3.8. Kompatibilität der Benutzeroberfläche

3.8.1. Launcher (Home Screen)

Android includes a launcher application (home screen) and support for third-party applications to replace the device launcher (home screen).

If device implementations allow third-party applications to replace the device home screen, they:

  • [C-1-1] MUST declare the platform feature android.software.home_screen .
  • [C-1-2] MUST return the AdaptiveIconDrawable object when the third party application use <adaptive-icon> tag to provide their icon, and the PackageManager methods to retrieve icons are called.

If device implementations include a default launcher that supports in-app pinning of shortcuts, they:

Conversely, if device implementations do not support in-app pinning, they:

If device implementations implement a default launcher that provides quick access to the additional shortcuts provided by third-party apps through the ShortcutManager API, they:

  • [C-4-1] MUST support all documented shortcut features (eg static and dynamic shortcuts, pinning shortcuts) and fully implement the APIs of the ShortcutManager API class.

If device implementations include a default launcher app that shows badges for the app icons, they:

  • [C-5-1] MUST respect the NotificationChannel.setShowBadge() API method. In other words, show a visual affordance associated with the app icon if the value is set as true , and do not show any app icon badging scheme when all of the app's notification channels have set the value as false .
  • MAY override the app icon badges with their proprietary badging scheme when third-party applications indicate support of the proprietary badging scheme through the use of proprietary APIs, but SHOULD use the resources and values provided through the notification badges APIs described in the SDK , such as the Notification.Builder.setNumber() and the Notification.Builder.setBadgeIconType() API.

3.8.2. Widgets

Android supports third-party app widgets by defining a component type and corresponding API and lifecycle that allows applications to expose an “AppWidget” to the end user.

If device implementations support third-party app widgets, they:

  • [C-1-1] MUST declare support for platform feature android.software.app_widgets.
  • [C-1-2] MUST include built-in support for AppWidgets and expose user interface affordances to add, configure, view, and remove AppWidgets directly within the Launcher.
  • [C-1-3] MUST be capable of rendering widgets that are 4 x 4 in the standard grid size. See the App Widget Design Guidelines in the Android SDK documentation for details.
  • MAY support application widgets on the lock screen.

If device implementations support third-party app widgets and in-app pinning of shortcuts, they:

3.8.3. Benachrichtigungen

Android includes Notification and NotificationManager APIs that allow third-party app developers to notify users of notable events and attract users' attention using the hardware components (eg sound, vibration and light) and software features (eg notification shade, system bar) of the device .

3.8.3.1. Presentation of Notifications

If device implementations allow third party apps to notify users of notable events , they:

  • [C-1-1] MUST support notifications that use hardware features, as described in the SDK documentation, and to the extent possible with the device implementation hardware. For instance, if a device implementation includes a vibrator, it MUST correctly implement the vibration APIs. If a device implementation lacks hardware, the corresponding APIs MUST be implemented as no-ops. This behavior is further detailed in section 7 .
  • [C-1-2] MUST correctly render all resources (icons, animation files etc.) provided for in the APIs, or in the Status/System Bar icon style guide , although they MAY provide an alternative user experience for notifications than that provided by the reference Android Open Source implementation.
  • [C-1-3] MUST honor and implement properly the behaviors described for the APIs to update, remove and group notifications.
  • [C-1-4] MUST provide the full behavior of the NotificationChannel API documented in the SDK.
  • [C-1-5] MUST provide a user affordance to block and modify a certain third-party app's notification per each channel and app package level.
  • [C-1-6] MUST also provide a user affordance to display deleted notification channels.
  • SHOULD support rich notifications.
  • SHOULD present some higher priority notifications as heads-up notifications.
  • SHOULD have user affordance to snooze notifications.
  • MAY only manage the visibility and timing of when third-party apps can notify users of notable events to mitigate safety issues such as driver distraction.

If device implementations support rich notifications, they:

  • [C-2-1] MUST use the exact resources as provided through the Notification.Style API class and its subclasses for the presented resource elements.
  • SHOULD present each and every resource element (eg icon, title and summary text) defined in the Notification.Style API class and its subclasses.

If device implementations support heads-up notifications: they:

  • [C-3-1] MUST use the heads-up notification view and resources as described in the Notification.Builder API class when heads-up notifications are presented.
3.8.3.2. Notification Listener Service

Android includes the NotificationListenerService APIs that allow apps (once explicitly enabled by the user) to receive a copy of all notifications as they are posted or updated.

Geräteimplementierungen:

  • [C-0-1] MUST correctly and promptly update notifications in their entirety to all such installed and user-enabled listener services, including any and all metadata attached to the Notification object.
  • [C-0-2] MUST respect the snoozeNotification() API call, and dismiss the notification and make a callback after the snooze duration that is set in the API call.

If device implementations have a user affordance to snooze notifications, they:

  • [C-1-1] MUST reflect the snoozed notification status properly through the standard APIs such as NotificationListenerService.getSnoozedNotifications() .
  • [C-1-2] MUST make this user affordance available to snooze notifications from each installed third-party app's, unless they are from persistent/foreground services.
3.8.3.3. DND (Do not Disturb)

If device implementations support the DND feature, they:

  • [C-1-1] MUST implement an activity that would respond to the intent ACTION_NOTIFICATION_POLICY_ACCESS_SETTINGS , which for implementations with UI_MODE_TYPE_NORMAL it MUST be an activity where the user can grant or deny the app access to DND policy configurations.
  • [C-1-2] MUST, for when the device implementation has provided a means for the user to grant or deny third-party apps to access the DND policy configuration, display Automatic DND rules created by applications alongside the user-created and pre-defined rules.
  • [C-1-3] MUST honor the suppressedVisualEffects values passed along the NotificationManager.Policy and if an app has set any of the SUPPRESSED_EFFECT_SCREEN_OFF or SUPPRESSED_EFFECT_SCREEN_ON flags, it SHOULD indicate to the user that the visual effects are suppressed in the DND settings menu.

Android includes APIs that allow developers to incorporate search into their applications and expose their application's data into the global system search. Im Allgemeinen besteht diese Funktionalität aus einer einzigen, systemweiten Benutzeroberfläche, die es Benutzern ermöglicht, Abfragen einzugeben, während der Benutzereingabe Vorschläge anzeigt und Ergebnisse anzeigt. The Android APIs allow developers to reuse this interface to provide search within their own apps and allow developers to supply results to the common global search user interface.

  • Android device implementations SHOULD include global search, a single, shared, system-wide search user interface capable of real-time suggestions in response to user input.

If device implementations implement the global search interface, they:

  • [C-1-1] MUST implement the APIs that allow third-party applications to add suggestions to the search box when it is run in global search mode.

If no third-party applications are installed that make use of the global search:

  • The default behavior SHOULD be to display web search engine results and suggestions.

Android also includes the Assist APIs to allow applications to elect how much information of the current context is shared with the assistant on the device.

If device implementations support the Assist action, they:

  • [C-2-1] MUST indicate clearly to the end user when the context is shared, by either:
    • Each time the assist app accesses the context, displaying a white light around the edges of the screen that meet or exceed the duration and brightness of the Android Open Source Project implementation.
    • For the preinstalled assist app, providing a user affordance less than two navigations away from the default voice input and assistant app settings menu , and only sharing the context when the assist app is explicitly invoked by the user through a hotword or assist navigation key input.
  • [C-2-2] The designated interaction to launch the assist app as described in section 7.2.3 MUST launch the user-selected assist app, in other words the app that implements VoiceInteractionService , or an activity handling the ACTION_ASSIST intent.
  • [C-SR] STRONGLY RECOMMENDED to use long press on HOME key as this designated interaction.

3.8.5. Alerts and Toasts

Applications can use the Toast API to display short non-modal strings to the end user that disappear after a brief period of time, and use the TYPE_APPLICATION_OVERLAY window type API to display alert windows as an overlay over other apps.

If device implementations include a screen or video output, they:

  • [C-1-1] MUST provide a user affordance to block an app from displaying alert windows that use the TYPE_APPLICATION_OVERLAY . The AOSP implementation meets this requirement by having controls in the notification shade.

  • [C-1-2] MUST honor the Toast API and display Toasts from applications to end users in some highly visible manner.

3.8.6. Themen

Android provides “themes” as a mechanism for applications to apply styles across an entire Activity or application.

Android includes a “Holo” and "Material" theme family as a set of defined styles for application developers to use if they want to match the Holo theme look and feel as defined by the Android SDK.

If device implementations include a screen or video output, they:

  • [C-1-1] MUST NOT alter any of the Holo theme attributes exposed to applications.
  • [C-1-2] MUST support the “Material” theme family and MUST NOT alter any of the Material theme attributes or their assets exposed to applications.

Android also includes a “Device Default” theme family as a set of defined styles for application developers to use if they want to match the look and feel of the device theme as defined by the device implementer.

Android supports a variant theme with translucent system bars, which allows application developers to fill the area behind the status and navigation bar with their app content. To enable a consistent developer experience in this configuration, it is important the status bar icon style is maintained across different device implementations.

If device implementations include a system status bar, they:

  • [C-2-1] MUST use white for system status icons (such as signal strength and battery level) and notifications issued by the system, unless the icon is indicating a problematic status or an app requests a light status bar using the SYSTEM_UI_FLAG_LIGHT_STATUS_BAR flag .
  • [C-2-2] Android device implementations MUST change the color of the system status icons to black (for details, refer to R.style ) when an app requests a light status bar.

3.8.7. Live-Hintergründe

Android defines a component type and corresponding API and lifecycle that allows applications to expose one or more “Live Wallpapers” to the end user. Live wallpapers are animations, patterns, or similar images with limited input capabilities that display as a wallpaper, behind other applications.

Hardware is considered capable of reliably running live wallpapers if it can run all live wallpapers, with no limitations on functionality, at a reasonable frame rate with no adverse effects on other applications. Wenn Einschränkungen in der Hardware dazu führen, dass Hintergrundbilder und/oder Anwendungen abstürzen, nicht richtig funktionieren, übermäßig viel CPU- oder Akkuleistung verbrauchen oder mit unannehmbar niedrigen Bildraten laufen, wird davon ausgegangen, dass die Hardware nicht in der Lage ist, Live-Hintergrundbilder auszuführen. As an example, some live wallpapers may use an OpenGL 2.0 or 3.x context to render their content. Das Live-Hintergrundbild wird auf Hardware, die nicht mehrere OpenGL-Kontexte unterstützt, nicht zuverlässig ausgeführt, da die Verwendung eines OpenGL-Kontexts durch das Live-Hintergrundbild möglicherweise mit anderen Anwendungen in Konflikt steht, die ebenfalls einen OpenGL-Kontext verwenden.

  • Geräteimplementierungen, die Live-Hintergründe wie oben beschrieben zuverlässig ausführen können, SOLLTEN Live-Hintergründe implementieren.

If device implementations implement live wallpapers, they:

  • [C-1-1] MUST report the platform feature flag android.software.live_wallpaper.

3.8.8. Activity Switching

The upstream Android source code includes the overview screen , a system-level user interface for task switching and displaying recently accessed activities and tasks using a thumbnail image of the application's graphical state at the moment the user last left the application.

Device implementations including the recents function navigation key as detailed in section 7.2.3 MAY alter the interface.

If device implementations including the recents function navigation key as detailed in section 7.2.3 alter the interface, they:

  • [C-1-1] MUST support at least up to 20 displayed activities.
  • SHOULD at least display the title of 4 activities at a time.
  • [C-1-2] MUST implement the screen pinning behavior and provide the user with a settings menu to toggle the feature.
  • SHOULD display highlight color, icon, screen title in recents.
  • SHOULD display a closing affordance ("x") but MAY delay this until user interacts with screens.
  • SHOULD implement a shortcut to switch easily to the previous activity
  • SHOULD trigger the fast-switch action between the two most recently used apps, when the recents function key is tapped twice.
  • SHOULD trigger the split-screen multiwindow-mode, if supported, when the recents functions key is long pressed.
  • MAY display affiliated recents as a group that moves together.

  • [C-SR] Device implementations are STRONGLY RECOMMENDED to use the upstream Android user interface (or a similar thumbnail-based interface) for the overview screen.

3.8.9. Eingabemanagement

Android includes support for Input Management and support for third-party input method editors.

If device implementations allow users to use third-party input methods on the device, they:

  • [C-1-1] MUST declare the platform feature android.software.input_methods and support IME APIs as defined in the Android SDK documentation.
  • [C-1-2] MUST provide a user-accessible mechanism to add and configure third-party input methods in response to the android.settings.INPUT_METHOD_SETTINGS intent.

If device implementations declare the android.software.autofill feature flag, they:

3.8.10. Lock Screen Media Control

The Remote Control Client API is deprecated from Android 5.0 in favor of the Media Notification Template that allows media applications to integrate with playback controls that are displayed on the lock screen.

3.8.11. Screen savers (previously Dreams)

Android includes support for interactivescreensavers , previously referred to as Dreams. Screen savers allow users to interact with applications when a device connected to a power source is idle or docked in a desk dock. Android Watch devices MAY implement screen savers, but other types of device implementations SHOULD include support for screen savers and provide a settings option for users toconfigure screen savers in response to the android.settings.DREAM_SETTINGS intent.

3.8.12. Standort

If device implementations include a hardware sensor (eg GPS) that is capable of providing the location coordinates:

  • [C-1-1] location modes MUST be displayed in the Location menu within Settings.

3.8.13. Unicode and Font

Android includes support for the emoji characters defined in Unicode 10.0 .

If device implementations include a screen or video output, they:

  • [C-1-1] MUST be capable of rendering these emoji characters in color glyph.
  • [C-1-2] MUST include support for:
    • Roboto 2 font with different weights—sans-serif-thin, sans-serif-light, sans-serif-medium, sans-serif-black, sans-serif-condensed, sans-serif-condensed-light for the languages available on the Gerät.
    • Full Unicode 7.0 coverage of Latin, Greek, and Cyrillic, including the Latin Extended A, B, C, and D ranges, and all glyphs in the currency symbols block of Unicode 7.0.
  • SHOULD support the skin tone and diverse family emojis as specified in the Unicode Technical Report #51 .

If device implementations include an IME, they:

  • SHOULD provide an input method to the user for these emoji characters.

3.8.14. Mehrere Fenster

If device implementations have the capability to display multiple activities at the same time, they:

  • [C-1-1] MUST implement such multi-window mode(s) in accordance with the application behaviors and APIs described in the Android SDK multi-window mode support documentation and meet the following requirements:
  • [C-1-2] Applications can indicate whether they are capable of operating in multi-window mode in the AndroidManifest.xml file, either explicitly via setting the android:resizeableActivity attribute to true or implicitly by having the targetSdkVersion > 24. Apps that explicitly set this attribute to false in their manifest MUST NOT be launched in multi-window mode. Older apps with targetSdkVersion < 24 that did not set this android:resizeableActivity attribute MAY be launched in multi-window mode, but the system MUST provide warning that the app may not work as expected in multi-window mode.
  • [C-1-3] MUST NOT offer split-screen or freeform mode if the screen height < 440 dp and the screen width < 440 dp.
  • Device implementations with screen size xlarge SHOULD support freeform mode.

If device implementations support multi-window mode(s), and the split screen mode, they:

  • [C-2-1] MUST preload a resizeable launcher as the default.
  • [C-2-2] MUST crop the docked activity of a split-screen multi-window but SHOULD show some content of it, if the Launcher app is the focused window.
  • [C-2-3] MUST honor the declared AndroidManifestLayout_minWidth and AndroidManifestLayout_minHeight values of the third-party launcher application and not override these values in the course of showing some content of the docked activity.

If device implementations support multi-window mode(s) and picture-in-picture multi-window mode, they:

  • [C-3-1] MUST launch activities in picture-in-picture multi-window mode when the app is: * Targeting API level 26 or higher and declares android:supportsPictureInPicture * Targeting API level 25 or lower and declares both android:resizeableActivity and android:supportsPictureInPicture .
  • [C-3-2] MUST expose the actions in their SystemUI as specified by the current PIP activity through the setActions() API.
  • [C-3-3] MUST support aspect ratios greater than or equal to 1:2.39 and less than or equal to 2.39:1, as specified by the PIP activity through the setAspectRatio() API.
  • [C-3-4] MUST use KeyEvent.KEYCODE_WINDOW to control the PIP window; if PIP mode is not implemented, the key MUST be available to the foreground activity.
  • [C-3-5] MUST provide a user affordance to block an app from displaying in PIP mode; the AOSP implementation meets this requirement by having controls in the notification shade.
  • [C-3-6] MUST allocate minimum width and height of 108 dp for the PIP window and minimum width of 240 dp and height of 135 dp for the PIP window when the Configuration.uiMode is configured as UI_MODE_TYPE_TELEVISION

3.9. Device Administration

Android includes features that allow security-aware applications to perform device administration functions at the system level, such as enforcing password policies or performing remote wipe, through the Android Device Administration API ].

If device implementations implement the full range of device administration policies defined in the Android SDK documentation, they:

  • [C-1-1] MUST declare android.software.device_admin .
  • [C-1-2] MUST support device owner provisioning as described in section 3.9.1 and section 3.9.1.1 .
  • [C-1-3] MUST declare the support of manged profiles via the android.software.managed_users feature flag, except for when the device is configured so that it would report itself as a low RAM device or so that it allocate internal (non-removable) storage as shared storage.

3.9.1 Device Provisioning

3.9.1.1 Device owner provisioning

If device implementations declare android.software.device_admin , they:

If device implementations declare android.software.device_admin , but also include a proprietary Device Owner management solution and provide a mechanism to promote an application configured in their solution as a "Device Owner equivalent" to the standard "Device Owner" as recognized by the standard Android DevicePolicyManager APIs, they:

  • [C-2-1] MUST have a process in place to verify that the specific app being promoted belongs to a legitimate enterprise device management solution and it has been already configured in the proprietary solution to have the rights equivalent as a "Device Owner" .
  • [C-2-2] MUST show the same AOSP Device Owner consent disclosure as the flow initiated by android.app.action.PROVISION_MANAGED_DEVICE prior to enrolling the DPC application as "Device Owner".
  • MAY have user data on the device prior to enrolling the DPC application as "Device Owner".
3.9.1.2 Managed profile provisioning

If device implementations declare android.software.managed_users , they:

  • [C-1-1] MUST implement the APIs allowing a Device Policy Controller (DPC) application to become the owner of a new Managed Profile .

  • [C-1-2] The managed profile provisioning process (the flow initiated by android.app.action.PROVISION_MANAGED_PROFILE ) users experience MUST align with the AOSP implementation.

  • [C-1-3] MUST provide the following user affordances within the Settings to indicate to the user when a particular system function has been disabled by the Device Policy Controller (DPC):

    • A consistent icon or other user affordance (for example the upstream AOSP info icon) to represent when a particular setting is restricted by a Device Admin.
    • A short explanation message, as provided by the Device Admin via the setShortSupportMessage .
    • The DPC application's icon.

3.9.2 Managed Profile Support

If device implementations declare android.software.managed_users , they:

  • [C-1-1] MUST support managed profiles via the android.app.admin.DevicePolicyManager APIs.
  • [C-1-2] MUST allow one and only one managed profile to be created .
  • [C-1-3] MUST use an icon badge (similar to the AOSP upstream work badge) to represent the managed applications and widgets and other badged UI elements like Recents & Notifications.
  • [C-1-4] MUST display a notification icon (similar to the AOSP upstream work badge) to indicate when user is within a managed profile application.
  • [C-1-5] MUST display a toast indicating that the user is in the managed profile if and when the device wakes up (ACTION_USER_PRESENT) and the foreground application is within the managed profile.
  • [C-1-6] Where a managed profile exists, MUST show a visual affordance in the Intent 'Chooser' to allow the user to forward the intent from the managed profile to the primary user or vice versa, if enabled by the Device Policy Regler.
  • [C-1-7] Where a managed profile exists, MUST expose the following user affordances for both the primary user and the managed profile:
    • Separate accounting for battery, location, mobile data and storage usage for the primary user and managed profile.
    • Independent management of VPN Applications installed within the primary user or managed profile.
    • Independent management of applications installed within the primary user or managed profile.
    • Independent management of accounts within the primary user or managed profile.
  • [C-1-8] MUST ensure the preinstalled dialer, contacts and messaging applications can search for and look up caller information from the managed profile (if one exists) alongside those from the primary profile, if the Device Policy Controller permits it.
  • [C-1-9] MUST ensure that it satisfies all the security requirements applicable for a device with multiple users enabled (see section 9.5 ), even though the managed profile is not counted as another user in addition to the primary user.
  • [C-1-10] MUST support the ability to specify a separate lock screen meeting the following requirements to grant access to apps running in a managed profile.
  • When contacts from the managed profile are displayed in the preinstalled call log, in-call UI, in-progress and missed-call notifications, contacts and messaging apps they SHOULD be badged with the same badge used to indicate managed profile applications.

3.10. Barrierefreiheit

Android provides an accessibility layer that helps users with disabilities to navigate their devices more easily. In addition, Android provides platform APIs that enable accessibility service implementations to receive callbacks for user and system events and generate alternate feedback mechanisms, such as text-to-speech, haptic feedback, and trackball/d-pad navigation.

If device implementations support third-party accessibility services, they:

  • [C-1-1] MUST provide an implementation of the Android accessibility framework as described in the accessibility APIs SDK documentation.
  • [C-1-2] MUST generate accessibility events and deliver the appropriate AccessibilityEvent to all registered AccessibilityService implementations as documented in the SDK.
  • [C-1-3] MUST honor the android.settings.ACCESSIBILITY_SETTINGS intent to provide a user-accessible mechanism to enable and disable the third-party accessibility services alongside the preloaded accessibility services.
  • [C-1-4] MUST add a button in the system's navigation bar allowing the user to control the accessibility service when the enabled accessibility services declare the AccessibilityServiceInfo.FLAG_REQUEST_ACCESSIBILITY_BUTTON . Note that for device implementations with no system navigation bar, this requirement is not applicable, but device implementations SHOULD provide a user affordance to control these accessibility services.

If device implementations include preloaded accessibility services, they:

  • [C-2-1] MUST implement these preloaded accessibility services as Direct Boot Aware apps when the data storage is encrypted with File Based Encryption (FBE).
  • SHOULD provide a mechanism in the out-of-box setup flow for users to enable relevant accessibility services, as well as options to adjust the font size, display size and magnification gestures.

3.11. Text zu Sprache

Android includes APIs that allow applications to make use of text-to-speech (TTS) services and allows service providers to provide implementations of TTS services.

If device implementations reporting the feature android.hardware.audio.output, they:

If device implementations support installation of third-party TTS engines, they:

  • [C-2-1] MUST provide user affordance to allow the user to select a TTS engine for use at system level.

3.12. TV Input Framework

The Android Television Input Framework (TIF) simplifies the delivery of live content to Android Television devices. TIF provides a standard API to create input modules that control Android Television devices.

If device implementations support TIF, they:

  • [C-1-1] MUST declare the platform feature android.software.live_tv .
  • [C-1-2] MUST preload a TV application (TV App) and meet all requirements described in section 3.12.1 .

3.12.1. TV-App

If device implementations support TIF:

  • [C-1-1] The TV App MUST provide facilities to install and use TV Channels and meet the following requirements.

The TV app that is required for Android device implementations declaring the android.software.live_tv feature flag, MUST meet the following requirements:

  • Device implementations SHOULD allow third-party TIF-based inputs ( third-party inputs ) to be installed and managed.
  • Device implementations MAY provide visual separation between pre-installed TIF-based inputs (installed inputs) and third-party inputs.
  • Device implementations SHOULD NOT display the third-party inputs more than a single navigation action away from the TV App (ie expanding a list of third-party inputs from the TV App).

The Android Open Source Project provides an implementation of the TV App that meets the above requirements.

3.12.1.1. Elektronischer Programmführer

If device implementations support TIF, they:

  • [C-1-1] MUST show an informational and interactive overlay, which MUST include an electronic program guide (EPG) generated from the values in the TvContract.Programs fields.
  • [C-1-2] On channel change, device implementations MUST display EPG data for the currently playing program.
  • [SR] The EPG is STRONGLY RECOMMENDED to display installed inputs and third-party inputs with equal prominence. The EPG SHOULD NOT display the third-party inputs more than a single navigation action away from the installed inputs on the EPG.
  • The EPG SHOULD display information from all installed inputs and third-party inputs.
  • The EPG MAY provide visual separation between the installed inputs and third-party inputs.
3.12.1.2. Navigation

If device implementations support TIF, they:

  • [C-1-1] MUST allow navigation for the following functions via the D-pad, Back, and Home keys on the Android Television device's input device(s) (ie remote control, remote control application, or game controller):

    • Changing TV channels
    • Opening EPG
    • Configuring and tuning to third-party TIF-based inputs
    • Opening Settings menu
  • SHOULD pass key events to HDMI inputs through CEC.

3.12.1.3. TV input app linking

If device implementations support TIF:

  • [C-1-1] Android Television device implementations MUST support TV input app linking , which allows all inputs to provide activity links from the current activity to another activity (ie a link from live programming to related content).
  • [C-1-2] The TV App MUST show TV input app linking when it is provided.
3.12.1.4. Zeitverschiebung

If device implementations support TIF, they:

  • [SR] STRONGLY RECOMMENDED to support time shifting, which allows the user to pause and resume live content.
  • SHOULD provide the user a way to pause and resume the currently playing program, if time shifting for that program is available .
3.12.1.5. TV recording

If device implementations support TIF, they:

  • [SR] STRONGLY RECOMMENDED to support TV recording.
  • SHOULD provide a user interface to play recorded programs.
  • If the TV input supports recording and the recording of a program is not prohibited , the EPG MAY provide a way to record a program .

3.13. Schnelleinstellungen

Android provides a Quick Settings UI component that allows quick access to frequently used or urgently needed actions.

If device implementations include a Quick Settings UI component, they:

  • [C-1-1] MUST allow the user to add or remove the tiles provided through the quicksettings APIs from a third-party app.
  • [C-1-2] MUST NOT automatically add a tile from a third-party app directly to the Quick Settings.
  • [C-1-3] MUST display all the user-added tiles from third-party apps alongside the system-provided quick setting tiles.

3.14. Media UI

If device implementations include the UI framework that supports third-party apps that depend on MediaBrowser and MediaSession , they:

  • [C-1-1] MUST display MediaItem icons and notification icons unaltered.
  • [C-1-2] MUST display those items as described by MediaSession, eg, metadata, icons, imagery.
  • [C-1-3] MUST show app title.
  • [C-1-4] MUST have drawer to present MediaBrowser hierarchy.

3.15. Instant Apps

Device implementations MUST satisfy the following requirements:

  • [C-0-1] Instant Apps MUST only be granted permissions that have the android:protectionLevel set to "ephemeral" .
  • [C-0-2] Instant Apps MUST NOT interact with installed apps via implicit intents unless one of the following is true:
    • The component's intent pattern filter is exposed and has CATEGORY_BROWSABLE
    • The action is one of ACTION_SEND, ACTION_SENDTO, ACTION_SEND_MULTIPLE
    • The target is explicitly exposed with android:visibleToInstantApps
  • [C-0-3] Instant Apps MUST NOT interact explicitly with installed apps unless the component is exposed via android:visibleToInstantApps.
  • [C-0-4] IInstalled Apps MUST NOT see details about Instant Apps on the device unless the Instant App explicitly connects to the installed application.

3.16. Companion Device Pairing

Android includes support for companion device pairing to more effectively manage association with companion devices and provides the CompanionDeviceManager API for apps to access this feature.

If device implementations support the companion device pairing feature, they:

  • [C-1-1] MUST declare the feature flag FEATURE_COMPANION_DEVICE_SETUP .
  • [C-1-2] MUST ensure the APIs in the android.companion package is fully implemented.
  • [C-1-3] MUST provide user affordances for the user to select/confirm a companion device is present and operational.

4. Application Packaging Compatibility

Devices implementations:

  • [C-0-1] MUST be capable of installing and running Android “.apk” files as generated by the “aapt” tool included in the official Android SDK .
  • As the above requirement may be challenging, device implementations are RECOMMENDED to use the AOSP reference implementation's package management systemDevice implementations.
  • [C-0-2] MUST support verifying “.apk” files using the APK Signature Scheme v2 and JAR signing .
  • [C-0-3] MUST NOT extend either the .apk , Android Manifest , Dalvik bytecode , or RenderScript bytecode formats in such a way that would prevent those files from installing and running correctly on other compatible devices.
  • [C-0-4] MUST NOT allow apps other than the current "installer of record" for the package to silently uninstall the app without any prompt, as documented in the SDK for the DELETE_PACKAGE permission. The only exceptions are the system package verifier app handling PACKAGE_NEEDS_VERIFICATION intent and the storage manager app handling ACTION_MANAGE_STORAGE intent.

  • [C-0-5] MUST have an activity that handles the android.settings.MANAGE_UNKNOWN_APP_SOURCES intent.

  • [C-0-6] MUST NOT install application packages from unknown sources, unless the app that requests the installation meets all the following requirements:

    • It MUST declare the REQUEST_INSTALL_PACKAGES permission or have the android:targetSdkVersion set at 24 or lower.
    • It MUST have been granted permission by the user to install apps from unknown sources.
  • SHOULD provide a user affordance to grant/revoke the permission to install apps from unknown sources per application, but MAY choose to implement this as a no-op and return RESULT_CANCELED for startActivityForResult() , if the device implementation does not want to allow users to have this choice. However, even in such cases, they SHOULD indicate to the user why there is no such choice presented.

5. Multimedia Compatibility

Geräteimplementierungen:

  • [C-0-1] MUST support the media formats, encoders, decoders, file types, and container formats defined in section 5.1 for each and every codec declared by MediaCodecList .
  • [C-0-2] MUST declare and report support of the encoders, decoders available to third-party applications via MediaCodecList .
  • [C-0-3] MUST be able to decode and make available to third-party apps all the formats it can encode. This includes all bitstreams that its encoders generate and the profiles reported in its CamcorderProfile .

Geräteimplementierungen:

  • SHOULD aim for minimum codec latency, in others words, they
    • SHOULD NOT consume and store input buffers and return input buffers only once processed.
    • SHOULD NOT hold onto decoded buffers for longer than as specified by the standard (eg SPS).
    • SHOULD NOT hold onto encoded buffers longer than required by the GOP structure.

All of the codecs listed in the section below are provided as software implementations in the preferred Android implementation from the Android Open Source Project.

Please note that neither Google nor the Open Handset Alliance make any representation that these codecs are free from third-party patents. Wer beabsichtigt, diesen Quellcode in Hardware- oder Softwareprodukten zu verwenden, wird darauf hingewiesen, dass für Implementierungen dieses Codes, auch in Open-Source-Software oder Shareware, möglicherweise Patentlizenzen der jeweiligen Patentinhaber erforderlich sind.

5.1. Mediencodecs

5.1.1. Audiokodierung

See more details in 5.1.3. Audio Codecs Details .

If device implementations declare android.hardware.microphone , they MUST support the following audio encoding:

  • [C-1-1] PCM/WAVE

5.1.2. Audio-Dekodierung

See more details in 5.1.3. Audio Codecs Details .

If device implementations declare support for the android.hardware.audio.output feature, they must support the following audio decoders:

  • [C-1-1] MPEG-4 AAC Profile (AAC LC)
  • [C-1-2] MPEG-4 HE AAC Profile (AAC+)
  • [C-1-3] MPEG-4 HE AACv2 Profile (enhanced AAC+)
  • [C-1-4] AAC ELD (enhanced low delay AAC)
  • [C-1-5] FLAC
  • [C-1-6] MP3
  • [C-1-7] MIDI
  • [C-1-8] Vorbis
  • [C-1-9] PCM/WAVE
  • [C-1-10] Opus

If device implementations support the decoding of AAC input buffers of multichannel streams (ie more than two channels) to PCM through the default AAC audio decoder in the android.media.MediaCodec API, the following MUST be supported:

  • [C-2-1] Decoding MUST be performed without downmixing (eg a 5.0 AAC stream must be decoded to five channels of PCM, a 5.1 AAC stream must be decoded to six channels of PCM).
  • [C-2-2] Dynamic range metadata MUST be as defined in "Dynamic Range Control (DRC)" in ISO/IEC 14496-3, and the android.media.MediaFormat DRC keys to configure the dynamic range-related behaviors of the audio decoder. The AAC DRC keys were introduced in API 21,and are: KEY_AAC_DRC_ATTENUATION_FACTOR, KEY_AAC_DRC_BOOST_FACTOR, KEY_AAC_DRC_HEAVY_COMPRESSION, KEY_AAC_DRC_TARGET_REFERENCE_LEVEL and KEY_AAC_ENCODED_TARGET_LEVEL

5.1.3. Audio Codecs Details

Format/Codec Einzelheiten Supported File Types/Container Formats
MPEG-4 AAC Profile
(AAC LC)
Support for mono/stereo/5.0/5.1 content with standard sampling rates from 8 to 48 kHz.
  • 3GPP (.3gp)
  • MPEG-4 (.mp4, .m4a)
  • ADTS raw AAC (.aac, ADIF not supported)
  • MPEG-TS (.ts, not seekable)
MPEG-4 HE AAC Profile (AAC+) Support for mono/stereo/5.0/5.1 content with standard sampling rates from 16 to 48 kHz.
MPEG-4 HE AACv2
Profile (enhanced AAC+)
Support for mono/stereo/5.0/5.1 content with standard sampling rates from 16 to 48 kHz.
AAC ELD (enhanced low delay AAC) Support for mono/stereo content with standard sampling rates from 16 to 48 kHz.
AMR-NB 4.75 to 12.2 kbps sampled @ 8 kHz 3GPP (.3gp)
AMR-WB 9 rates from 6.60 kbit/s to 23.85 kbit/s sampled @ 16 kHz
FLAC Mono/Stereo (no multichannel). Sample rates up to 48 kHz (but up to 44.1 kHz is RECOMMENDED on devices with 44.1 kHz output, as the 48 to 44.1 kHz downsampler does not include a low-pass filter). 16-bit RECOMMENDED; no dither applied for 24-bit. FLAC (.flac) only
MP3 Mono/Stereo 8-320Kbps constant (CBR) or variable bitrate (VBR) MP3 (.mp3)
MIDI MIDI Typ 0 und 1. DLS Version 1 und 2. XMF und Mobile XMF. Unterstützung für die Klingeltonformate RTTTL/RTX, OTA und iMelody
  • Type 0 and 1 (.mid, .xmf, .mxmf)
  • RTTTL/RTX (.rtttl, .rtx)
  • OTA (.ota)
  • iMelody (.imy)
Vorbis
  • Ogg (.ogg)
  • Matroska (.mkv, Android 4.0+)
PCM/WAVE 16-bit linear PCM (rates up to limit of hardware). Devices MUST support sampling rates for raw PCM recording at 8000, 11025, 16000, and 44100 Hz frequencies. WELLE (.wav)
Opus Matroska (.mkv), Ogg(.ogg)

5.1.4. Image Encoding

See more details in 5.1.6. Image Codecs Details .

Device implementations MUST support encoding the following image encoding:

  • [C-0-1] JPEG
  • [C-0-2] PNG
  • [C-0-3] WebP

5.1.5. Image Decoding

See more details in 5.1.6. Image Codecs Details .

Device implementations MUST support encoding the following image decoding:

  • [C-0-1] JPEG
  • [C-0-2] GIF
  • [C-0-3] PNG
  • [C-0-4] BMP
  • [C-0-5] WebP
  • [C-0-6] Raw

5.1.6. Image Codecs Details

Format/Codec Einzelheiten Supported File Types/Container Formats
JPEG Base+progressive JPEG (.jpg)
GIF GIF (.gif)
PNG PNG (.png)
BMP BMP (.bmp)
WebP WebP (.webp)
Roh ARW (.arw), CR2 (.cr2), DNG (.dng), NEF (.nef), NRW (.nrw), ORF (.orf), PEF (.pef), RAF (.raf), RW2 (.rw2), SRW (.srw)

5.1.7. Video-Codecs

  • For acceptable quality of web video streaming and video-conference services, device implementations SHOULD use a hardware VP8 codec that meets the requirements .

If device implementations include a video decoder or encoder:

  • [C-1-1] Video codecs MUST support output and input bytebuffer sizes that accommodate the largest feasible compressed and uncompressed frame as dictated by the standard and configuration but also not overallocate.

  • [C-1-2] Video encoders and decoders MUST support YUV420 flexible color format (COLOR_FormatYUV420Flexible).

If device implementations advertise HDR profile support through Display.HdrCapabilities , they:

  • [C-2-1] MUST support HDR static metadata parsing and handling.

If device implementations advertise intra refresh support through FEATURE_IntraRefresh in the MediaCodecInfo.CodecCapabilities class, they:

  • [C-3-1]MUST support the refresh periods in the range of 10 - 60 frames and accurately operate within 20% of configured refresh period.

5.1.8. Video Codecs List

Format/Codec Einzelheiten Supported File Types/
Container Formats
H.263
  • 3GPP (.3gp)
  • MPEG-4 (.mp4)
H.264 AVC See section 5.2 and 5.3 for details
  • 3GPP (.3gp)
  • MPEG-4 (.mp4)
  • MPEG-2 TS (.ts, AAC audio only, not seekable, Android 3.0+)
H.265 HEVC See section 5.3 for details MPEG-4 (.mp4)
MPEG-2 Hauptprofil MPEG2-TS
MPEG-4 SP 3GPP (.3gp)
VP8 See section 5.2 and 5.3 for details
VP9 See section 5.3 for details

5.2. Videokodierung

If device implementations support any video encoder and make it available to third-party apps, they:

  • SHOULD NOT be, over two sliding windows, more than ~15% over the bitrate between intraframe (I-frame) intervals.
  • SHOULD NOT be more than ~100% over the bitrate over a sliding window of 1 second.

If device implementations include an embedded screen display with the diagonal length of at least 2.5 inches or include a video output port or declare the support of a camera via the android.hardware.camera.any feature flag, they:

  • [C-1-1] MUST include the support of at least one of the VP8 or H.264 video encoders, and make it available for third-party applications.
  • SHOULD support both VP8 and H.264 video encoders, and make it available for third-party applications.

If device implementations support any of the H.264, VP8, VP9 or HEVC video encoders and make it available to third-party applications, they:

  • [C-2-1] MUST support dynamically configurable bitrates.
  • SHOULD support variable frame rates, where video encoder SHOULD determine instantaneous frame duration based on the timestamps of input buffers, and allocate its bit bucket based on that frame duration.

If device implementations support the MPEG-4 SP video encoder and make it available to third-party apps, they:

  • SHOULD support dynamically configurable bitrates for the supported encoder.

5.2.1. H.263

If device implementations support H.263 encoders and make it available to third-party apps, they:

  • [C-1-1] MUST support Baseline Profile Level 45.
  • SHOULD support dynamically configurable bitrates for the supported encoder.

5.2.2. H-264

If device implementations support H.264 codec, they:

  • [C-1-1] MUST support Baseline Profile Level 3. However, support for ASO (Arbitrary Slice Ordering), FMO (Flexible Macroblock Ordering) and RS (Redundant Slices) is OPTIONAL. Moreover, to maintain compatibility with other Android devices, it is RECOMMENDED that ASO, FMO and RS are not used for Baseline Profile by encoders.
  • [C-1-2] MUST support the SD (Standard Definition) video encoding profiles in the following table.
  • SHOULD support Main Profile Level 4.
  • SHOULD support the HD (High Definition) video encoding profiles as indicated in the following table.

If device implementations report support of H.264 encoding for 720p or 1080p resolution videos through the media APIs, they:

  • [C-2-1] MUST support the encoding profiles in the following table.
SD (Low quality) SD (High quality) HD 720p HD 1080p
Video Auflösung 320 x 240 px 720 x 480 px 1280 x 720 Pixel 1920 x 1080 Pixel
Video-Bildrate 20 fps 30 fps 30 fps 30 fps
Video-Bitrate 384 Kbps 2 Mbit/s 4 Mbit/s 10 Mbps

5.2.3. VP8

If device implementations support VP8 codec, they:

  • [C-1-1] MUST support the SD video encoding profiles.
  • SHOULD support the following HD (High Definition) video encoding profiles.
  • SHOULD support writing Matroska WebM files.
  • SHOULD use a hardware VP8 codec that meets the WebM project RTC hardware coding requirements , to ensure acceptable quality of web video streaming and video-conference services.

If device implementations report support of VP8 encoding for 720p or 1080p resolution videos through the media APIs, they:

  • [C-2-1] MUST support the encoding profiles in the following table.
SD (Low quality) SD (High quality) HD 720p HD 1080p
Video Auflösung 320 x 180 px 640 x 360 Pixel 1280 x 720 Pixel 1920 x 1080 Pixel
Video-Bildrate 30 fps 30 fps 30 fps 30 fps
Video-Bitrate 800 Kbps 2 Mbit/s 4 Mbit/s 10 Mbps

5.2.4. VP9

If device implementations support VP9 codec, they:

  • SHOULD support writing Matroska WebM files.

5.3. Videodekodierung

If device implementations support VP8, VP9, H.264, or H.265 codecs, they:

  • [C-1-1] MUST support dynamic video resolution and frame rate switching through the standard Android APIs within the same stream for all VP8, VP9, H.264, and H.265 codecs in real time and up to the maximum resolution supported by each codec on the device.

If device implementations declare support for the Dolby Vision decoder through HDR_TYPE_DOLBY_VISION , they:

  • [C-2-1] MUST provide a Dolby Vision-capable extractor.
  • [C-2-2] MUST properly display Dolby Vision content on the device screen or on a standard video output port (eg, HDMI).
  • [C-2-3] MUST set the track index of backward-compatible base-layer(s) (if present) to be the same as the combined Dolby Vision layer's track index.

5.3.1. MPEG-2

If device implementations support MPEG-2 decoders, they:

  • [C-1-1] MUST support the Main Profile High Level.

5.3.2. H.263

If device implementations support H.263 decoders, they:

  • [C-1-1] MUST support Baseline Profile Level 30 and Level 45.

5.3.3. MPEG-4

If device implementations with MPEG-4 decoders, they:

  • [C-1-1] MUST support Simple Profile Level 3.

5.3.4. H.264

If device implementations support H.264 decoders, they:

  • [C-1-1] MUST support Main Profile Level 3.1 and Baseline Profile. Support for ASO (Arbitrary Slice Ordering), FMO (Flexible Macroblock Ordering) and RS (Redundant Slices) is OPTIONAL.
  • [C-1-2] MUST be capable of decoding videos with the SD (Standard Definition) profiles listed in the following table and encoded with the Baseline Profile and Main Profile Level 3.1 (including 720p30).
  • SHOULD be capable of decoding videos with the HD (High Definition) profiles as indicated in the following table.

If the height that is reported by the Display.getSupportedModes() method is equal or greater than the video resolution, device implementations:

  • [C-2-1] MUST support the HD 720p video decoding profiles in the following table.
  • [C-2-2] MUST support the HD 1080p video decoding profiles in the following table.
SD (Low quality) SD (High quality) HD 720p HD 1080p
Video Auflösung 320 x 240 px 720 x 480 px 1280 x 720 Pixel 1920 x 1080 Pixel
Video-Bildrate 30 fps 30 fps 60 fps 30 fps (60 fps Television )
Video-Bitrate 800 Kbps 2 Mbit/s 8 Mbit/s 20 Mbps

5.3.5. H.265 (HEVC)

If device implementations support H.265 codec, they:

  • [C-1-1] MUST support the Main Profile Level 3 Main tier and the SD video decoding profiles as indicated in the following table.
  • SHOULD support the HD decoding profiles as indicated in the following table.
  • [C-1-2] MUST support the HD decoding profiles as indicated in the following table if there is a hardware decoder.

If the height that is reported by the Display.getSupportedModes() method is equal to or greater than the video resolution, then:

  • [C-2-1] Device implementations MUST support at least one of H.265 or VP9 decoding of 720, 1080 and UHD profiles.
SD (Low quality) SD (High quality) HD 720p HD 1080p UHD
Video Auflösung 352 x 288 px 720 x 480 px 1280 x 720 Pixel 1920 x 1080 Pixel 3840 x 2160 Pixel
Video-Bildrate 30 fps 30 fps 30 fps 30/60 fps (60 fps Television with H.265 hardware decoding ) 60 fps
Video-Bitrate 600 Kbps 1.6 Mbps 4 Mbit/s 5 Mbit/s 20 Mbps

5.3.6. VP8

If device implementations support VP8 codec, they:

  • [C-1-1] MUST support the SD decoding profiles in the following table.
  • SHOULD use a hardware VP8 codec that meets the requirements .
  • SHOULD support the HD decoding profiles in the following table.

If the height as reported by the Display.getSupportedModes() method is equal or greater than the video resolution, then:

  • [C-2-1] Device implementations MUST support 720p profiles in the following table.
  • [C-2-2] Device implementations MUST support 1080p profiles in the following table.
SD (Low quality) SD (High quality) HD 720p HD 1080p
Video Auflösung 320 x 180 px 640 x 360 Pixel 1280 x 720 Pixel 1920 x 1080 Pixel
Video-Bildrate 30 fps 30 fps 30 fps (60 fps Television ) 30 (60 fps Television )
Video-Bitrate 800 Kbps 2 Mbit/s 8 Mbit/s 20 Mbps

5.3.7. VP9

If device implementations support VP9 codec, they:

  • [C-1-1] MUST support the SD video decoding profiles as indicated in the following table.
  • SHOULD support the HD decoding profiles as indicated in the following table.

If device implementations support VP9 codec and a hardware decoder:

  • [C-2-1] MUST support the HD decoding profiles as indicated in the following table.

If the height that is reported by the Display.getSupportedModes() method is equal to or greater than the video resolution, then:

  • [C-3-1] Device implementations MUST support at least one of VP9 or H.265 decoding of the 720, 1080 and UHD profiles.
SD (Low quality) SD (High quality) HD 720p HD 1080p UHD
Video Auflösung 320 x 180 px 640 x 360 Pixel 1280 x 720 Pixel 1920 x 1080 Pixel 3840 x 2160 Pixel
Video-Bildrate 30 fps 30 fps 30 fps 30 fps (60 fps Television with VP9 hardware decoding ) 60 fps
Video-Bitrate 600 Kbps 1.6 Mbps 4 Mbit/s 5 Mbit/s 20 Mbps

5.4. Audio Aufnahme

While some of the requirements outlined in this section are listed as SHOULD since Android 4.3, the Compatibility Definition for future versions are planned to change these to MUST. Existing and new Android devices are STRONGLY RECOMMENDED to meet these requirements that are listed as SHOULD, or they will not be able to attain Android compatibility when upgraded to the future version.

5.4.1. Raw Audio Capture

If device implementations declare android.hardware.microphone , they:

  • [C-1-1] MUST allow capture of raw audio content with the following characteristics:

    • Format : Linear PCM, 16-bit
    • Sampling rates : 8000, 11025, 16000, 44100 Hz
    • Channels : Mono
  • [C-1-2] MUST capture at above sample rates without up-sampling.

  • [C-1-3] MUST include an appropriate anti-aliasing filter when the sample rates given above are captured with down-sampling.
  • SHOULD allow AM radio and DVD quality capture of raw audio content, which means the following characteristics:

    • Format : Linear PCM, 16-bit
    • Sampling rates : 22050, 48000 Hz
    • Channels : Stereo

If device implementations allow AM radio and DVD quality capture of raw audio content, they:

  • [C-2-1] MUST capture without up-sampling at any ratio higher than 16000:22050 or 44100:48000.
  • [C-2-2] MUST include an appropriate anti-aliasing filter for any up-sampling or down-sampling.

5.4.2. Capture for Voice Recognition

If device implementations declare android.hardware.microphone , they:

  • [C-1-1] MUST capture android.media.MediaRecorder.AudioSource.VOICE_RECOGNITION audio source at one of the sampling rates, 44100 and 48000.
  • [C-1-2] MUST, by default, disable any noise reduction audio processing when recording an audio stream from the AudioSource.VOICE_RECOGNITION audio source.
  • [C-1-3] MUST, by default, disable any automatic gain control when recording an audio stream from the AudioSource.VOICE_RECOGNITION audio source.
  • SHOULD record the voice recognition audio stream with approximately flat amplitude versus frequency characteristics: specifically, ±3 dB, from 100 Hz to 4000 Hz.
  • SHOULD record the voice recognition audio stream with input sensitivity set such that a 90 dB sound power level (SPL) source at 1000 Hz yields RMS of 2500 for 16-bit samples.
  • SHOULD record the voice recognition audio stream so that the PCM amplitude levels linearly track input SPL changes over at least a 30 dB range from -18 dB to +12 dB re 90 dB SPL at the microphone.
  • SHOULD record the voice recognition audio stream with total harmonic distortion (THD) less than 1% for 1 kHz at 90 dB SPL input level at the microphone.

If device implementations declare android.hardware.microphone and noise suppression (reduction) technologies tuned for speech recognition, they:

  • [C-2-1] MUST allow this audio affect to be controllable with the android.media.audiofx.NoiseSuppressor API.
  • [C-2-2] MUST uniquely identfiy each noise suppression technology implementation via the AudioEffect.Descriptor.uuid field.

5.4.3. Capture for Rerouting of Playback

The android.media.MediaRecorder.AudioSource class includes the REMOTE_SUBMIX audio source.

If device implementations declare both android.hardware.audio.output and android.hardware.microphone , they:

  • [C-1-1] MUST properly implement the REMOTE_SUBMIX audio source so that when an application uses the android.media.AudioRecord API to record from this audio source, it captures a mix of all audio streams except for the following:

    • AudioManager.STREAM_RING
    • AudioManager.STREAM_ALARM
    • AudioManager.STREAM_NOTIFICATION

5.5. Audiowiedergabe

Android includes the support to allow apps to playback audio through the audio output peripheral as defined in section 7.8.2.

5.5.1. Raw Audio Playback

If device implementations declare android.hardware.audio.output , they:

  • [C-1-1] MUST allow playback of raw audio content with the following characteristics:

    • Format : Linear PCM, 16-bit
    • Sampling rates : 8000, 11025, 16000, 22050, 32000, 44100
    • Channels : Mono, Stereo
  • SHOULD allow playback of raw audio content with the following characteristics:

    • Sampling rates : 24000, 48000

5.5.2. Audioeffekte

Android provides an API for audio effects for device implementations.

If device implementations declare the feature android.hardware.audio.output , they:

  • [C-1-1] MUST support the EFFECT_TYPE_EQUALIZER and EFFECT_TYPE_LOUDNESS_ENHANCER implementations controllable through the AudioEffect subclasses Equalizer , LoudnessEnhancer .
  • [C-1-2] MUST support the visualizer API implementation, controllable through the Visualizer class.
  • SHOULD support the EFFECT_TYPE_BASS_BOOST , EFFECT_TYPE_ENV_REVERB , EFFECT_TYPE_PRESET_REVERB , and EFFECT_TYPE_VIRTUALIZER implementations controllable through the AudioEffect sub-classes BassBoost , EnvironmentalReverb , PresetReverb , and Virtualizer .

5.5.3. Audio Output Volume

Automotive device implementations:

  • SHOULD allow adjusting audio volume separately per each audio stream using the content type or usage as defined by AudioAttributes and car audio usage as publicly defined in android.car.CarAudioManager .

5.6. Audiolatenz

Audio latency is the time delay as an audio signal passes through a system. Many classes of applications rely on short latencies, to achieve real-time sound effects.

For the purposes of this section, use the following definitions:

  • output latency . The interval between when an application writes a frame of PCM-coded data and when the corresponding sound is presented to environment at an on-device transducer or signal leaves the device via a port and can be observed externally.
  • cold output latency . The output latency for the first frame, when the audio output system has been idle and powered down prior to the request.
  • continuous output latency . The output latency for subsequent frames, after the device is playing audio.
  • input latency . The interval between when a sound is presented by environment to device at an on-device transducer or signal enters the device via a port and when an application reads the corresponding frame of PCM-coded data.
  • lost input . The initial portion of an input signal that is unusable or unavailable.
  • cold input latency . The sum of lost input time and the input latency for the first frame, when the audio input system has been idle and powered down prior to the request.
  • continuous input latency . The input latency for subsequent frames, while the device is capturing audio.
  • cold output jitter . The variability among separate measurements of cold output latency values.
  • cold input jitter . The variability among separate measurements of cold input latency values.
  • continuous round-trip latency . The sum of continuous input latency plus continuous output latency plus one buffer period. The buffer period allows time for the app to process the signal and time for the app to mitigate phase difference between input and output streams.
  • OpenSL ES PCM buffer queue API . The set of PCM-related OpenSL ES APIs within Android NDK .
  • AAudio native audio API . The set of AAudio APIs within Android NDK .

If device implementations declare android.hardware.audio.output they are STRONGLY RECOMMENDED to meet or exceed the following requirements:

  • [SR] Cold output latency of 100 milliseconds or less
  • [SR] Continuous output latency of 45 milliseconds or less
  • [SR] Minimize the cold output jitter

If device implementations meet the above requirements after any initial calibration when using the OpenSL ES PCM buffer queue API, for continuous output latency and cold output latency over at least one supported audio output device, they are:

  • [SR] STRONGLY RECOMMENDED to report low latency audio by declaring android.hardware.audio.low_latency feature flag.
  • [SR] STRONGLY RECOMMENDED to also meet the requirements for low-latency audio via the AAudio API.

If device implementations do not meet the requirements for low-latency audio via the OpenSL ES PCM buffer queue API, they:

  • [C-1-1] MUST NOT report support for low-latency audio.

If device implementations include android.hardware.microphone , they are STRONGLY RECOMMENDED to meet these input audio requirements:

  • [SR] Cold input latency of 100 milliseconds or less
  • [SR] Continuous input latency of 30 milliseconds or less
  • [SR] Continuous round-trip latency of 50 milliseconds or less
  • [SR] Minimize the cold input jitter

5.7. Netzwerkprotokolle

Device implementations MUST support the media network protocols for audio and video playback as specified in the Android SDK documentation.

If device implementations include an audio or a video decoder, they:

  • [C-1-1] MUST support all required codecs and container formats in section 5.1 over HTTP(S).

  • [C-1-2] MUST support the media segment formats shown in the Media Segmant Formats table below over HTTP Live Streaming draft protocol, Version 7 .

  • [C-1-3] MUST support the following RTP audio video profile and related codecs in the RTSP table below. For exceptions please see the table footnotes in section 5.1 .

Media Segment Formats

Segment formats Verweise) Required codec support
MPEG-2 Transport Stream ISO 13818 Video codecs:
  • H264 AVC
  • MPEG-4 SP
  • MPEG-2
See section 5.1.3 for details on H264 AVC, MPEG2-4 SP,
and MPEG-2.

Audio codecs:

  • AAC
See section 5.1.1 for details on AAC and its variants.
AAC with ADTS framing and ID3 tags ISO 13818-7 See section 5.1.1 for details on AAC and its variants
WebVTT WebVTT

RTSP (RTP, SDP)

Profilname Verweise) Required codec support
H264 AVC RFC 6184 See section 5.1.3 for details on H264 AVC
MP4A-LATM RFC 6416 See section 5.1.1 for details on AAC and its variants
H263-1998 RFC 3551
RFC 4629
RFC 2190
See section 5.1.3 for details on H263
H263-2000 RFC 4629 See section 5.1.3 for details on H263
AMR RFC 4867 See section 5.1.1 for details on AMR-NB
AMR-WB RFC 4867 See section 5.1.1 for details on AMR-WB
MP4V-ES RFC 6416 See section 5.1.3 for details on MPEG-4 SP
mpeg4-generic RFC 3640 See section 5.1.1 for details on AAC and its variants
MP2T RFC 2250 See MPEG-2 Transport Stream underneath HTTP Live Streaming for details

5.8. Sichere Medien

If device implementations support secure video output and are capable of supporting secure surfaces, they:

  • [C-1-1] MUST declare support for Display.FLAG_SECURE .

If device implementations declare support for Display.FLAG_SECURE and support wireless display protocol, they:

  • [C-2-1] MUST secure the link with a cryptographically strong mechanism such as HDCP 2.x or higher for the displays connected through wireless protocols such as Miracast.

If device implementations declare support for Display.FLAG_SECURE and support wired external display, they:

  • [C-3-1] MUST support HDCP 1.2 or higher for all wired external displays.

5.9. Musical Instrument Digital Interface (MIDI)

If a device implementation supports the inter-app MIDI software transport (virtual MIDI devices), and it supports MIDI over all of the following MIDI-capable hardware transports for which it provides generic non-MIDI connectivity, it is:

The MIDI-capable hardware transports are:

  • USB host mode (section 7.7 USB)
  • USB peripheral mode (section 7.7 USB)
  • MIDI over Bluetooth LE acting in central role (section 7.4.3 Bluetooth)

If the device implementation provides generic non-MIDI connectivity over a particular MIDI-capable hardware transport listed above, but does not support MIDI over that hardware transport, it:

  • [C-1-1] MUST NOT report support for feature android.software.midi.

5.10. Professionelles Audio

If device implementations report support for feature android.hardware.audio.pro via the android.content.pm.PackageManager class, they:

  • [C-1-1] MUST report support for feature android.hardware.audio.low_latency .
  • [C-1-2] MUST have the continuous round-trip audio latency, as defined in section 5.6 Audio Latency , MUST be 20 milliseconds or less and SHOULD be 10 milliseconds or less over at least one supported path.
  • [C-1-3] MUST include a USB port(s) supporting USB host mode and USB peripheral mode.
  • [C-1-4] MUST report support for feature android.software.midi .
  • [C-1-5] MUST meet latencies and USB audio requirements using the OpenSL ES PCM buffer queue API.
  • SHOULD provide a sustainable level of CPU performance while audio is active.
  • SHOULD minimize audio clock inaccuracy and drift relative to standard time.
  • SHOULD minimize audio clock drift relative to the CPU CLOCK_MONOTONIC when both are active.
  • SHOULD minimize audio latency over on-device transducers.
  • SHOULD minimize audio latency over USB digital audio.
  • SHOULD document audio latency measurements over all paths.
  • SHOULD minimize jitter in audio buffer completion callback entry times, as this affects usable percentage of full CPU bandwidth by the callback.
  • SHOULD provide zero audio underruns (output) or overruns (input) under normal use at reported latency.
  • SHOULD provide zero inter-channel latency difference.
  • SHOULD minimize MIDI mean latency over all transports.
  • SHOULD minimize MIDI latency variability under load (jitter) over all transports.
  • SHOULD provide accurate MIDI timestamps over all transports.
  • SHOULD minimize audio signal noise over on-device transducers, including the period immediately after cold start.
  • SHOULD provide zero audio clock difference between the input and output sides of corresponding end-points, when both are active. Examples of corresponding end-points include the on-device microphone and speaker, or the audio jack input and output.
  • SHOULD handle audio buffer completion callbacks for the input and output sides of corresponding end-points on the same thread when both are active, and enter the output callback immediately after the return from the input callback. Or if it is not feasible to handle the callbacks on the same thread, then enter the output callback shortly after entering the input callback to permit the application to have a consistent timing of the input and output sides.
  • SHOULD minimize the phase difference between HAL audio buffering for the input and output sides of corresponding end-points.
  • SHOULD minimize touch latency.
  • SHOULD minimize touch latency variability under load (jitter).

If device implementations meet all of the above requirements, they:

If device implementations meet the requirements via the OpenSL ES PCM buffer queue API, they:

  • [SR] STRONGLY RECOMMENDED to also meet the same requirements via the AAudio API.

If device implementations include a 4 conductor 3.5mm audio jack, they:

If device implementations omit a 4 conductor 3.5mm audio jack, they:

  • [C-3-1] MUST have a continuous round-trip audio latency of 20 milliseconds or less.
  • The continuous round-trip audio latency SHOULD be 10 milliseconds or less over the USB host mode port using USB audio class.

If device implementations include a USB port(s) supporting USB host mode, they:

  • [C-4-1] MUST implement the USB audio class.

If device implementations include an HDMI port, they:

  • [C-5-1] MUST support output in stereo and eight channels at 20-bit or 24-bit depth and 192 kHz without bit-depth loss or resampling.

5.11. Capture for Unprocessed

Android includes support for recording of unprocessed audio via the android.media.MediaRecorder.AudioSource.UNPROCESSED audio source. In OpenSL ES, it can be accessed with the record preset SL_ANDROID_RECORDING_PRESET_UNPROCESSED .

If device implementations intent to support unprocessed audio source and make it available to third-party apps, they:

  • [C-1-1] MUST report the support through the android.media.AudioManager property PROPERTY_SUPPORT_AUDIO_SOURCE_UNPROCESSED .

  • [C-1-2] MUST exhibit approximately flat amplitude-versus-frequency characteristics in the mid-frequency range: specifically ±10dB from 100 Hz to 7000 Hz for each and every microphone used to record the unprocessed audio source.

  • [C-1-3] MUST exhibit amplitude levels in the low frequency range: specifically from ±20 dB from 5 Hz to 100 Hz compared to the mid-frequency range for each and every microphone used to record the unprocessed audio source.

  • [C-1-4] MUST exhibit amplitude levels in the high frequency range: specifically from ±30 dB from 7000 Hz to 22 KHz compared to the mid-frequency range for each and every microphone used to record the unprocessed audio source.

  • [C-1-5] MUST set audio input sensitivity such that a 1000 Hz sinusoidal tone source played at 94 dB Sound Pressure Level (SPL) yields a response with RMS of 520 for 16 bit-samples (or -36 dB Full Scale for floating point/double precision samples) for each and every microphone used to record the unprocessed audio source.

  • [C-1-6] MUST have a signal-to-noise ratio (SNR) at 60 dB or higher for each and every microphone used to record the unprocessed audio source. (whereas the SNR is measured as the difference between 94 dB SPL and equivalent SPL of self noise, A-weighted).

  • [C-1-7] MUST have a total harmonic distortion (THD) less than be less than 1% for 1 kHZ at 90 dB SPL input level at each and every microphone used to record the unprocessed audio source.

  • MUST not have any other signal processing (eg Automatic Gain Control, High Pass Filter, or Echo cancellation) in the path other than a level multiplier to bring the level to desired range. Mit anderen Worten:

  • [C-1-8] If any signal processing is present in the architecture for any reason, it MUST be disabled and effectively introduce zero delay or extra latency to the signal path.
  • [C-1-9] The level multiplier, while allowed to be on the path, MUST NOT introduce delay or latency to the signal path.

All SPL measurements are made directly next to the microphone under test. For multiple microphone configurations, these requirements apply to each microphone.

If device implementations declare android.hardware.microphone but do not support unprocessed audio source, they:

  • [C-2-1] MUST return null for the AudioManager.getProperty(PROPERTY_SUPPORT_AUDIO_SOURCE_UNPROCESSED) API method, to properly indicate the lack of support.
  • [SR] are still STRONGLY RECOMMENDED to satisfy as many of the requirements for the signal path for the unprocessed recording source.

6. Developer Tools and Options Compatibility

6.1. Entwicklerwerkzeuge

Geräteimplementierungen:

  • [C-0-1] MUST support the Android Developer Tools provided in the Android SDK.
  • Android Debug Bridge (adb)

    • [C-0-2] MUST support all adb functions as documented in the Android SDK including dumpsys .
    • [C-0-3] MUST NOT alter the format or the contents of device system events (batterystats , diskstats, fingerprint, graphicsstats, netstats, notification, procstats) logged via dumpsys.
    • [C-0-4] MUST have the device-side adb daemon be inactive by default and there MUST be a user-accessible mechanism to turn on the Android Debug Bridge.
    • [C-0-5] MUST support secure adb. Android includes support for secure adb. Secure adb enables adb on known authenticated hosts.
    • [C-0-6] MUST provide a mechanism allowing adb to be connected from a host machine. Zum Beispiel:

      • Device implementations without a USB port supporting peripheral mode MUST implement adb via local-area network (such as Ethernet or Wi-Fi).
      • MUST provide drivers for Windows 7, 9 and 10, allowing developers to connect to the device using the adb protocol.
  • Dalvik Debug Monitor Service (ddms)

    • [C-0-7] MUST support all ddms features as documented in the Android SDK. As ddms uses adb, support for ddms SHOULD be inactive by default, but MUST be supported whenever the user has activated the Android Debug Bridge, as above.
  • Affe
    • [C-0-8] MUST include the Monkey framework and make it available for applications to use.
  • SysTrace
    • [C-0-9] MUST support systrace tool as documented in the Android SDK. Systrace must be inactive by default and there MUST be a user-accessible mechanism to turn on Systrace.

6.2. Entwickleroptionen

Android includes support for developers to configure application development-related settings.

Device implementations MUST provide a consistent experience for Developer Options, they:

  • [C-0-1] MUST honor the android.settings.APPLICATION_DEVELOPMENT_SETTINGS intent to show application development-related settings. The upstream Android implementation hides the Developer Options menu by default and enables users to launch Developer Options after pressing seven (7) times on the Settings > About Device > Build Number menu item.
  • [C-0-2] MUST hide Developer Options by default and MUST provide a mechanism to enable Developer Options without the need for any special allowlisting.
  • MAY temporarily limit access to the Developer Options menu, by visually hiding or disabling the menu, to prevent distraction for scenarios where the safety of the user is of concern.

7. Hardware Compatibility

If a device includes a particular hardware component that has a corresponding API for third-party developers:

  • [C-0-1] The device implementation MUST implement that API as described in the Android SDK documentation.

Wenn eine API im SDK mit einer Hardwarekomponente interagiert, die als optional angegeben ist, und die Geräteimplementierung diese Komponente nicht besitzt:

  • [C-0-2] Complete class definitions (as documented by the SDK) for the component APIs MUST still be presented.
  • [C-0-3] The API's behaviors MUST be implemented as no-ops in some reasonable fashion.
  • [C-0-4] API methods MUST return null values where permitted by the SDK documentation.
  • [C-0-5] API methods MUST return no-op implementations of classes where null values are not permitted by the SDK documentation.
  • [C-0-6] API methods MUST NOT throw exceptions not documented by the SDK documentation.
  • [C-0-7] Device implementations MUST consistently report accurate hardware configuration information via the getSystemAvailableFeatures() and hasSystemFeature(String) methods on the android.content.pm.PackageManager class for the same build fingerprint.

A typical example of a scenario where these requirements apply is the telephony API: Even on non-phone devices, these APIs must be implemented as reasonable no-ops.

7.1. Anzeige und Grafiken

Android includes facilities that automatically adjust application assets and UI layouts appropriately for the device to ensure that third-party applications run well on a variety of hardware configurations . Devices MUST properly implement these APIs and behaviors, as detailed in this section.

The units referenced by the requirements in this section are defined as follows:

  • physical diagonal size . The distance in inches between two opposing corners of the illuminated portion of the display.
  • dots per inch (dpi) . The number of pixels encompassed by a linear horizontal or vertical span of 1”. Where dpi values are listed, both horizontal and vertical dpi must fall within the range.
  • Seitenverhältnis . The ratio of the pixels of the longer dimension to the shorter dimension of the screen. For example, a display of 480x854 pixels would be 854/480 = 1.779, or roughly “16:9”.
  • density-independent pixel (dp) . The virtual pixel unit normalized to a 160 dpi screen, calculated as: pixels = dps * (density/160).

7.1.1. Screen Configuration

7.1.1.1. Bildschirmgröße

The Android UI framework supports a variety of different logical screen layout sizes, and allows applications to query the current configuration's screen layout size via Configuration.screenLayout with the SCREENLAYOUT_SIZE_MASK and Configuration.smallestScreenWidthDp .

  • [C-0-1] Device implementations MUST report the correct layout size for the Configuration.screenLayout as defined in the Android SDK documentation. Specifically, device implementations MUST report the correct logical density-independent pixel (dp) screen dimensions as below:

    • Devices with the Configuration.uiMode set as any value other than UI_MODE_TYPE_WATCH, and reporting a small size for the Configuration.screenLayout , MUST have at least 426 dp x 320 dp.
    • Devices reporting a normal size for the Configuration.screenLayout , MUST have at least 480 dp x 320 dp.
    • Devices reporting a large size for the Configuration.screenLayout , MUST have at least 640 dp x 480 dp.
    • Devices reporting a xlarge size for the Configuration.screenLayout , MUST have at least 960 dp x 720 dp.
  • [C-0-2] Device implementations MUST correctly honor applications' stated support for screen sizes through the < supports-screens > attribute in the AndroidManifest.xml, as described in the Android SDK documentation.

7.1.1.2. Screen Aspect Ratio

While there is no restriction to the screen aspect ratio value of the physical screen display, the screen aspect ratio of the logical display that third-party apps are rendered within, as can be derived from the height and width values reported through the view.Display APIs and Configuration API, MUST meet the following requirements:

  • [C-0-1] Device implementations with the Configuration.uiMode set as UI_MODE_TYPE_NORMAL MUST have an aspect ratio value between 1.3333 (4:3) and 1.86 (roughly 16:9), unless the app can be deemed as ready to be stretched longer by meeting one of the following conditions:

    • The app has declared that it supports a larger screen aspect ratio through the android.max_aspect metadata value.
    • The app declares it is resizeable via the android:resizeableActivity attribute.
    • The app is targeting API level 24 or higher and does not declare a android:MaxAspectRatio that would restrict the allowed aspect ratio.
  • [C-0-2] Device implementations with the Configuration.uiMode set as UI_MODE_TYPE_WATCH MUST have an aspect ratio value set as 1.0 (1:1).

7.1.1.3. Bildschirmdichte

The Android UI framework defines a set of standard logical densities to help application developers target application resources.

  • [C-0-1] By default, device implementations MUST report only one of the following logical Android framework densities through the DENSITY_DEVICE_STABLE API and this value MUST NOT change at any time; however, the device MAY report a different arbitrary density according to the display configuration changes made by the user (for example, display size) set after initial boot.

    • 120 dpi (ldpi)
    • 160 dpi (mdpi)
    • 213 dpi (tvdpi)
    • 240 dpi (hdpi)
    • 260 dpi (260dpi)
    • 280 dpi (280dpi)
    • 300 dpi (300dpi)
    • 320 dpi (xhdpi)
    • 340 dpi (340dpi)
    • 360 dpi (360dpi)
    • 400 dpi (400dpi)
    • 420 dpi (420dpi)
    • 480 dpi (xxhdpi)
    • 560 dpi (560dpi)
    • 640 dpi (xxxhdpi)
  • Device implementations SHOULD define the standard Android framework density that is numerically closest to the physical density of the screen, unless that logical density pushes the reported screen size below the minimum supported. If the standard Android framework density that is numerically closest to the physical density results in a screen size that is smaller than the smallest supported compatible screen size (320 dp width), device implementations SHOULD report the next lowest standard Android framework density.

If there is an affordance to change the display size of the device:

  • [C-1-1] The display size MUST NOT be scaled any larger than 1.5 times the native density or produce an effective minimum screen dimension smaller than 320dp (equivalent to resource qualifier sw320dp), whichever comes first.
  • [C-1-2] Display size MUST NOT be scaled any smaller than 0.85 times the native density.
  • To ensure good usability and consistent font sizes, it is RECOMMENDED that the following scaling of Native Display options be provided (while complying with the limits specified above)
  • Small: 0.85x
  • Default: 1x (Native display scale)
  • Large: 1.15x
  • Larger: 1.3x
  • Largest 1.45x

7.1.2. Messwerte anzeigen

If device implementations include a screen or video output, they:

If device implementations does not include an embedded screen or video output, they:

  • [C-2-1] MUST report reasonable values for all display metrics defined in the android.util.DisplayMetrics API for the emulated default view.Display .

7.1.3. Bildschirmausrichtung

Geräteimplementierungen:

  • [C-0-1] MUST report which screen orientations they support ( android.hardware.screen.portrait and/or android.hardware.screen.landscape ) and MUST report at least one supported orientation. For example, a device with a fixed orientation landscape screen, such as a television or laptop, SHOULD only report android.hardware.screen.landscape .
  • [C-0-2] MUST report the correct value for the device's current orientation, whenever queried via the android.content.res.Configuration.orientation , android.view.Display.getOrientation() , or other APIs.

If device implementations support both screen orientations, they:

  • [C-1-1] MUST support dynamic orientation by applications to either portrait or landscape screen orientation. Das heißt, das Gerät muss die Anforderung der Anwendung nach einer bestimmten Bildschirmausrichtung berücksichtigen.
  • [C-1-2] MUST NOT change the reported screen size or density when changing orientation.
  • MAY select either portrait or landscape orientation as the default.

7.1.4. 2D and 3D Graphics Acceleration

7.1.4.1 OpenGL ES

Geräteimplementierungen:

  • [C-0-1] MUST correctly identify the supported OpenGL ES versions (1.1, 2.0, 3.0, 3.1, 3.2) through the managed APIs (such as via the GLES10.getString() method) and the native APIs.
  • [C-0-2] MUST include the support for all the corresponding managed APIs and native APIs for every OpenGL ES versions they identified to support.

If device implementations include a screen or video output, they:

  • [C-1-1] MUST support both OpenGL ES 1.0 and 2.0, as embodied and detailed in the Android SDK documentation .
  • [SR] are STRONGLY RECOMMENDED to support OpenGL ES 3.0.
  • SHOULD support OpenGL ES 3.1 or 3.2.

If device implementations support any of the OpenGL ES versions, they:

  • [C-2-1] MUST report via the OpenGL ES managed APIs and native APIs any other OpenGL ES extensions they have implemented, and conversely MUST NOT report extension strings that they do not support.
  • [C-2-2] MUST support the EGL_KHR_image , EGL_KHR_image_base , EGL_ANDROID_image_native_buffer , EGL_ANDROID_get_native_client_buffer , EGL_KHR_wait_sync , EGL_KHR_get_all_proc_addresses , EGL_ANDROID_presentation_time , EGL_KHR_swap_buffers_with_damage and EGL_ANDROID_recordable extensions.
  • [SR] are STRONGLY RECOMMENDED to support EGL_KHR_partial_update.
  • SHOULD accurately report via the getString() method, any texture compression format that they support, which is typically vendor-specific.

If device implementations declare support for OpenGL ES 3.0, 3.1, or 3.2, they:

  • [C-3-1] MUST export the corresponding function symbols for these version in addition to the OpenGL ES 2.0 function symbols in the libGLESv2.so library.

If device implementations support OpenGL ES 3.2, they:

  • [C-4-1] MUST support the OpenGL ES Android Extension Pack in its entirety.

If device implementations support the OpenGL ES Android Extension Pack in its entirety, they:

  • [C-5-1] MUST identify the support through the android.hardware.opengles.aep feature flag.

If device implementations expose support for the EGL_KHR_mutable_render_buffer extension, they:

  • [C-6-1] MUST also support the EGL_ANDROID_front_buffer_auto_refresh extension.
7.1.4.2 Vulkan

Android includes support for Vulkan , a low-overhead, cross-platform API for high-performance 3D graphics.

If device implementations support OpenGL ES 3.0 or 3.1, they:

  • [SR] Are STRONGLY RECOMMENDED to include support for Vulkan 1.0 .

If device implementations include a screen or video output, they:

  • SHOULD include support for Vulkan 1.0.

Device implementations, if including support for Vulkan 1.0:

  • [C-1-1] MUST report the correct integer value with the android.hardware.vulkan.level and android.hardware.vulkan.version feature flags.
  • [C-1-2] MUST enumerate, at least one VkPhysicalDevice for the Vulkan native API vkEnumeratePhysicalDevices() .
  • [C-1-3] MUST fully implement the Vulkan 1.0 APIs for each enumerated VkPhysicalDevice .
  • [C-1-4] MUST enumerate layers, contained in native libraries named as libVkLayer*.so in the application package's native library directory, through the Vulkan native APIs vkEnumerateInstanceLayerProperties() and vkEnumerateDeviceLayerProperties() .
  • [C-1-5] MUST NOT enumerate layers provided by libraries outside of the application package, or provide other ways of tracing or intercepting the Vulkan API, unless the application has the android:debuggable attribute set as true .
  • [C-1-6] MUST report all extension strings that they do support via the Vulkan native APIs , and conversely MUST NOT report extension strings that they do not correctly support.

Device implementations, if not including support for Vulkan 1.0:

  • [C-2-1] MUST NOT declare any of the Vulkan feature flags (eg android.hardware.vulkan.level , android.hardware.vulkan.version ).
  • [C-2-2] MUST NOT enumerate any VkPhysicalDevice for the Vulkan native API vkEnumeratePhysicalDevices() .
7.1.4.3 RenderScript
  • [C-0-1] Device implementations MUST support Android RenderScript , as detailed in the Android SDK documentation.
7.1.4.4 2D Graphics Acceleration

Android includes a mechanism for applications to declare that they want to enable hardware acceleration for 2D graphics at the Application, Activity, Window, or View level through the use of a manifest tag android:hardwareAccelerated or direct API calls.

Geräteimplementierungen:

  • [C-0-1] MUST enable hardware acceleration by default, and MUST disable hardware acceleration if the developer so requests by setting android:hardwareAccelerated="false” or disabling hardware acceleration directly through the Android View APIs.
  • [C-0-2] MUST exhibit behavior consistent with the Android SDK documentation on hardware acceleration .

Android includes a TextureView object that lets developers directly integrate hardware-accelerated OpenGL ES textures as rendering targets in a UI hierarchy.

Geräteimplementierungen:

  • [C-0-3] MUST support the TextureView API, and MUST exhibit consistent behavior with the upstream Android implementation.
7.1.4.5 Wide-gamut Displays

If device implementations claim support for wide-gamut displays through Configuration.isScreenWideColorGamut() , they:

  • [C-1-1] MUST have a color-calibrated display.
  • [C-1-2] MUST have a display whose gamut covers the sRGB color gamut entirely in CIE 1931 xyY space.
  • [C-1-3] MUST have a display whose gamut has an area of at least 90% of NTSC 1953 in CIE 1931 xyY space.
  • [C-1-4] MUST support OpenGL ES 3.0, 3.1, or 3.2 and report it properly.
  • [C-1-5] MUST advertise support for the EGL_KHR_no_config_context , EGL_EXT_pixel_format_float , EGL_KHR_gl_colorspace , EGL_EXT_colorspace_scrgb_linear , and EGL_GL_colorspace_display_p3 extensions.
  • [SR] Are STRONGLY RECOMMENDED to support GL_EXT_sRGB .

Conversely, if device implementations do not support wide-gamut displays, they:

  • [C-2-1] SHOULD cover 100% or more of sRGB in CIE 1931 xyY space, although the screen color gamut is undefined.

7.1.5. Legacy Application Compatibility Mode

Android specifies a “compatibility mode” in which the framework operates in a 'normal' screen size equivalent (320dp width) mode for the benefit of legacy applications not developed for old versions of Android that pre-date screen-size independence.

7.1.6. Bildschirmtechnologie

The Android platform includes APIs that allow applications to render rich graphics to the display. Devices MUST support all of these APIs as defined by the Android SDK unless specifically allowed in this document.

Geräteimplementierungen:

  • [C-0-1] MUST support displays capable of rendering 16-bit color graphics.
  • SHOULD support displays capable of 24-bit color graphics.
  • [C-0-2] MUST support displays capable of rendering animations.
  • [C-0-3] MUST use the display technology that have a pixel aspect ratio (PAR) between 0.9 and 1.15. That is, the pixel aspect ratio MUST be near square (1.0) with a 10 ~ 15% tolerance.

7.1.7. Sekundäre Displays

Android includes support for secondary display to enable media sharing capabilities and developer APIs for accessing external displays.

If device implementations support an external display either via a wired, wireless, or an embedded additional display connection, they:

  • [C-1-1] MUST implement the DisplayManager system service and API as described in the Android SDK documentation.

7.2. Eingabegeräte

Geräteimplementierungen:

7.2.1. Tastatur

If device implementations include support for third-party Input Method Editor (IME) applications, they:

Device implementations: [C-0-1] MUST NOT include a hardware keyboard that does not match one of the formats specified in android.content.res.Configuration.keyboard (QWERTY or 12-key). SHOULD include additional soft keyboard implementations. * MAY include a hardware keyboard.

7.2.2. Non-Touch-Navigation

Android includes support for d-pad, trackball, and wheel as mechanisms for non-touch navigation.

Geräteimplementierungen:

If device implementations lack non-touch navigations, they:

  • [C-1-1] MUST provide a reasonable alternative user interface mechanism for the selection and editing of text, compatible with Input Management Engines. The upstream Android open source implementation includes a selection mechanism suitable for use with devices that lack non-touch navigation inputs.

7.2.3. Navigationstasten

The Home , Recents , and Back functions typically provided via an interaction with a dedicated physical button or a distinct portion of the touch screen, are essential to the Android navigation paradigm and therefore:

  • [C-0-1] MUST provide the Home function.
  • SHOULD provide buttons for the Recents and Back function.

If the Home, Recents, or Back functions are provided, they:

  • [C-1-1] MUST be accessible with a single action (eg tap, double-click or gesture) when any of them are accessible.
  • [C-1-2] MUST provide a clear indication of which single action would trigger each function. Having a visible icon imprinted on the button, showing a software icon on the navigation bar portion of the screen, or walking the user through a guided step-by-step demo flow during the out-of-box setup experience are examples of such an Indikation.

Geräteimplementierungen:

  • [SR] are STRONGLY RECOMMENDED to not provide the input mechanism for the Menu function as it is deprecated in favor of action bar since Android 4.0.

If device implementations provide the Menu function, they:

  • [C-2-1] MUST display the action overflow button whenever the action overflow menu popup is not empty and the action bar is visible.
  • [C-2-2] MUST NOT modify the position of the action overflow popup displayed by selecting the overflow button in the action bar, but MAY render the action overflow popup at a modified position on the screen when it is displayed by selecting the Menu Funktion.

If device implementations do not provide the Menu function, for backwards compatibility, they: * [C-3-1] MUST make the Menu function available to applications when targetSdkVersion is less than 10, either by a physical button, a software key, or Gesten. This Menu function should be accessible unless hidden together with other navigation functions.

If device implementations provide the Assist function , they: [C-4-1] MUST make the Assist function accessible with a single action (eg tap, double-click or gesture) when other navigation keys are accessible. [SR] STRONGLY RECOMMENDED to use long press on HOME function as this designated interaction.

If device implementations use a distinct portion of the screen to display the navigation keys, they:

  • [C-5-1] Navigation keys MUST use a distinct portion of the screen, not available to applications, and MUST NOT obscure or otherwise interfere with the portion of the screen available to applications.
  • [C-5-2] MUST make available a portion of the display to applications that meets the requirements defined in section 7.1.1 .
  • [C-5-3] MUST honor the flags set by the app through the View.setSystemUiVisibility() API method, so that this distinct portion of the screen (aka the navigation bar) is properly hidden away as documented in the SDK.

7.2.4. Touchscreen Input

Android includes support for a variety of pointer input systems, such as touchscreens, touch pads, and fake touch input devices. Touchscreen-based device implementations are associated with a display such that the user has the impression of directly manipulating items on screen. Since the user is directly touching the screen, the system does not require any additional affordances to indicate the objects being manipulated.

Geräteimplementierungen:

  • SHOULD have a pointer input system of some kind (either mouse-like or touch).
  • SHOULD support fully independently tracked pointers.

If device implementations include a touchscreen (single-touch or better), they:

  • [C-1-1] MUST report TOUCHSCREEN_FINGER for the Configuration.touchscreen API field.
  • [C-1-2] MUST report the android.hardware.touchscreen and android.hardware.faketouch feature flags

If device implementations include a touchscreen that can track more than a single touch, they:

  • [C-2-1] MUST report the appropriate feature flags android.hardware.touchscreen.multitouch , android.hardware.touchscreen.multitouch.distinct , android.hardware.touchscreen.multitouch.jazzhand corresponding to the type of the specific touchscreen on the Gerät.

If device implementations do not include a touchscreen (and rely on a pointer device only) and meet the fake touch requirements in section 7.2.5 , they:

  • [C-3-1] MUST NOT report any feature flag starting with android.hardware.touchscreen and MUST report only android.hardware.faketouch .

7.2.5. Fake Touch Input

Fake touch interface provides a user input system that approximates a subset of touchscreen capabilities. For example, a mouse or remote control that drives an on-screen cursor approximates touch, but requires the user to first point or focus then click. Numerous input devices like the mouse, trackpad, gyro-based air mouse, gyro-pointer, joystick, and multi-touch trackpad can support fake touch interactions. Android includes the feature constant android.hardware.faketouch, which corresponds to a high-fidelity non-touch (pointer-based) input device such as a mouse or trackpad that can adequately emulate touch-based input (including basic gesture support), and indicates that the device supports an emulated subset of touchscreen functionality.

If device implementations do not include a touchscreen but include another pointer input system which they want to make available, they:

  • SHOULD declare support for the android.hardware.faketouch feature flag.

If device implementations declare support for android.hardware.faketouch , they:

  • [C-1-1] MUST report the absolute X and Y screen positions of the pointer location and display a visual pointer on the screen.
  • [C-1-2] MUST report touch event with the action code that specifies the state change that occurs on the pointer going down or up on the screen .
  • [C-1-3] MUST support pointer down and up on an object on the screen, which allows users to emulate tap on an object on the screen.
  • [C-1-4] MUST support pointer down, pointer up, pointer down then pointer up in the same place on an object on the screen within a time threshold, which allows users to emulate double tap on an object on the screen.
  • [C-1-5] MUST support pointer down on an arbitrary point on the screen, pointer move to any other arbitrary point on the screen, followed by a pointer up, which allows users to emulate a touch drag.
  • [C-1-6] MUST support pointer down then allow users to quickly move the object to a different position on the screen and then pointer up on the screen, which allows users to fling an object on the screen.
  • [C-1-7] MUST report TOUCHSCREEN_NOTOUCH for the Configuration.touchscreen API field.

If device implementations declare support for android.hardware.faketouch.multitouch.distinct , they:

  • [C-2-1] MUST declare support for android.hardware.faketouch .
  • [C-2-2] MUST support distinct tracking of two or more independent pointer inputs.

If device implementations declare support for android.hardware.faketouch.multitouch.jazzhand , they:

  • [C-3-1] MUST declare support for android.hardware.faketouch .
  • [C-3-2] MUST support distinct tracking of 5 (tracking a hand of fingers) or more pointer inputs fully independently.

7.2.6. Game Controller Support

7.2.6.1. Button Mappings

If device implementations declare the android.hardware.gamepad feature flag, they: [C-1-1] MUST have embed a controller or ship with a separate controller in the box, that would provide means to input all the events listed in the below Tische. [C-1-2] MUST be capable to map HID events to it's associated Android view.InputEvent constants as listed in the below tables. The upstream Android implementation includes implementation for game controllers that satisfies this requirement.

Taste HID Usage 2 Android-Taste
Eine 1 0x09 0x0001 KEYCODE_BUTTON_A (96)
B 1 0x09 0x0002 KEYCODE_BUTTON_B (97)
X 1 0x09 0x0004 KEYCODE_BUTTON_X (99)
Ja 1 0x09 0x0005 KEYCODE_BUTTON_Y (100)
D-pad up 1
D-pad down 1
0x01 0x0039 3 AXIS_HAT_Y 4
D-pad left 1
D-pad right 1
0x01 0x0039 3 AXIS_HAT_X 4
Left shoulder button 1 0x09 0x0007 KEYCODE_BUTTON_L1 (102)
Right shoulder button 1 0x09 0x0008 KEYCODE_BUTTON_R1 (103)
Left stick click 1 0x09 0x000E KEYCODE_BUTTON_THUMBL (106)
Right stick click 1 0x09 0x000F KEYCODE_BUTTON_THUMBR (107)
Zuhause 1 0x0c 0x0223 KEYCODE_HOME (3)
Back 1 0x0c 0x0224 KEYCODE_BACK (4)

1 KeyEvent

2 The above HID usages must be declared within a Game pad CA (0x01 0x0005).

3 This usage must have a Logical Minimum of 0, a Logical Maximum of 7, a Physical Minimum of 0, a Physical Maximum of 315, Units in Degrees, and a Report Size of 4. The logical value is defined to be the clockwise rotation away from the vertical axis; for example, a logical value of 0 represents no rotation and the up button being pressed, while a logical value of 1 represents a rotation of 45 degrees and both the up and left keys being pressed.

4 MotionEvent

Analog Controls 1 HID Usage Android-Taste
Linker Trigger 0x02 0x00C5 AXIS_LTRIGGER
Rechter Abzug 0x02 0x00C4 AXIS_RTRIGGER
Left Joystick 0x01 0x0030
0x01 0x0031
AXIS_X
AXIS_Y
Right Joystick 0x01 0x0032
0x01 0x0035
AXIS_Z
AXIS_RZ

1 MotionEvent

7.2.7. Fernbedienung

See Section 2.3.1 for device-specific requirements.

7.3. Sensoren

If device implementations include a particular sensor type that has a corresponding API for third-party developers, the device implementation MUST implement that API as described in the Android SDK documentation and the Android Open Source documentation on sensors .

Geräteimplementierungen:

  • [C-0-1] MUST accurately report the presence or absence of sensors per the android.content.pm.PackageManager class.
  • [C-0-2] MUST return an accurate list of supported sensors via the SensorManager.getSensorList() and similar methods.
  • [C-0-3] MUST behave reasonably for all other sensor APIs (for example, by returning true or false as appropriate when applications attempt to register listeners, not calling sensor listeners when the corresponding sensors are not present; etc.).

If device implementations include a particular sensor type that has a corresponding API for third-party developers, they:

  • [C-1-1] MUST report all sensor measurements using the relevant International System of Units (metric) values for each sensor type as defined in the Android SDK documentation.
  • [C-1-2] MUST report sensor data with a maximum latency of 100 milliseconds
  • 2 * sample_time for the case of a sensor streamed with a minimum required latency of 5 ms + 2 * sample_time when the application processor is active. This delay does not include any filtering delays.
  • [C-1-3] MUST report the first sensor sample within 400 milliseconds + 2 * sample_time of the sensor being activated. It is acceptable for this sample to have an accuracy of 0.
  • [SR] SHOULD report the event time in nanoseconds as defined in the Android SDK documentation, representing the time the event happened and synchronized with the SystemClock.elapsedRealtimeNano() clock. Existing and new Android devices are STRONGLY RECOMMENDED to meet these requirements so they will be able to upgrade to the future platform releases where this might become a REQUIRED component. The synchronization error SHOULD be below 100 milliseconds.

  • [C-1-4] For any API indicated by the Android SDK documentation to be a continuous sensor , device implementations MUST continuously provide periodic data samples that SHOULD have a jitter below 3%, where jitter is defined as the standard deviation of the difference of the reported timestamp values between consecutive events.

  • [C-1-5] MUST ensure that the sensor event stream MUST NOT prevent the device CPU from entering a suspend state or waking up from a suspend state.

  • When several sensors are activated, the power consumption SHOULD NOT exceed the sum of the individual sensor's reported power consumption.

The list above is not comprehensive; the documented behavior of the Android SDK and the Android Open Source Documentations on sensors is to be considered authoritative.

Some sensor types are composite, meaning they can be derived from data provided by one or more other sensors. (Examples include the orientation sensor and the linear acceleration sensor.)

Geräteimplementierungen:

  • SHOULD implement these sensor types, when they include the prerequisite physical sensors as described in sensor types .

If device implementations include a composite sensor, they:

  • [C-2-1] MUST implement the sensor as described in the Android Open Source documentation on composite sensors .

7.3.1. Beschleunigungsmesser

  • Device implementations SHOULD include a 3-axis accelerometer.

If device implementations include a 3-axis accelerometer, they:

  • [C-1-1] MUST be able to report events up to a frequency of at least 50 Hz.
  • [C-1-2] MUST implement and report TYPE_ACCELEROMETER sensor.
  • [C-1-3] MUST comply with the Android sensor coordinate system as detailed in the Android APIs.
  • [C-1-4] MUST be capable of measuring from freefall up to four times the gravity(4g) or more on any axis.
  • [C-1-5] MUST have a resolution of at least 12-bits.
  • [C-1-6] MUST have a standard deviation no greater than 0.05 m/s^, where the standard deviation should be calculated on a per axis basis on samples collected over a period of at least 3 seconds at the fastest sampling rate.
  • [SR] are STRONGLY RECOMMENDED to implement the TYPE_SIGNIFICANT_MOTION composite sensor.
  • [SR] are STRONGLY RECOMMENDED to implement the TYPE_ACCELEROMETER_UNCALIBRATED sensor if online accelerometer calibration is available.
  • SHOULD implement the TYPE_SIGNIFICANT_MOTION , TYPE_TILT_DETECTOR , TYPE_STEP_DETECTOR , TYPE_STEP_COUNTER composite sensors as described in the Android SDK document.
  • SHOULD report events up to at least 200 Hz.
  • SHOULD have a resolution of at least 16-bits.
  • SHOULD be calibrated while in use if the characteristics changes over the life cycle and compensated, and preserve the compensation parameters between device reboots.
  • SHOULD be temperature compensated.
  • SHOULD also implement TYPE_ACCELEROMETER_UNCALIBRATED sensor.

If device implementations include a 3-axis accelerometer and any of the TYPE_SIGNIFICANT_MOTION , TYPE_TILT_DETECTOR , TYPE_STEP_DETECTOR , TYPE_STEP_COUNTER composite sensors are implemented:

  • [C-2-1] The sum of their power consumption MUST always be less than 4 mW.
  • SHOULD each be below 2 mW and 0.5 mW for when the device is in a dynamic or static condition.

If device implementations include a 3-axis accelerometer and a gyroscope sensor, they:

  • [C-3-1] MUST implement the TYPE_GRAVITY and TYPE_LINEAR_ACCELERATION composite sensors.
  • SHOULD implement the TYPE_GAME_ROTATION_VECTOR composite sensor.
  • [SR] Existing and new Android devices are STRONGLY RECOMMENDED to implement the TYPE_GAME_ROTATION_VECTOR sensor.

If device implementations include a 3-axis accelerometer, a gyroscope sensor and a magnetometer sensor, they:

  • [C-4-1] MUST implement a TYPE_ROTATION_VECTOR composite sensor.

7.3.2. Magnetometer

  • Device implementations SHOULD include a 3-axis magnetometer (compass).

If device implementations include a 3-axis magnetometer, they:

  • [C-1-1] MUST implement the TYPE_MAGNETIC_FIELD sensor.
  • [C-1-2] MUST be able to report events up to a frequency of at least 10 Hz and SHOULD report events up to at least 50 Hz.
  • [C-1-3] MUST comply with the Android sensor coordinate system as detailed in the Android APIs.
  • [C-1-4] MUST be capable of measuring between -900 µT and +900 µT on each axis before saturating.
  • [C-1-5] MUST have a hard iron offset value less than 700 µT and SHOULD have a value below 200 µT, by placing the magnetometer far from dynamic (current-induced) and static (magnet-induced) magnetic fields.
  • [C-1-6] MUST have a resolution equal or denser than 0.6 µT.
  • [C-1-7] MUST support online calibration and compensation of the hard iron bias, and preserve the compensation parameters between device reboots.
  • [C-1-8] MUST have the soft iron compensation applied—the calibration can be done either while in use or during the production of the device.
  • [C-1-9] MUST have a standard deviation, calculated on a per axis basis on samples collected over a period of at least 3 seconds at the fastest sampling rate, no greater than 1.5 µT; SHOULD have a standard deviation no greater than 0.5 µT.
  • SHOULD implement TYPE_MAGNETIC_FIELD_UNCALIBRATED sensor.
  • [SR] Existing and new Android devices are STRONGLY RECOMMENDED to implement the TYPE_MAGNETIC_FIELD_UNCALIBRATED sensor.

If device implementations include a 3-axis magnetometer, an accelerometer sensor and a gyroscope sensor, they:

  • [C-2-1] MUST implement a TYPE_ROTATION_VECTOR composite sensor.

If device implementations include a 3-axis magnetometer, an accelerometer, they:

  • MAY implement the TYPE_GEOMAGNETIC_ROTATION_VECTOR sensor.

If device implementations include a 3-axis magnetometer, an accelerometer and TYPE_GEOMAGNETIC_ROTATION_VECTOR sensor, they:

  • [C-3-1] MUST consume less than 10 mW.
  • SHOULD consume less than 3 mW when the sensor is registered for batch mode at 10 Hz.

7.3.3. GPS

Geräteimplementierungen:

  • SHOULD include a GPS/GNSS receiver.

If device implementations include a GPS/GNSS receiver and report the capability to applications through the android.hardware.location.gps feature flag, they:

  • [C-1-1] MUST support location outputs at a rate of at least 1 Hz when requested via LocationManager#requestLocationUpdate .
  • [C-1-2] MUST be able to determine the location in open-sky conditions (strong signals, negligible multipath, HDOP < 2) within 10 seconds (fast time to first fix), when connected to a 0.5 Mbps or faster data speed internet connection. This requirement is typically met by the use of some form of Assisted or Predicted GPS/GNSS technique to minimize GPS/GNSS lock-on time (Assistance data includes Reference Time, Reference Location and Satellite Ephemeris/Clock).
    • [SR] After making such a location calculation, it is STRONGLY RECOMMENDED for the device to be able to determine its location, in open sky, within 10 seconds, when location requests are restarted, up to an hour after the initial location calculation, even when the subsequent request is made without a data connection, and/or after a power cycle.
  • In open sky conditions after determining the location, while stationary or moving with less than 1 meter per second squared of acceleration:

    • [C-1-3] MUST be able to determine location within 20 meters, and speed within 0.5 meters per second, at least 95% of the time.
    • [C-1-4] MUST simultaneously track and report via GnssStatus.Callback at least 8 satellites from one constellation.
    • SHOULD be able to simultaneously track at least 24 satellites, from multiple constellations (eg GPS + at least one of Glonass, Beidou, Galileo).
    • [C-1-5] MUST report the GNSS technology generation through the test API 'getGnssYearOfHardware'.
    • [SR] Continue to deliver normal GPS/GNSS location outputs during an emergency phone call.
    • [SR] Report GNSS measurements from all constellations tracked (as reported in GnssStatus messages), with the exception of SBAS.
    • [SR] Report AGC, and Frequency of GNSS measurement.
    • [SR] Report all accuracy estimates (including Bearing, Speed, and Vertical) as part of each GPS Location.
    • [SR] are STRONGLY RECOMMENDED to meet as many as possible from the additional mandatory requirements for devices reporting the year "2016" or "2017" through the Test API LocationManager.getGnssYearOfHardware() .

If device implementations include a GPS/GNSS receiver and report the capability to applications through the android.hardware.location.gps feature flag and the LocationManager.getGnssYearOfHardware() Test API reports the year "2016" or newer, they:

  • [C-2-1] MUST report GPS measurements, as soon as they are found, even if a location calculated from GPS/GNSS is not yet reported.
  • [C-2-2] MUST report GPS pseudoranges and pseudorange rates, that, in open-sky conditions after determining the location, while stationary or moving with less than 0.2 meter per second squared of acceleration, are sufficient to calculate position within 20 meters, and speed within 0.2 meters per second, at least 95% of the time.

If device implementations include a GPS/GNSS receiver and report the capability to applications through the android.hardware.location.gps feature flag and the LocationManager.getGnssYearOfHardware() Test API reports the year "2017" or newer, they:

  • [C-3-1] MUST continue to deliver normal GPS/GNSS location outputs during an emergency phone call.
  • [C-3-2] MUST report GNSS measurements from all constellations tracked (as reported in GnssStatus messages), with the exception of SBAS.
  • [C-3-3] MUST report AGC, and Frequency of GNSS measurement.
  • [C-3-4] MUST report all accuracy estimates (including Bearing, Speed, and Vertical) as part of each GPS Location.

7.3.4. Gyroskop

Geräteimplementierungen:

  • SHOULD include a gyroscope (angular change sensor).
  • SHOULD NOT include a gyroscope sensor unless a 3-axis accelerometer is also included.

If device implementations include a gyroscope, they:

  • [C-1-1] MUST be able to report events up to a frequency of at least 50 Hz.
  • [C-1-2] MUST implement the TYPE_GYROSCOPE sensor and SHOULD also implement TYPE_GYROSCOPE_UNCALIBRATED sensor.
  • [C-1-3] MUST be capable of measuring orientation changes up to 1,000 degrees per second.
  • [C-1-4] MUST have a resolution of 12-bits or more and SHOULD have a resolution of 16-bits or more.
  • [C-1-5] MUST be temperature compensated.
  • [C-1-6] MUST be calibrated and compensated while in use, and preserve the compensation parameters between device reboots.
  • [C-1-7] MUST have a variance no greater than 1e-7 rad^2 / s^2 per Hz (variance per Hz, or rad^2 / s). The variance is allowed to vary with the sampling rate, but MUST be constrained by this value. In other words, if you measure the variance of the gyro at 1 Hz sampling rate it SHOULD be no greater than 1e-7 rad^2/s^2.
  • [SR] Existing and new Android devices are STRONGLY RECOMMENDED to implement the SENSOR_TYPE_GYROSCOPE_UNCALIBRATED sensor.
  • [SR] Calibration error is STRONGLY RECOMMENDED to be less than 0.01 rad/s when device is stationary at room temperature.
  • SHOULD report events up to at least 200 Hz.

If device implementations include a gyroscope, an accelerometer sensor and a magnetometer sensor, they:

  • [C-2-1] MUST implement a TYPE_ROTATION_VECTOR composite sensor.

If device implementations include a gyroscope and a accelerometer sensor, they:

  • [C-3-1] MUST implement the TYPE_GRAVITY and TYPE_LINEAR_ACCELERATION composite sensors.
  • [SR] Existing and new Android devices are STRONGLY RECOMMENDED to implement the TYPE_GAME_ROTATION_VECTOR sensor.
  • SHOULD implement the TYPE_GAME_ROTATION_VECTOR composite sensor.

7.3.5. Barometer

  • Device implementations SHOULD include a barometer (ambient air pressure sensor).

If device implementations include a barometer, they:

  • [C-1-1] MUST implement and report TYPE_PRESSURE sensor.
  • [C-1-2] MUST be able to deliver events at 5 Hz or greater.
  • [C-1-3] MUST be temperature compensated.
  • [SR] STRONGLY RECOMMENDED to be able to report pressure measurements in the range 300hPa to 1100hPa.
  • SHOULD have an absolute accuracy of 1hPa.
  • SHOULD have a relative accuracy of 0.12hPa over 20hPa range (equivalent to ~1m accuracy over ~200m change at sea level).

7.3.6. Thermometer

Device implementations: MAY include an ambient thermometer (temperature sensor). MAY but SHOULD NOT include a CPU temperature sensor.

If device implementations include an ambient thermometer (temperature sensor), they:

  • [C-1-1] MUST be defined as SENSOR_TYPE_AMBIENT_TEMPERATURE and MUST measure the ambient (room/vehicle cabin) temperature from where the user is interacting with the device in degrees Celsius.
  • [C-1-2] MUST be defined as SENSOR_TYPE_TEMPERATURE .
  • [C-1-3] MUST measure the temperature of the device CPU.
  • [C-1-4] MUST NOT measure any other temperature.

Note the SENSOR_TYPE_TEMPERATURE sensor type was deprecated in Android 4.0.

7.3.7. Photometer

  • Device implementations MAY include a photometer (ambient light sensor).

7.3.8. Näherungssensor

  • Device implementations MAY include a proximity sensor.

If device implementations include a proximity sensor, they:

  • [C-1-1] MUST measure the proximity of an object in the same direction as the screen. That is, the proximity sensor MUST be oriented to detect objects close to the screen, as the primary intent of this sensor type is to detect a phone in use by the user. If device implementations include a proximity sensor with any other orientation, it MUST NOT be accessible through this API.
  • [C-1-2] MUST have 1-bit of accuracy or more.

7.3.9. High Fidelity Sensors

If device implementations include a set of higher quality sensors as defined in this section, and make available them to third-party apps, they:

  • [C-1-1] MUST identify the capability through the android.hardware.sensor.hifi_sensors feature flag.

If device implementations declare android.hardware.sensor.hifi_sensors , they:

  • [C-2-1] MUST have a TYPE_ACCELEROMETER sensor which:

    • MUST have a measurement range between at least -8g and +8g.
    • MUST have a measurement resolution of at least 1024 LSB/G.
    • MUST have a minimum measurement frequency of 12.5 Hz or lower.
    • MUST have a maximum measurement frequency of 400 Hz or higher.
    • MUST have a measurement noise not above 400 uG/√Hz.
    • MUST implement a non-wake-up form of this sensor with a buffering capability of at least 3000 sensor events.
    • MUST have a batching power consumption not worse than 3 mW.
    • SHOULD have a stationary noise bias stability of \<15 μg √Hz from 24hr static dataset.
    • SHOULD have a bias change vs. temperature of ≤ +/- 1mg / °C.
    • SHOULD have a best-fit line non-linearity of ≤ 0.5%, and sensitivity change vs. temperature of ≤ 0.03%/C°.
    • SHOULD have white noise spectrum to ensure adequate qualification of sensor's noise integrity.
  • [C-2-2] MUST have a TYPE_ACCELEROMETER_UNCALIBRATED with the same quality requirements as TYPE_ACCELEROMETER .

  • [C-2-3] MUST have a TYPE_GYROSCOPE sensor which:

    • MUST have a measurement range between at least -1000 and +1000 dps.
    • MUST have a measurement resolution of at least 16 LSB/dps.
    • MUST have a minimum measurement frequency of 12.5 Hz or lower.
    • MUST have a maximum measurement frequency of 400 Hz or higher.
    • MUST have a measurement noise not above 0.014°/s/√Hz.
    • SHOULD have a stationary bias stability of < 0.0002 °/s √Hz from 24-hour static dataset.
    • SHOULD have a bias change vs. temperature of ≤ +/- 0.05 °/ s / °C.
    • SHOULD have a sensitivity change vs. temperature of ≤ 0.02% / °C.
    • SHOULD have a best-fit line non-linearity of ≤ 0.2%.
    • SHOULD have a noise density of ≤ 0.007 °/s/√Hz.
    • SHOULD have white noise spectrum to ensure adequate qualification of sensor's noise integrity.
    • SHOULD have calibration error less than 0.002 rad/s in temperature range 10 ~ 40 ℃ when device is stationary.
  • [C-2-4] MUST have a TYPE_GYROSCOPE_UNCALIBRATED with the same quality requirements as TYPE_GYROSCOPE .

  • [C-2-5] MUST have a TYPE_GEOMAGNETIC_FIELD sensor which:
    • MUST have a measurement range between at least -900 and +900 uT.
    • MUST have a measurement resolution of at least 5 LSB/uT.
    • MUST have a minimum measurement frequency of 5 Hz or lower.
    • MUST have a maximum measurement frequency of 50 Hz or higher.
    • MUST have a measurement noise not above 0.5 uT.
  • [C-2-6] MUST have a TYPE_MAGNETIC_FIELD_UNCALIBRATED with the same quality requirements as TYPE_GEOMAGNETIC_FIELD and in addition:
    • MUST implement a non-wake-up form of this sensor with a buffering capability of at least 600 sensor events.
    • SHOULD have white noise spectrum to ensure adequate qualification of sensor's noise integrity.
  • [C-2-7] MUST have a TYPE_PRESSURE sensor which:
    • MUST have a measurement range between at least 300 and 1100 hPa.
    • MUST have a measurement resolution of at least 80 LSB/hPa.
    • MUST have a minimum measurement frequency of 1 Hz or lower.
    • MUST have a maximum measurement frequency of 10 Hz or higher.
    • MUST have a measurement noise not above 2 Pa/√Hz.
    • MUST implement a non-wake-up form of this sensor with a buffering capability of at least 300 sensor events.
    • MUST have a batching power consumption not worse than 2 mW.
  • [C-2-8] MUST have a TYPE_GAME_ROTATION_VECTOR sensor which:
    • MUST implement a non-wake-up form of this sensor with a buffering capability of at least 300 sensor events.
    • MUST have a batching power consumption not worse than 4 mW.
  • [C-2-9] MUST have a TYPE_SIGNIFICANT_MOTION sensor which:
    • MUST have a power consumption not worse than 0.5 mW when device is static and 1.5 mW when device is moving.
  • [C-2-10] MUST have a TYPE_STEP_DETECTOR sensor which:
    • MUST implement a non-wake-up form of this sensor with a buffering capability of at least 100 sensor events.
    • MUST have a power consumption not worse than 0.5 mW when device is static and 1.5 mW when device is moving.
    • MUST have a batching power consumption not worse than 4 mW.
  • [C-2-11] MUST have a TYPE_STEP_COUNTER sensor which:
    • MUST have a power consumption not worse than 0.5 mW when device is static and 1.5 mW when device is moving.
  • [C-2-12] MUST have a TILT_DETECTOR sensor which:
    • MUST have a power consumption not worse than 0.5 mW when device is static and 1.5 mW when device is moving.
  • [C-2-13] The event timestamp of the same physical event reported by the Accelerometer, Gyroscope sensor and Magnetometer MUST be within 2.5 milliseconds of each other.
  • [C-2-14] MUST have Gyroscope sensor event timestamps on the same time base as the camera subsystem and within 1 milliseconds of error.
  • [C-2-15] MUST deliver samples to applications within 5 milliseconds from the time when the data is available on any of the above physical sensors to the application.
  • [C-2-16] MUST not have a power consumption higher than 0.5 mW when device is static and 2.0 mW when device is moving when any combination of the following sensors are enabled:
    • SENSOR_TYPE_SIGNIFICANT_MOTION
    • SENSOR_TYPE_STEP_DETECTOR
    • SENSOR_TYPE_STEP_COUNTER
    • SENSOR_TILT_DETECTORS
  • [C-2-17] MAY have a TYPE_PROXIMITY sensor, but if present MUST have a minimum buffer capability of 100 sensor events.

Note that all power consumption requirements in this section do not include the power consumption of the Application Processor. It is inclusive of the power drawn by the entire sensor chain—the sensor, any supporting circuitry, any dedicated sensor processing system, etc.

If device implementations include direct sensor support, they:

  • [C-3-1] MUST correctly declare support of direct channel types and direct report rates level through the isDirectChannelTypeSupported and getHighestDirectReportRateLevel API.
  • [C-3-2] MUST support at least one of the two sensor direct channel types for all sensors that declare support for sensor direct channel
  • TYPE_HARDWARE_BUFFER
  • TYPE_MEMORY_FILE
  • SHOULD support event reporting through sensor direct channel for primary sensor (non-wakeup variant) of the following types:
  • TYPE_ACCELEROMETER
  • TYPE_ACCELEROMETER_UNCALIBRATED
  • TYPE_GYROSCOPE
  • TYPE_GYROSCOPE_UNCALIBRATED
  • TYPE_MAGNETIC_FIELD
  • TYPE_MAGNETIC_FIELD_UNCALIBRATED

7.3.10. Fingerabdruck Sensor

If device implementations include a secure lock screen, they:

  • SHOULD include a fingerprint sensor.

If device implementations include a fingerprint sensor and make the sensor available to third-party apps, they:

  • [C-1-1] MUST declare support for the android.hardware.fingerprint feature.
  • [C-1-2] MUST fully implement the corresponding API as described in the Android SDK documentation.
  • [C-1-3] MUST have a false acceptance rate not higher than 0.002%.
  • [C-1-4] MUST rate limit attempts for at least 30 seconds after five false trials for fingerprint verification.
  • [C-1-5] MUST have a hardware-backed keystore implementation, and perform the fingerprint matching in a Trusted Execution Environment (TEE) or on a chip with a secure channel to the TEE.
  • [C-1-6] MUST have all identifiable fingerprint data encrypted and cryptographically authenticated such that they cannot be acquired, read or altered outside of the Trusted Execution Environment (TEE) as documented in the implementation guidelines on the Android Open Source Project site.
  • [C-1-7] MUST prevent adding a fingerprint without first establishing a chain of trust by having the user confirm existing or add a new device credential (PIN/pattern/password) that's secured by TEE; the Android Open Source Project implementation provides the mechanism in the framework to do so.
  • [C-1-8] MUST NOT enable 3rd-party applications to distinguish between individual fingerprints.
  • [C-1-9] MUST honor the DevicePolicyManager.KEYGUARD_DISABLE_FINGERPRINT flag.
  • [C-1-10] MUST, when upgraded from a version earlier than Android 6.0, have the fingerprint data securely migrated to meet the above requirements or removed.
  • [SR] STRONGLY RECOMMENDED to have a false rejection rate of less than 10%, as measured on the device.
  • [SR] STRONGLY RECOMMENDED to have a latency below 1 second, measured from when the fingerprint sensor is touched until the screen is unlocked, for one enrolled finger.
  • SHOULD use the Android Fingerprint icon provided in the Android Open Source Project.

7.3.11. Android Automotive-only sensors

Automotive-specific sensors are defined in the android.car.CarSensorManager API .

7.3.11.1. Aktueller Gang

See Section 2.5.1 for device-specific requirements.

7.3.11.2. Day Night Mode

See Section 2.5.1 for device-specific requirements.

7.3.11.3. Driving Status

See Section 2.5.1 for device-specific requirements.

7.3.11.4. Wheel Speed

See Section 2.5.1 for device-specific requirements.

7.3.12. Pose Sensor

Geräteimplementierungen:

  • MAY support pose sensor with 6 degrees of freedom.

If device implementations support pose sensor with 6 degrees of freedom, they:

  • [C-1-1] MUST implement and report TYPE_POSE_6DOF sensor.
  • [C-1-2] MUST be more accurate than the rotation vector alone.

7.4. Datenkonnektivität

7.4.1. Telefonie

“Telephony” as used by the Android APIs and this document refers specifically to hardware related to placing voice calls and sending SMS messages via a GSM or CDMA network. While these voice calls may or may not be packet-switched, they are for the purposes of Android considered independent of any data connectivity that may be implemented using the same network. In other words, the Android “telephony” functionality and APIs refer specifically to voice calls and SMS. For instance, device implementations that cannot place calls or send/receive SMS messages are not considered a telephony device, regardless of whether they use a cellular network for data connectivity.

  • Android MAY be used on devices that do not include telephony hardware. That is, Android is compatible with devices that are not phones.

If device implementations include GSM or CDMA telephony, they:

  • [C-1-1] MUST declare the android.hardware.telephony feature flag and other sub-feature flags according to the technology.
  • [C-1-2] MUST implement full support for the API for that technology.

If device implementations do not include telephony hardware, they:

  • [C-2-1] MUST implement the full APIs as no-ops.
7.4.1.1. Number Blocking Compatibility

If device implementations report the android.hardware.telephony feature , they:

  • [C-1-1] MUST include number blocking support
  • [C-1-2] MUST fully implement BlockedNumberContract and the corresponding API as described in the SDK documentation.
  • [C-1-3] MUST block all calls and messages from a phone number in 'BlockedNumberProvider' without any interaction with apps. The only exception is when number blocking is temporarily lifted as described in the SDK documentation.
  • [C-1-4] MUST NOT write to the platform call log provider for a blocked call.
  • [C-1-5] MUST NOT write to the Telephony provider for a blocked message.
  • [C-1-6] MUST implement a blocked numbers management UI, which is opened with the intent returned by TelecomManager.createManageBlockedNumbersIntent() method.
  • [C-1-7] MUST NOT allow secondary users to view or edit the blocked numbers on the device as the Android platform assumes the primary user to have full control of the telephony services, a single instance, on the device. All blocking related UI MUST be hidden for secondary users and the blocked list MUST still be respected.
  • SHOULD migrate the blocked numbers into the provider when a device updates to Android 7.0.

7.4.2. IEEE 802.11 (Wi-Fi)

Geräteimplementierungen:

  • SHOULD include support for one or more forms of 802.11.

If device implementations include support for 802.11 and expose the functionality to a third-party application, they:

  • [C-1-1] MUST implement the corresponding Andr:oid API.
  • [C-1-2] MUST report the hardware feature flag android.hardware.wifi .
  • [C-1-3] MUST implement the multicast API as described in the SDK documentation.
  • [C-1-4] MUST support multicast DNS (mDNS) and MUST NOT filter mDNS packets (224.0.0.251) at any time of operation including:
    • Even when the screen is not in an active state.
    • For Android Television device implementations, even when in standby power states.
  • SHOULD randomize the source MAC address and sequence number of probe request frames, once at the beginning of each scan, while STA is disconnected.
    • Each group of probe request frames comprising one scan should use one consistent MAC address (SHOULD NOT randomize MAC address halfway through a scan).
    • Probe request sequence number should iterate as normal (sequentially) between the probe requests in a scan
    • Probe request sequence number should randomize between the last probe request of a scan and the first probe request of the next scan
  • SHOULD only allow the following information elements in probe request frames, while STA is disconnected:
    • SSID Parameter Set (0)
    • DS Parameter Set (3)
7.4.2.1. Wi-Fi Direct

Geräteimplementierungen:

  • SHOULD include support for Wi-Fi Direct (Wi-Fi peer-to-peer).

If device implementations include support for Wi-Fi Direct, they:

  • [C-1-1] MUST implement the corresponding Android API as described in the SDK documentation.
  • [C-1-2] MUST report the hardware feature android.hardware.wifi.direct .
  • [C-1-3] MUST support regular Wi-Fi operation.
  • SHOULD support Wi-Fi and Wi-Fi Direct operations concurrently.

Geräteimplementierungen:

If device implementations include support for TDLS and TDLS is enabled by the WiFiManager API, they:

  • [C-1-1] MUST declare support for TDLS through WifiManager.isTdlsSupported .
  • SHOULD use TDLS only when it is possible AND beneficial.
  • SHOULD have some heuristic and NOT use TDLS when its performance might be worse than going through the Wi-Fi access point.
7.4.2.3. Wi-Fi Aware

Geräteimplementierungen:

If device implementations include support for Wi-Fi Aware and expose the functionality to third-party apps, then they:

  • [C-1-1] MUST implement the WifiAwareManager APIs as described in the SDK documentation .
  • [C-1-2] MUST declare the android.hardware.wifi.aware feature flag.
  • [C-1-3] MUST support Wi-Fi and Wi-Fi Aware operations concurrently.
  • [C-1-4] MUST randomize the Wi-Fi Aware management interface address at intervals no longer then 30 minutes and whenever Wi-Fi Aware is enabled.
7.4.2.4. WLAN-Passpunkt

Geräteimplementierungen:

If device implementations include support for Wi-Fi Passpoint, they:

  • [C-1-1] MUST implement the Passpoint related WifiManager APIs as described in the SDK documentation .
  • [C-1-2] MUST support IEEE 802.11u standard, specifically related to Network Discovery and Selection, such as Generic Advertisement Service (GAS) and Access Network Query Protocol (ANQP).

Conversely if device implementations do not include support for Wi-Fi Passpoint:

  • [C-2-1] The implementation of the Passpoint related WifiManager APIs MUST throw an UnsupportedOperationException .

7.4.3. Bluetooth

If device implementations support Bluetooth Audio profile, they:

  • SHOULD support Advanced Audio Codecs and Bluetooth Audio Codecs (eg LDAC).

If device implementations declare android.hardware.vr.high_performance feature, they:

  • [C-1-1] MUST support Bluetooth 4.2 and Bluetooth LE Data Length Extension.

Android includes support for Bluetooth and Bluetooth Low Energy .

If device implementations include support for Bluetooth and Bluetooth Low Energy, they:

  • [C-2-1] MUST declare the relevant platform features ( android.hardware.bluetooth and android.hardware.bluetooth_le respectively) and implement the platform APIs.
  • SHOULD implement relevant Bluetooth profiles such as A2DP, AVCP, OBEX, etc. as appropriate for the device.

If device implementations include support for Bluetooth Low Energy, they:

  • [C-3-1] MUST declare the hardware feature android.hardware.bluetooth_le .
  • [C-3-2] MUST enable the GATT (generic attribute profile) based Bluetooth APIs as described in the SDK documentation and android.bluetooth .
  • [C-3-3] MUST report the correct value for BluetoothAdapter.isOffloadedFilteringSupported() to indicate whether the filtering logic for the ScanFilter API classes is implemented.
  • [C-3-4] MUST report the correct value for BluetoothAdapter.isMultipleAdvertisementSupported() to indicate whether Low Energy Advertising is supported.
  • SHOULD support offloading of the filtering logic to the bluetooth chipset when implementing the ScanFilter API .
  • SHOULD support offloading of the batched scanning to the bluetooth chipset.
  • SHOULD support multi advertisement with at least 4 slots.

  • [SR] STRONGLY RECOMMENDED to implement a Resolvable Private Address (RPA) timeout no longer than 15 minutes and rotate the address at timeout to protect user privacy.

7.4.4. Nahfeldkommunikation

Geräteimplementierungen:

  • SHOULD include a transceiver and related hardware for Near-Field Communications (NFC).
  • [C-0-1] MUST implement android.nfc.NdefMessage and android.nfc.NdefRecord APIs even if they do not include support for NFC or declare the android.hardware.nfc feature as the classes represent a protocol-independent data representation format .

If device implementations include NFC hardware and plan to make it available to third-party apps, they:

  • [C-1-1] MUST report the android.hardware.nfc feature from the android.content.pm.PackageManager.hasSystemFeature() method .
  • MUST be capable of reading and writing NDEF messages via the following NFC standards as below:
  • [C-1-2] MUST be capable of acting as an NFC Forum reader/writer (as defined by the NFC Forum technical specification NFCForum-TS-DigitalProtocol-1.0) via the following NFC standards:
    • NfcA (ISO14443-3A)
    • NfcB (ISO14443-3B)
    • NfcF (JIS X 6319-4)
    • IsoDep (ISO 14443-4)
    • NFC Forum Tag Types 1, 2, 3, 4, 5 (defined by the NFC Forum)
  • [SR] STRONGLY RECOMMENDED to be capable of reading and writing NDEF messages as well as raw data via the following NFC standards. Note that while the NFC standards are stated as STRONGLY RECOMMENDED, the Compatibility Definition for a future version is planned to change these to MUST. These standards are optional in this version but will be required in future versions. Existing and new devices that run this version of Android are very strongly encouraged to meet these requirements now so they will be able to upgrade to the future platform releases.

  • [C-1-3] MUST be capable of transmitting and receiving data via the following peer-to-peer standards and protocols:

    • ISO 18092
    • LLCP 1.2 (defined by the NFC Forum)
    • SDP 1.0 (defined by the NFC Forum)
    • NDEF Push Protocol
    • SNEP 1.0 (defined by the NFC Forum)
  • [C-1-4] MUST include support for Android Beam and SHOULD enable Android Beam by default.
  • [C-1-5] MUST be able to send and receive using Android Beam, when Android Beam is enabled or another proprietary NFC P2p mode is turned on.
  • [C-1-6] MUST implement the SNEP default server. Valid NDEF messages received by the default SNEP server MUST be dispatched to applications using the android.nfc.ACTION_NDEF_DISCOVERED intent. Disabling Android Beam in settings MUST NOT disable dispatch of incoming NDEF message.
  • [C-1-7] MUST honor the android.settings.NFCSHARING_SETTINGS intent to show NFC sharing settings .
  • [C-1-8] MUST implement the NPP server. Messages received by the NPP server MUST be processed the same way as the SNEP default server.
  • [C-1-9] MUST implement a SNEP client and attempt to send outbound P2P NDEF to the default SNEP server when Android Beam is enabled. If no default SNEP server is found then the client MUST attempt to send to an NPP server.
  • [C-1-10] MUST allow foreground activities to set the outbound P2P NDEF message using android.nfc.NfcAdapter.setNdefPushMessage , and android.nfc.NfcAdapter.setNdefPushMessageCallback , and android.nfc.NfcAdapter.enableForegroundNdefPush .
  • SHOULD use a gesture or on-screen confirmation, such as 'Touch to Beam', before sending outbound P2P NDEF messages.
  • [C-1-11] MUST support NFC Connection handover to Bluetooth when the device supports Bluetooth Object Push Profile.
  • [C-1-12] MUST support connection handover to Bluetooth when using android.nfc.NfcAdapter.setBeamPushUris , by implementing the “ Connection Handover version 1.2 ” and “ Bluetooth Secure Simple Pairing Using NFC version 1.0 ” specs from the NFC Forum. Such an implementation MUST implement the handover LLCP service with service name “urn:nfc:sn:handover” for exchanging the handover request/select records over NFC, and it MUST use the Bluetooth Object Push Profile for the actual Bluetooth data transfer. For legacy reasons (to remain compatible with Android 4.1 devices), the implementation SHOULD still accept SNEP GET requests for exchanging the handover request/select records over NFC. However an implementation itself SHOULD NOT send SNEP GET requests for performing connection handover.
  • [C-1-13] MUST poll for all supported technologies while in NFC discovery mode.
  • SHOULD be in NFC discovery mode while the device is awake with the screen active and the lock-screen unlocked.
  • SHOULD be capable of reading the barcode and URL (if encoded) of Thinfilm NFC Barcode products.

(Note that publicly available links are not available for the JIS, ISO, and NFC Forum specifications cited above.)

Android includes support for NFC Host Card Emulation (HCE) mode.

If device implementations include an NFC controller chipset capable of HCE (for NfcA and/or NfcB) and support Application ID (AID) routing, they:

  • [C-2-1] MUST report the android.hardware.nfc.hce feature constant.
  • [C-2-2] MUST support NFC HCE APIs as defined in the Android SDK.

If device implementations include an NFC controller chipset capable of HCE for NfcF, and implement the feature for third-party applications, they:

  • [C-3-1] MUST report the android.hardware.nfc.hcef feature constant.
  • [C-3-2] MUST implement the NfcF Card Emulation APIs as defined in the Android SDK.

If device implementations include general NFC support as described in this section and support MIFARE technologies (MIFARE Classic, MIFARE Ultralight, NDEF on MIFARE Classic) in the reader/writer role, they:

  • [C-4-1] MUST implement the corresponding Android APIs as documented by the Android SDK.
  • [C-4-2] MUST report the feature com.nxp.mifare from the android.content.pm.PackageManager.hasSystemFeature () method. Note that this is not a standard Android feature and as such does not appear as a constant in the android.content.pm.PackageManager class.

7.4.5. Minimum Network Capability

Geräteimplementierungen:

  • [C-0-1] MUST include support for one or more forms of data networking. Specifically, device implementations MUST include support for at least one data standard capable of 200Kbit/sec or greater. Examples of technologies that satisfy this requirement include EDGE, HSPA, EV-DO, 802.11g, Ethernet, Bluetooth PAN, etc.
  • [C-0-2] MUST include an IPv6 networking stack and support IPv6 communication using the managed APIs, such as java.net.Socket and java.net.URLConnection , as well as the native APIs, such as AF_INET6 sockets.
  • [C-0-3] MUST enable IPv6 by default.
  • MUST ensure that IPv6 communication is as reliable as IPv4, for example.
  • [C-0-4] MUST maintain IPv6 connectivity in doze mode.
  • [C-0-5] Rate-limiting MUST NOT cause the device to lose IPv6 connectivity on any IPv6-compliant network that uses RA lifetimes of at least 180 seconds.
  • SHOULD also include support for at least one common wireless data standard, such as 802.11 (Wi-Fi) when a physical networking standard (such as Ethernet) is the primary data connection
  • MAY implement more than one form of data connectivity.

The required level of IPv6 support depends on the network type, as follows:

If devices implementations support Wi-Fi networks, they:

  • [C-1-1] MUST support dual-stack and IPv6-only operation on Wi-Fi.

If device implementations support Ethernet networks, they:

  • [C-2-1] MUST support dual-stack operation on Ethernet.

If device implementations support cellular data, they:

  • [C-3-1] MUST simultaneously meet these requirements on each network to which it is connected when a device is simultaneously connected to more than one network (eg, Wi-Fi and cellular data), .
  • SHOULD support IPv6 operation (IPv6-only and possibly dual-stack) on cellular data.

7.4.6. Synchronisierungseinstellungen

Geräteimplementierungen:

7.4.7. Datensparer

If device implementations include a metered connection, they are:

  • [SR] STRONGLY RECOMMENDED to provide the data saver mode.

If device implementations provide the data saver mode, they:

If device implementations do not provide the data saver mode, they:

  • [C-2-1] MUST return the value RESTRICT_BACKGROUND_STATUS_DISABLED for ConnectivityManager.getRestrictBackgroundStatus()
  • [C-2-2] MUST NOT broadcast ConnectivityManager.ACTION_RESTRICT_BACKGROUND_CHANGED .
  • [C-2-3] MUST have an activity that handles the Settings.ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS_SETTINGS intent but MAY implement it as a no-op.

7.5. Kameras

If device implementations include at least one camera, they:

  • [C-1-1] MUST declare the android.hardware.camera.any feature flag.
  • [C-1-2] MUST be possible for an application to simultaneously allocate 3 RGBA_8888 bitmaps equal to the size of the images produced by the largest-resolution camera sensor on the device, while camera is open for the purpose of basic preview and still erfassen.

7.5.1. Nach hinten gerichtete Kamera

A rear-facing camera is a camera located on the side of the device opposite the display; that is, it images scenes on the far side of the device, like a traditional camera.

Geräteimplementierungen:

  • SHOULD include a rear-facing camera.

If device implementations include at least one rear-facing camera, they:

  • [C-1-1] MUST report the feature flag android.hardware.camera and android.hardware.camera.any .
  • [C-1-2] MUST have a resolution of at least 2 megapixels.
  • SHOULD have either hardware auto-focus or software auto-focus implemented in the camera driver (transparent to application software).
  • MAY have fixed-focus or EDOF (extended depth of field) hardware.
  • KANN einen Blitz enthalten.

If the camera includes a flash:

  • [C-2-1] the flash lamp MUST NOT be lit while an android.hardware.Camera.PreviewCallback instance has been registered on a Camera preview surface, unless the application has explicitly enabled the flash by enabling the FLASH_MODE_AUTO or FLASH_MODE_ON attributes of a Camera.Parameters Objekt. Beachten Sie, dass diese Einschränkung nicht für die integrierte Systemkameraanwendung des Geräts gilt, sondern nur für Anwendungen von Drittanbietern, die Camera.PreviewCallback verwenden.

7.5.2. Front-Kamera

A front-facing camera is a camera located on the same side of the device as the display; that is, a camera typically used to image the user, such as for video conferencing and similar applications.

Geräteimplementierungen:

  • MAY include a front-facing camera.

If device implementations include at least one front-facing camera, they:

  • [C-1-1] MUST report the feature flag android.hardware.camera.any and android.hardware.camera.front .
  • [C-1-2] MUST have a resolution of at least VGA (640x480 pixels).
  • [C-1-3] MUST NOT use a front-facing camera as the default for the Camera API and MUST NOT configure the API to treat a front-facing camera as the default rear-facing camera, even if it is the only camera auf dem Gerät.
  • [C-1-4] The camera preview MUST be mirrored horizontally relative to the orientation specified by the application when the current application has explicitly requested that the Camera display be rotated via a call to the android.hardware.Camera.setDisplayOrientation() method . Conversely, the preview MUST be mirrored along the device's default horizontal axis when the current application does not explicitly request that the Camera display be rotated via a call to the android.hardware.Camera.setDisplayOrientation() method.
  • [C-1-5] MUST NOT mirror the final captured still image or video streams returned to application callbacks or committed to media storage.
  • [C-1-6] MUST mirror the image displayed by the postview in the same manner as the camera preview image stream.
  • MAY include features (such as auto-focus, flash, etc.) available to rear-facing cameras as described in section 7.5.1 .

If device implementations are capable of being rotated by user (such as automatically via an accelerometer or manually via user input):

  • [C-2-1] The camera preview MUST be mirrored horizontally relative to the device's current orientation.

7.5.3. External Camera

Geräteimplementierungen:

  • MAY include support for an external camera that is not necessarily always connected.

If device implementations include support for an external camera, they:

  • [C-1-1] MUST declare the platform feature flag android.hardware.camera.external and android.hardware camera.any .
  • [C-1-2] MUST support USB Video Class (UVC 1.0 or higher) if the external camera connects through the USB port.
  • SHOULD support video compressions such as MJPEG to enable transfer of high-quality unencoded streams (ie raw or independently compressed picture streams).
  • MAY support multiple cameras.
  • MAY support camera-based video encoding.

If camera-based video encoding is supported:

  • [C-2-1] A simultaneous unencoded / MJPEG stream (QVGA or greater resolution) MUST be accessible to the device implementation.

7.5.4. Camera API Behavior

Android includes two API packages to access the camera, the newer android.hardware.camera2 API expose lower-level camera control to the app, including efficient zero-copy burst/streaming flows and per-frame controls of exposure, gain, white balance gains, color conversion, denoising, sharpening, and more.

The older API package, android.hardware.Camera , is marked as deprecated in Android 5.0 but as it should still be available for apps to use. Android device implementations MUST ensure the continued support of the API as described in this section and in the Android SDK.

Device implementations MUST implement the following behaviors for the camera-related APIs, for all available cameras. Geräteimplementierungen:

  • [C-0-1] MUST use android.hardware.PixelFormat.YCbCr_420_SP for preview data provided to application callbacks when an application has never called android.hardware.Camera.Parameters.setPreviewFormat(int) .
  • [C-0-2] MUST further be in the NV21 encoding format when an application registers an android.hardware.Camera.PreviewCallback instance and the system calls the onPreviewFrame() method and the preview format is YCbCr_420_SP, the data in the byte[] passed into onPreviewFrame() . That is, NV21 MUST be the default.
  • [C-0-3] MUST support the YV12 format (as denoted by the android.graphics.ImageFormat.YV12 constant) for camera previews for both front- and rear-facing cameras for android.hardware.Camera . (The hardware video encoder and camera may use any native pixel format, but the device implementation MUST support conversion to YV12.)
  • [C-0-4] MUST support the android.hardware.ImageFormat.YUV_420_888 and android.hardware.ImageFormat.JPEG formats as outputs through the android.media.ImageReader API for android.hardware.camera2 .
  • [C-0-5] MUST still implement the full Camera API included in the Android SDK documentation, regardless of whether the device includes hardware autofocus or other capabilities. For instance, cameras that lack autofocus MUST still call any registered android.hardware.Camera.AutoFocusCallback instances (even though this has no relevance to a non-autofocus camera.) Note that this does apply to front-facing cameras; for instance, even though most front-facing cameras do not support autofocus, the API callbacks must still be “faked” as described.
  • [C-0-6] MUST recognize and honor each parameter name defined as a constant on the android.hardware.Camera.Parameters class. Conversely, device implementations MUST NOT honor or recognize string constants passed to the android.hardware.Camera.setParameters() method other than those documented as constants on the android.hardware.Camera.Parameters . Das heißt, Geräteimplementierungen MÜSSEN alle standardmäßigen Kameraparameter unterstützen, sofern die Hardware dies zulässt, und DÜRFEN benutzerdefinierte Kameraparametertypen NICHT unterstützen. For instance, device implementations that support image capture using high dynamic range (HDR) imaging techniques MUST support camera parameter Camera.SCENE_MODE_HDR .
  • [C-0-7] MUST report the proper level of support with the android.info.supportedHardwareLevel property as described in the Android SDK and report the appropriate framework feature flags .
  • [C-0-8] MUST also declare its individual camera capabilities of android.hardware.camera2 via the android.request.availableCapabilities property and declare the appropriate feature flags ; MUST define the feature flag if any of its attached camera devices supports the feature.
  • [C-0-9] MUST broadcast the Camera.ACTION_NEW_PICTURE intent whenever a new picture is taken by the camera and the entry of the picture has been added to the media store.
  • [C-0-10] MUST broadcast the Camera.ACTION_NEW_VIDEO intent whenever a new video is recorded by the camera and the entry of the picture has been added to the media store.

7.5.5. Camera Orientation

If device implementations have a front- or a rear-facing camera, such camera(s):

  • [C-1-1] MUST be oriented so that the long dimension of the camera aligns with the screen's long dimension. That is, when the device is held in the landscape orientation, cameras MUST capture images in the landscape orientation. This applies regardless of the device's natural orientation; that is, it applies to landscape-primary devices as well as portrait-primary devices.

7.6. Erinnerung und Speicherung

7.6.1. Minimum Memory and Storage

Geräteimplementierungen:

  • [C-0-1] MUST include a Download Manager that applications MAY use to download data files and they MUST be capable of downloading individual files of at least 100MB in size to the default “cache” location.

7.6.2. Gemeinsamer Anwendungsspeicher

Geräteimplementierungen:

  • [C-0-1] MUST offer storage to be shared by applications, also often referred as “shared external storage”, "application shared storage" or by the Linux path "/sdcard" it is mounted on.
  • [C-0-2] MUST be configured with shared storage mounted by default, in other words “out of the box”, regardless of whether the storage is implemented on an internal storage component or a removable storage medium (eg Secure Digital card slot ).
  • [C-0-3] MUST mount the application shared storage directly on the Linux path sdcard or include a Linux symbolic link from sdcard to the actual mount point.
  • [C-0-4] MUST enforce the android.permission.WRITE_EXTERNAL_STORAGE permission on this shared storage as documented in the SDK. Ansonsten MUSS jede Anwendung, die diese Berechtigung erhält, auf den gemeinsam genutzten Speicher schreiben können.

Device implementations MAY meet the above requirements using either of the following:

  • User-accessible removable storage, such as a Secure Digital (SD) card slot.
  • A portion of the internal (non-removable) storage as implemented in the Android Open Source Project (AOSP).

If device implementations use removable storage to satisfy the above requirements, they:

  • [C-1-1] MUST implement a toast or pop-up user interface warning the user when there is no storage medium inserted in the slot.
  • [C-1-2] MUST include a FAT-formatted storage medium (eg SD card) or show on the box and other material available at time of purchase that the storage medium has to be purchased separately.

If device implementations use a protion of the non-removable storage to satisfy the above requirements, they:

  • SHOULD use the AOSP implementation of the internal application shared storage.
  • MAY share the storage space with the application private data.

If device implementations include multiple shared storage paths (such as both an SD card slot and shared internal storage), they:

  • [C-2-1] MUST allow only pre-installed and privileged Android applications with the WRITE_EXTERNAL_STORAGE permission to write to the secondary external storage, except when writing to their package-specific directories or within the URI returned by firing the ACTION_OPEN_DOCUMENT_TREE intent.

If device implementations have a USB port with USB peripheral mode support, they:

  • [C-3-1] MUST provide a mechanism to access the data on the application shared storage from a host computer.
  • SHOULD expose content from both storage paths transparently through Android's media scanner service and android.provider.MediaStore .
  • MAY use USB mass storage, but SHOULD use Media Transfer Protocol to satisfy this requirement.

If device implementations have a USB port with USB peripheral mode and support Media Transfer Protocol, they:

  • SHOULD be compatible with the reference Android MTP host, Android File Transfer .
  • SHOULD report a USB device class of 0x00.
  • SHOULD report a USB interface name of 'MTP'.

7.6.3. Adoptable Storage

If the device is expected to be mobile in nature unlike Television, device implementations are:

  • [SR] STRONGLY RECOMMENDED to implement the adoptable storage in a long-term stable location, since accidentally disconnecting them can cause data loss/corruption.

If the removable storage device port is in a long-term stable location, such as within the battery compartment or other protective cover, device implementations are:

7.7. USB

If device implementations have a USB port, they:

  • SHOULD support USB peripheral mode and SHOULD support USB host mode.

7.7.1. USB peripheral mode

If device implementations include a USB port supporting peripheral mode:

  • [C-1-1] The port MUST be connectable to a USB host that has a standard type-A or type-C USB port.
  • [C-1-2] MUST report the correct value of iSerialNumber in USB standard device descriptor through android.os.Build.SERIAL .
  • [C-1-3] MUST detect 1.5A and 3.0A chargers per the Type-C resistor standard and MUST detect changes in the advertisement if they support Type-C USB.
  • [SR] The port SHOULD use micro-B, micro-AB or Type-C USB form factor. Existing and new Android devices are STRONGLY RECOMMENDED to meet these requirements so they will be able to upgrade to the future platform releases.
  • [SR] The port SHOULD be located on the bottom of the device (according to natural orientation) or enable software screen rotation for all apps (including home screen), so that the display draws correctly when the device is oriented with the port at bottom . Existing and new Android devices are STRONGLY RECOMMENDED to meet these requirements so they will be able to upgrade to future platform releases.
  • [SR] SHOULD implement support to draw 1.5 A current during HS chirp and traffic as specified in the USB Battery Charging specification, revision 1.2 . Existing and new Android devices are STRONGLY RECOMMENDED to meet these requirements so they will be able to upgrade to the future platform releases.
  • [SR] STRONGLY RECOMMENDED to not support proprietary charging methods that modify Vbus voltage beyond default levels, or alter sink/source roles as such may result in interoperability issues with the chargers or devices that support the standard USB Power Delivery methods. While this is called out as "STRONGLY RECOMMENDED", in future Android versions we might REQUIRE all type-C devices to support full interoperability with standard type-C chargers.
  • [SR] STRONGLY RECOMMENDED to support Power Delivery for data and power role swapping when they support Type-C USB and USB host mode.
  • SHOULD support Power Delivery for high-voltage charging and support for Alternate Modes such as display out.
  • SHOULD implement the Android Open Accessory (AOA) API and specification as documented in the Android SDK documentation.

If device implementations including a USB port, implement the AOA specification, they:

  • [C-2-1] MUST declare support for the hardware feature android.hardware.usb.accessory .
  • [C-2-2] The USB mass storage class MUST include the string "android" at the end of the interface description iInterface string of the USB mass storage
  • SHOULD NOT implement AOAv2 audio documented in the Android Open Accessory Protocol 2.0 documentation. AOAv2 audio is deprecated as of Android version 8.0 (API level 26).

7.7.2. USB host mode

If device implementations include a USB port supporting host mode, they:

  • [C-1-1] MUST implement the Android USB host API as documented in the Android SDK and MUST declare support for the hardware feature android.hardware.usb.host .
  • [C-1-2] MUST implement support to connect standard USB peripherals, in other words, they MUST either:
    • Have an on-device type C port or ship with cable(s) adapting an on-device proprietary port to a standard USB type-C port (USB Type-C device).
    • Have an on-device type A or ship with cable(s) adapting an on-device proprietary port to a standard USB type-A port.
    • Have an on-device micro-AB port, which SHOULD ship with a cable adapting to a standard type-A port.
  • [C-1-3] MUST NOT ship with an adapter converting from USB type A or micro-AB ports to a type-C port (receptacle).
  • [SR] STRONGLY RECOMMENDED to implement the USB audio class as documented in the Android SDK documentation.
  • SHOULD support charging the connected USB peripheral device while in host mode; advertising a source current of at least 1.5A as specified in the Termination Parameters section of the USB Type-C Cable and Connector Specification Revision 1.2 for USB Type-C connectors or using Charging Downstream Port(CDP) output current range as specified in the USB Battery Charging specifications, revision 1.2 for Micro-AB connectors.
  • SHOULD implement and support USB Type-C standards.

If device implementations include a USB port supporting host mode and the USB audio class, they:

  • [C-2-1] MUST support the USB HID class .
  • [C-2-2] MUST support the detection and mapping of the following HID data fields specified in the USB HID Usage Tables and the Voice Command Usage Request to the KeyEvent constants as below:
    • Usage Page (0xC) Usage ID (0x0CD): KEYCODE_MEDIA_PLAY_PAUSE
    • Usage Page (0xC) Usage ID (0x0E9): KEYCODE_VOLUME_UP
    • Usage Page (0xC) Usage ID (0x0EA): KEYCODE_VOLUME_DOWN
    • Usage Page (0xC) Usage ID (0x0CF): KEYCODE_VOICE_ASSIST

If device implementations include a USB port supporting host mode and the Storage Access Framework (SAF), they:

  • [C-3-1] MUST recognize any remotely connected MTP (Media Transfer Protocol) devices and make their contents accessible through the ACTION_GET_CONTENT , ACTION_OPEN_DOCUMENT , and ACTION_CREATE_DOCUMENT intents. .

If device implementations include a USB port supporting host mode and USB Type-C, they:

  • [C-4-1] MUST implement Dual Role Port functionality as defined by the USB Type-C specification (section 4.5.1.3.3).
  • [SR] STRONGLY RECOMMENDED to support DisplayPort, SHOULD support USB SuperSpeed Data Rates, and are STRONGLY RECOMMENDED to support Power Delivery for data and power role swapping.
  • [SR] STRONGLY RECOMMENDED to NOT support Audio Adapter Accessory Mode as described in the Appendix A of the USB Type-C Cable and Connector Specification Revision 1.2 .
  • SHOULD implement the Try.* model that is most appropriate for the device form factor. For example a handheld device SHOULD implement the Try.SNK model.

7.8. Audio

7.8.1. Mikrofon

If device implementations include a microphone, they:

  • [C-1-1] MUST report the android.hardware.microphone feature constant.
  • [C-1-2] MUST meet the audio recording requirements in section 5.4 .
  • [C-1-3] MUST meet the audio latency requirements in section 5.6 .
  • [SR] Are STRONGLY RECOMMENDED to support near-ultrasound recording as described in section 7.8.3 .

If device implementations omit a microphone, they:

  • [C-2-1] MUST NOT report the android.hardware.microphone feature constant.
  • [C-2-2] MUST implement the audio recording API at least as no-ops, per section 7 .

7.8.2. Audioausgang

If device implementations include a speaker or an audio/multimedia output port for an audio output peripheral such as a 4 conductor 3.5mm audio jack or USB host mode port using USB audio class , they:

  • [C-1-1] MUST report the android.hardware.audio.output feature constant.
  • [C-1-2] MUST meet the audio playback requirements in section 5.5 .
  • [C-1-3] MUST meet the audio latency requirements in section 5.6 .
  • [SR] STRONGLY RECOMMENDED to support near-ultrasound playback as described in section 7.8.3 .

If device implementations do not include a speaker or audio output port, they:

  • [C-2-1] MUST NOT report the android.hardware.audio output feature.
  • [C-2-2] MUST implement the Audio Output related APIs as no-ops at least.

For the purposes of this section, an "output port" is a physical interface such as a 3.5mm audio jack, HDMI, or USB host mode port with USB audio class. Support for audio output over radio-based protocols such as Bluetooth, WiFi, or cellular network does not qualify as including an "output port".

7.8.2.1. Analog Audio Ports

In order to be compatible with the headsets and other audio accessories using the 3.5mm audio plug across the Android ecosystem, if a device implementation includes one or more analog audio ports, at least one of the audio port(s) SHOULD be a 4 conductor 3,5-mm-Audiobuchse.

If device implementations have a 4 conductor 3.5mm audio jack, they:

  • [C-1-1] MUST support audio playback to stereo headphones and stereo headsets with a microphone.
  • [C-1-2] MUST support TRRS audio plugs with the CTIA pin-out order.
  • [C-1-3] MUST support the detection and mapping to the keycodes for the following 3 ranges of equivalent impedance between the microphone and ground conductors on the audio plug:
    • 70 ohm or less : KEYCODE_HEADSETHOOK
    • 210-290 ohm : KEYCODE_VOLUME_UP
    • 360-680 ohm : KEYCODE_VOLUME_DOWN
  • [C-1-4] MUST trigger ACTION_HEADSET_PLUG upon a plug insert, but only after all contacts on plug are touching their relevant segments on the jack.
  • [C-1-5] MUST be capable of driving at least 150mV ± 10% of output voltage on a 32 ohm speaker impedance.
  • [C-1-6] MUST have a microphone bias voltage between 1.8V ~ 2.9V.
  • [SR] STRONGLY RECOMMENDED to detect and map to the keycode for the following range of equivalent impedance between the microphone and ground conductors on the audio plug:
    • 110-180 ohm: KEYCODE_VOICE_ASSIST
  • SHOULD support audio plugs with the OMTP pin-out order.
  • SHOULD support audio recording from stereo headsets with a microphone.

If device implementations have a 4 conductor 3.5mm audio jack and support a microphone, and broadcast the android.intent.action.HEADSET_PLUG with the extra value microphone set as 1, they:

  • [C-2-1] MUST support the detection of microphone on the plugged in audio accessory.

7.8.3. Near-Ultrasound

Near-Ultrasound audio is the 18.5 kHz to 20 kHz band.

Geräteimplementierungen:

If PROPERTY_SUPPORT_MIC_NEAR_ULTRASOUND is "true", the following requirements MUST be met by the VOICE_RECOGNITION and UNPROCESSED audio sources:

  • [C-1-1] The microphone's mean power response in the 18.5 kHz to 20 kHz band MUST be no more than 15 dB below the response at 2 kHz.
  • [C-1-2] The microphone's unweighted signal to noise ratio over 18.5 kHz to 20 kHz for a 19 kHz tone at -26 dBFS MUST be no lower than 50 dB.

If PROPERTY_SUPPORT_SPEAKER_NEAR_ULTRASOUND is "true":

  • [C-2-1] The speaker's mean response in 18.5 kHz - 20 kHz MUST be no lower than 40 dB below the response at 2 kHz.

7.9. Virtuelle Realität

Android includes APIs and facilities to build "Virtual Reality" (VR) applications including high quality mobile VR experiences. Device implementations MUST properly implement these APIs and behaviors, as detailed in this section.

7.9.1. Virtual Reality Mode

Android includes support for VR Mode , a feature which handles stereoscopic rendering of notifications and disables monocular system UI components while a VR application has user focus.

7.9.2. Virtual Reality High Performance

If device implementations identify the support of high performance VR for longer user periods through the android.hardware.vr.high_performance feature flag, they:

  • [C-1-1] MUST have at least 2 physical cores.
  • [C-1-2] MUST declare android.software.vr.mode feature .
  • [C-1-3] MUST support sustained performance mode.
  • [C-1-4] MUST support OpenGL ES 3.2.
  • [C-1-5] MUST support Vulkan Hardware Level 0 and SHOULD support Vulkan Hardware Level 1.
  • [C-1-6] MUST implement EGL_KHR_mutable_render_buffer , EGL_ANDROID_front_buffer_auto_refresh , EGL_ANDROID_get_native_client_buffer , EGL_KHR_fence_sync , EGL_KHR_wait_sync , EGL_IMG_context_priority , EGL_EXT_protected_content , and expose the extensions in the list of available EGL extensions.
  • [C-1-7] The GPU and display MUST be able to synchronize access to the shared front buffer such that alternating-eye rendering of VR content at 60fps with two render contexts will be displayed with no visible tearing artifacts.
  • [C-1-8] MUST implement GL_EXT_multisampled_render_to_texture , GL_OVR_multiview , GL_OVR_multiview2 , GL_OVR_multiview_multisampled_render_to_texture , GL_EXT_protected_textures , and expose the extensions in the list of available GL extensions.
  • [C-1-9] MUST implement support for AHardwareBuffer flags AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER and AHARDWAREBUFFER_USAGE_SENSOR_DIRECT_DATA as described in the NDK.
  • [C-1-10] MUST implement support for AHardwareBuffers with more than one layer.
  • [C-1-11] MUST support H.264 decoding at least 3840x2160@30fps-40Mbps (equivalent to 4 instances of 1920x1080@30fps-10Mbps or 2 instances of 1920x1080@60fps-20Mbps).
  • [C-1-12] MUST support HEVC and VP9, MUST be capable to decode at least 1920x1080@30fps-10Mbps and SHOULD be capable to decode 3840x2160@30fps-20Mbps (equivalent to 4 instances of 1920x1080@30fps-5Mbps).
  • [C-1-13] MUST support HardwarePropertiesManager.getDeviceTemperatures API and return accurate values for skin temperature.
  • [C-1-14] MUST have an embedded screen, and its resolution MUST be at least be FullHD(1080p) and STRONGLY RECOMMENDED TO BE be QuadHD (1440p) or higher.
  • [C-1-15] The display MUST update at least 60 Hz while in VR Mode.
  • [C-1-16] The display latency on Gray-to-Gray, White-to-Black, and Black-to-White switching time MUST be ≤ 3 ms.
  • [C-1-17] The display MUST support a low-persistence mode with ≤5 ms persistence, persistence being defined as the amount of time for which a pixel is emitting light.
  • [C-1-18] MUST support Bluetooth 4.2 and Bluetooth LE Data Length Extension section 7.4.3 .
  • [SR] STRONGLY RECOMMENDED to support android.hardware.sensor.hifi_sensors feature and MUST meet the gyroscope, accelerometer, and magnetometer related requirements for android.hardware.hifi_sensors .
  • MAY provide an exclusive core to the foreground application and MAY support the Process.getExclusiveCores API to return the numbers of the cpu cores that are exclusive to the top foreground application.

If exclusive core is supported, then the core:

  • [C-2-1] MUST not allow any other userspace processes to run on it (except device drivers used by the application), but MAY allow some kernel processes to run as necessary.

8. Performance and Power

Some minimum performance and power criteria are critical to the user experience and impact the baseline assumptions developers would have when developing an app.

8.1. User Experience Consistency

A smooth user interface can be provided to the end user if there are certain minimum requirements to ensure a consistent frame rate and response times for applications and games. Device implementations, depending on the device type, MAY have measurable requirements for the user interface latency and task switching as described in section 2 .

8.2. File I/O Access Performance

Providing a common baseline for a consistent file access performance on the application private data storage ( /data partition) allows app developers to set a proper expectation that would help their software design. Device implementations, depending on the device type, MAY have certain requirements described in section 2 for the following read and write operations:

  • Sequential write performance . Measured by writing a 256MB file using 10MB write buffer.
  • Random write performance . Measured by writing a 256MB file using 4KB write buffer.
  • Sequential read performance . Measured by reading a 256MB file using 10MB write buffer.
  • Random read performance . Measured by reading a 256MB file using 4KB write buffer.

8.3. Power-Saving Modes

Android includes App Standby and Doze power-saving modes to optimize battery usage. [SR] All Apps exempted from these modes are STRONGLY RECOMMENDED to be made visible to the end user. [SR] The triggering, maintenance, wakeup algorithms and the use of global system settings of these power-saving modes are STRONGLY RECOMMENDED NOT to deviate from the Android Open Source Project.

In addition to the power-saving modes, Android device implementations MAY implement any or all of the 4 sleeping power states as defined by the Advanced Configuration and Power Interface (ACPI).

If device implementations implements S3 and S4 power states as defined by the ACPI, they:

  • [C-1-1] MUST only enter these states when closing a lid that is physically part of the device.

8.4. Power Consumption Accounting

A more accurate accounting and reporting of the power consumption provides the app developer both the incentives and the tools to optimize the power usage pattern of the application.

Geräteimplementierungen:

  • [SR] STRONGLY RECOMMENDED to provide a per-component power profile that defines the current consumption value for each hardware component and the approximate battery drain caused by the components over time as documented in the Android Open Source Project site.
  • [SR] STRONGLY RECOMMENDED to report all power consumption values in milliampere hours (mAh).
  • [SR] STRONGLY RECOMMENDED to report CPU power consumption per each process's UID. The Android Open Source Project meets the requirement through the uid_cputime kernel module implementation.
  • [SR] STRONGLY RECOMMENDED to make this power usage available via the adb shell dumpsys batterystats shell command to the app developer.
  • SHOULD be attributed to the hardware component itself if unable to attribute hardware component power usage to an application.

8.5. Consistent Performance

Performance can fluctuate dramatically for high-performance long-running apps, either because of the other apps running in the background or the CPU throttling due to temperature limits. Android includes programmatic interfaces so that when the device is capable, the top foreground application can request that the system optimize the allocation of the resources to address such fluctuations.

Geräteimplementierungen:

If device implementations report support of Sustained Performance Mode, they:

  • [C-1-1] MUST provide the top foreground application a consistent level of performance for at least 30 minutes, when the app requests it.
  • [C-1-2] MUST honor the Window.setSustainedPerformanceMode() API and other related APIs.

If device implementations include two or more CPU cores, they:

  • SHOULD provide at least one exclusive core that can be reserved by the top foreground application.

If device implementations support reserving one exclusive core for the top foreground application, they:

  • [C-2-1] MUST report through the Process.getExclusiveCores() API method the ID numbers of the exclusive cores that can be reserved by the top foreground application.
  • [C-2-2] MUST not allow any user space processes except the device drivers used by the application to run on the exclusive cores, but MAY allow some kernel processes to run as necessary.

If device implementations do not support an exclusive core, they:

9. Security Model Compatibility

Geräteimplementierungen:

  • [C-0-1] MUST implement a security model consistent with the Android platform security model as defined in Security and Permissions reference document in the APIs in the Android developer documentation.

  • [C-0-2] MUST support installation of self-signed applications without requiring any additional permissions/certificates from any third parties/authorities. Specifically, compatible devices MUST support the security mechanisms described in the follow subsections.

9.1. Berechtigungen

Geräteimplementierungen:

  • [C-0-1] MUST support the Android permissions model as defined in the Android developer documentation. Specifically, they MUST enforce each permission defined as described in the SDK documentation; Es dürfen keine Berechtigungen weggelassen, geändert oder ignoriert werden.

  • MAY add additional permissions, provided the new permission ID strings are not in the android.\* namespace.

  • [C-0-2] Permissions with a protectionLevel of PROTECTION_FLAG_PRIVILEGED MUST only be granted to apps preloaded in the privileged path(s) of the system image and within the subset of the explicitly allowlisted permissions for each app. The AOSP implementation meets this requirement by reading and honoring the allowlisted permissions for each app from the files in the etc/permissions/ path and using the system/priv-app path as the privileged path.

Permissions with a protection level of dangerous are runtime permissions. Applications with targetSdkVersion > 22 request them at runtime.

Geräteimplementierungen:

  • [C-0-3] MUST show a dedicated interface for the user to decide whether to grant the requested runtime permissions and also provide an interface for the user to manage runtime permissions.
  • [C-0-4] MUST have one and only one implementation of both user interfaces.
  • [C-0-5] MUST NOT grant any runtime permissions to preinstalled apps unless:
  • the user's consent can be obtained before the application uses it
  • the runtime permissions are associated with an intent pattern for which the preinstalled application is set as the default handler

If device implementations include a pre-installed app or wish to allow third-party apps to access the usage statistics, they:

  • [SR] are STRONGLY RECOMMENDED provide user-accessible mechanism to grant or revoke access to the usage stats in response to the android.settings.ACTION_USAGE_ACCESS_SETTINGS intent for apps that declare the android.permission.PACKAGE_USAGE_STATS permission.

If device implementations intend to disallow any apps, including pre-installed apps, from accessing the usage statistics, they:

  • [C-1-1] MUST still have an activity that handles the android.settings.ACTION_USAGE_ACCESS_SETTINGS intent pattern but MUST implement it as a no-op, that is to have an equivalent behavior as when the user is declined for access.

9.2. UID und Prozessisolation

Geräteimplementierungen:

  • [C-0-1] MUST support the Android application sandbox model, in which each application runs as a unique Unixstyle UID and in a separate process.
  • [C-0-2] MUST support running multiple applications as the same Linux user ID, provided that the applications are properly signed and constructed, as defined in the Security and Permissions reference .

9.3. Dateisystemberechtigungen

Geräteimplementierungen:

9.4. Alternative Ausführungsumgebungen

Device implementations MUST keep consistency of the Android security and permission model, even if they include runtime environments that execute applications using some other software or technology than the Dalvik Executable Format or native code. Mit anderen Worten:

  • [C-0-1] Alternate runtimes MUST themselves be Android applications, and abide by the standard Android security model, as described elsewhere in section 9 .

  • [C-0-2] Alternate runtimes MUST NOT be granted access to resources protected by permissions not requested in the runtime's AndroidManifest.xml file via the < uses-permission > mechanism.

  • [C-0-3] Alternate runtimes MUST NOT permit applications to make use of features protected by Android permissions restricted to system applications.

  • [C-0-4] Alternate runtimes MUST abide by the Android sandbox model and installed applications using an alternate runtime MUST NOT reuse the sandbox of any other app installed on the device, except through the standard Android mechanisms of shared user ID and signing certificate .

  • [C-0-5] Alternate runtimes MUST NOT launch with, grant, or be granted access to the sandboxes corresponding to other Android applications.

  • [C-0-6] Alternate runtimes MUST NOT be launched with, be granted, or grant to other applications any privileges of the superuser (root), or of any other user ID.

  • [C-0-7] When the .apk files of alternate runtimes are included in the system image of device implementations, it MUST be signed with a key distinct from the key used to sign other applications included with the device implementations.

  • [C-0-8] When installing applications, alternate runtimes MUST obtain user consent for the Android permissions used by the application.

  • [C-0-9] When an application needs to make use of a device resource for which there is a corresponding Android permission (such as Camera, GPS, etc.), the alternate runtime MUST inform the user that the application will be able to access that resource.

  • [C-0-10] When the runtime environment does not record application capabilities in this manner, the runtime environment MUST list all permissions held by the runtime itself when installing any application using that runtime.

  • Alternate runtimes SHOULD install apps via the PackageManager into separate Android sandboxes (Linux user IDs, etc.).

  • Alternative Laufzeiten KÖNNEN eine einzige Android-Sandbox bereitstellen, die von allen Anwendungen, die die alternative Laufzeit verwenden, gemeinsam genutzt wird.

9.5. Multi-User Support

Android includes support for multiple users and provides support for full user isolation.

  • Device implementations MAY but SHOULD NOT enable multi-user if they use removable media for primary external storage.

If device implementations include multiple users, they:

  • [C-1-1] MUST meet the following requirements related to multi-user support .
  • [C-1-2] MUST, for each user, implement a security model consistent with the Android platform security model as defined in Security and Permissions reference document in the APIs.
  • [C-1-3] MUST have separate and isolated shared application storage (aka /sdcard ) directories for each user instance.
  • [C-1-4] MUST ensure that applications owned by and running on behalf a given user cannot list, read, or write to the files owned by any other user, even if the data of both users are stored on the same volume or Dateisystem.
  • [C-1-5] MUST encrypt the contents of the SD card when multiuser is enabled using a key stored only on non-removable media accessible only to the system if device implementations use removable media for the external storage APIs. As this will make the media unreadable by a host PC, device implementations will be required to switch to MTP or a similar system to provide host PCs with access to the current user's data.

If device implementations include multiple users and do not declare the android.hardware.telephony feature flag, they:

  • [C-2-1] MUST support restricted profiles, a feature that allows device owners to manage additional users and their capabilities on the device. With restricted profiles, device owners can quickly set up separate environments for additional users to work in, with the ability to manage finer-grained restrictions in the apps that are available in those environments.

If device implementations include multiple users and declare the android.hardware.telephony feature flag, they:

  • [C-3-1] MUST NOT support restricted profiles but MUST align with the AOSP implementation of controls to enable /disable other users from accessing the voice calls and SMS.

9.6. Premium SMS Warning

Android includes support for warning users of any outgoing premium SMS message . Premium SMS messages are text messages sent to a service registered with a carrier that may incur a charge to the user.

If device implementations declare support for android.hardware.telephony , they:

  • [C-1-1] MUST warn users before sending a SMS message to numbers identified by regular expressions defined in /data/misc/sms/codes.xml file in the device. The upstream Android Open Source Project provides an implementation that satisfies this requirement.

9.7. Kernel Security Features

The Android Sandbox includes features that use the Security-Enhanced Linux (SELinux) mandatory access control (MAC) system, seccomp sandboxing, and other security features in the Linux kernel. Geräteimplementierungen:

  • [C-0-1] MUST maintain compatibility with existing applications, even when SELinux or any other security features are implemented below the Android framework.
  • [C-0-2] MUST NOT have a visible user interface when a security violation is detected and successfully blocked by the security feature implemented below the Android framework, but MAY have a visible user interface when an unblocked security violation occurs resulting in a successful ausbeuten.
  • [C-0-3] MUST NOT make SELinux or any other security features implemented below the Android framework configurable to the user or app developer.
  • [C-0-4] MUST NOT allow an application that can affect another application through an API (such as a Device Administration API) to configure a policy that breaks compatibility.
  • [C-0-5] MUST split the media framework into multiple processes so that it is possible to more narrowly grant access for each process as described in the Android Open Source Project site.
  • [C-0-6] MUST implement a kernel application sandboxing mechanism which allows filtering of system calls using a configurable policy from multithreaded programs. The upstream Android Open Source Project meets this requirement through enabling the seccomp-BPF with threadgroup synchronization (TSYNC) as described in the Kernel Configuration section of source.android.com .

Kernel integrity and self-protection features are integral to Android security. Geräteimplementierungen:

  • [C-0-7] MUST implement kernel stack buffer overflow protection mechanisms. Examples of such mechanisms are CC_STACKPROTECTOR_REGULAR and CONFIG_CC_STACKPROTECTOR_STRONG .
  • [C-0-8] MUST implement strict kernel memory protections where executable code is read-only, read-only data is non-executable and non-writable, and writable data is non-executable (eg CONFIG_DEBUG_RODATA or CONFIG_STRICT_KERNEL_RWX ).
  • [SR] STRONGLY RECOMMENDED to keep kernel data which is written only during initialization marked read-only after initialization (eg __ro_after_init ).
  • [SR} STRONGLY RECOMMENDED to implement static and dynamic object size bounds checking of copies between user-space and kernel-space (eg CONFIG_HARDENED_USERCOPY ).
  • [SR] STRONGLY RECOMMENDED to never execute user-space memory when running in the kernel (eg hardware PXN, or emulated via CONFIG_CPU_SW_DOMAIN_PAN or CONFIG_ARM64_SW_TTBR0_PAN ).
  • [SR] STRONGLY RECOMMENDED to never read or write user-space memory in the kernel outside of normal usercopy access APIs (eg hardware PAN, or emulated via CONFIG_CPU_SW_DOMAIN_PAN or CONFIG_ARM64_SW_TTBR0_PAN ).
  • [SR] STRONGLY RECOMMENDED to randomize the layout of the kernel code and memory, and to avoid exposures that would compromise the randomization (eg CONFIG_RANDOMIZE_BASE with bootloader entropy via the /chosen/kaslr-seed Device Tree node or EFI_RNG_PROTOCOL ).

If device implementations use a Linux kernel, they:

  • [C-1-1] MUST implement SELinux.
  • [C-1-2] MUST set SELinux to global enforcing mode.
  • [C-1-3] MUST configure all domains in enforcing mode. No permissive mode domains are allowed, including domains specific to a device/vendor.
  • [C-1-4] MUST NOT modify, omit, or replace the neverallow rules present within the system/sepolicy folder provided in the upstream Android Open Source Project (AOSP) and the policy MUST compile with all neverallow rules present, for both AOSP SELinux domains as well as device/vendor specific domains.
  • SHOULD retain the default SELinux policy provided in the system/sepolicy folder of the upstream Android Open Source Project and only further add to this policy for their own device-specific configuration.

If device implementations use kernel other than Linux, they:

  • [C-2-1] MUST use an mandatory access control system that is equivalent to SELinux.

9.8. Privatsphäre

9.8.1. Nutzungsverlauf

Android stores the history of the user's choices and manages such history by UsageStatsManager .

Geräteimplementierungen:

  • [C-0-1] MUST keep a reasonable retention period of such user history.
  • [SR] Are STRONGLY RECOMMENDED to keep the 14 days retention period as configured by default in the AOSP implementation.

9.8.2. Aufzeichnung

If device implementations include functionality in the system that captures the contents displayed on the screen and/or records the audio stream played on the device, they:

  • [C-1-1] MUST have an ongoing notification to the user whenever this functionality is enabled and actively capturing/recording.

If device implementations include a component enabled out-of-box, capable of recording ambient audio to infer useful information about user's context, they:

  • [C-2-1] MUST NOT store in persistent on-device storage or transmit off the device the recorded raw audio or any format that can be converted back into the original audio or a near facsimile, except with explicit user consent.

9.8.3. Konnektivität

If device implementations have a USB port with USB peripheral mode support, they:

  • [C-1-1] MUST present a user interface asking for the user's consent before allowing access to the contents of the shared storage over the USB port.

9.8.4. Netzwerktraffic

Geräteimplementierungen:

  • [C-0-1] MUST preinstall the same root certificates for the system-trusted Certificate Authority (CA) store as provided in the upstream Android Open Source Project.
  • [C-0-2] MUST ship with an empty user root CA store.
  • [C-0-3] MUST display a warning to the user indicating the network traffic may be monitored, when a user root CA is added.

If device traffic is routed through a VPN, device implementations:

  • [C-1-1] MUST display a warning to the user indicating either:
    • That network traffic may be monitored.
    • That network traffic is being routed through the specific VPN application providing the VPN.

If device implementations have a mechanism, enabled out-of-box by default, that routes network data traffic through a proxy server or VPN gateway (for example, preloading a VPN service with android.permission.CONTROL_VPN granted), they:

  • [C-2-1] MUST ask for the user's consent before enabling that mechanism, unless that VPN is enabled by the Device Policy Controller via the DevicePolicyManager.setAlwaysOnVpnPackage() , in which case the user does not need to provide a separate consent, but MUST only be notified.

9.9. Data Storage Encryption

If device implementations support a secure lock screen as described in section 9.11.1 , they:

  • [C-1-1] MUST support data storage encryption of the application private data ( /data partition ), as well as the application shared storage partition ( /sdcard partition ) if it is a permanent, non-removable part of the device.

If device implementations support a secure lock screen as described in section 9.11.1 and support data storage encryption with Advanced Encryption Standard (AES) crypto performance above 50MiB/sec, they:

  • [C-2-1] MUST enable the data storage encryption by default at the time the user has completed the out-of-box setup experience. If device implementations are already launched on an earlier Android version with encryption disabled by default, such a device cannot meet the requirement through a system software update and thus MAY be exempted.

  • SHOULD meet the above data storage encryption requirement via implementing File Based Encryption (FBE).

9.9.1. Direct Boot

Geräteimplementierungen:

  • [C-0-1] MUST implement the Direct Boot mode APIs even if they do not support Storage Encryption.

  • [C-0-2] The ACTION_LOCKED_BOOT_COMPLETED and ACTION_USER_UNLOCKED Intents MUST still be broadcast to signal Direct Boot aware applications that Device Encrypted (DE) and Credential Encrypted (CE) storage locations are available for user.

9.9.2. File Based Encryption

If device implementations support FBE, they:

  • [C-1-1] MUST boot up without challenging the user for credentials and allow Direct Boot aware apps to access to the Device Encrypted (DE) storage after the ACTION_LOCKED_BOOT_COMPLETED message is broadcasted.
  • [C-1-2] MUST only allow access to Credential Encrypted (CE) storage after the user has unlocked the device by supplying their credentials (eg. passcode, pin, pattern or fingerprint) and the ACTION_USER_UNLOCKED message is broadcasted.
  • [C-1-3] MUST NOT offer any method to unlock the CE protected storage without the user-supplied credentials.
  • [C-1-4] MUST support Verified Boot and ensure that DE keys are cryptographically bound to the device's hardware root of trust.
  • [C-1-5] MUST support encrypting file contents using AES with a key length of 256-bits in XTS mode.
  • [C-1-6] MUST support encrypting file name using AES with a key length of 256-bits in CBC-CTS mode.

  • The keys protecting CE and DE storage areas:

  • [C-1-7] MUST be cryptographically bound to a hardware-backed Keystore.

  • [C-1-8] CE keys MUST be bound to a user's lock screen credentials.
  • [C-1-9] CE keys MUST be bound to a default passcode when the user has not specified lock screen credentials.
  • [C-1-10] MUST be unique and distinct, in other words no user's CE or DE key matches any other user's CE or DE keys.

  • [C-1-11] MUST use the mandatorily supported ciphers, key lengths and modes by default.

  • SHOULD make preloaded essential apps (eg Alarm, Phone, Messenger) Direct Boot aware.

  • MAY support alternative ciphers, key lengths and modes for file content and file name encryption.

The upstream Android Open Source project provides a preferred implementation of this feature based on the Linux kernel ext4 encryption feature.

9.9.3. Vollständige Festplattenverschlüsselung

If device implementations support full disk encryption (FDE), they:

  • [C-1-1] MUST use AES with a key of 128-bits (or greater) and a mode designed for storage (for example, AES-XTS, AES-CBC-ESSIV).
  • [C-1-2] MUST use a default passcode to wrap the encryption key and MUST NOT write the encryption key to storage at any time without being encrypted.
  • [C-1-3] MUST provide the user the possibility to AES encrypt the encryption key, except when it is in active use, with the lock screen credentials stretched using a slow stretching algorithm (eg PBKDF2 or scrypt).
  • [C-1-4] The above default password stretching algorithm MUST be cryptographically bound to that keystore when the user has not specified a lock screen credentials or has disabled use of the passcode for encryption and the device provides a hardware-backed keystore.
  • [C-1-5] MUST NOT send encryption key off the device (even when wrapped with the user passcode and/or hardware bound key).

The upstream Android Open Source project provides a preferred implementation of this feature, based on the Linux kernel feature dm-crypt.

9.10. Device Integrity

The following requirements ensures there is transparency to the status of the device integrity. Geräteimplementierungen:

  • [C-0-1] MUST correctly report through the System API method PersistentDataBlockManager.getFlashLockState() whether their bootloader state permits flashing of the system image. The FLASH_LOCK_UNKNOWN state is reserved for device implementations upgrading from an earlier version of Android where this new system API method did not exist.

Verified boot is a feature that guarantees the integrity of the device software. If a device implementation supports the feature, it:

  • [C-1-1] MUST declare the platform feature flag android.software.verified_boot .
  • [C-1-2] MUST perform verification on every boot sequence.
  • [C-1-3] MUST start verification from an immutable hardware key that is the root of trust and go all the way up to the system partition.
  • [C-1-4] MUST implement each stage of verification to check the integrity and authenticity of all the bytes in the next stage before executing the code in the next stage.
  • [C-1-5] MUST use verification algorithms as strong as current recommendations from NIST for hashing algorithms (SHA-256) and public key sizes (RSA-2048).
  • [C-1-6] MUST NOT allow boot to complete when system verification fails, unless the user consents to attempt booting anyway, in which case the data from any non-verified storage blocks MUST not be used.
  • [C-1-7] MUST NOT allow verified partitions on the device to be modified unless the user has explicitly unlocked the boot loader.
  • [SR] If there are multiple discrete chips in the device (eg radio, specialized image processor), the boot process of each of those chips is STRONGLY RECOMMENDED to verify every stage upon booting.
  • [SR] STRONGLY RECOMMENDED to use tamper-evident storage: for when the bootloader is unlocked. Tamper-evident storage means that the boot loader can detect if the storage has been tampered with from inside the HLOS (High Level Operating System).
  • [SR] STRONGLY RECOMMENDED to prompt the user, while using the device, and require physical confirmation before allowing a transition from boot loader locked mode to boot loader unlocked mode.
  • [SR] STRONGLY RECOMMENDED to implement rollback protection for the HLOS (eg boot, system partitions) and to use tamper-evident storage for storing the metadata used for determining the minimum allowable OS version.
  • SHOULD implement rollback protection for any component with persistent firmware (eg modem, camera) and SHOULD use tamper-evident storage for storing the metadata used for determining the minimum allowable version.

The upstream Android Open Source Project provides a preferred implementation of this feature in the external/avb/ repository, which can be integrated into the boot loader used for loading Android.

Device implementations with Advanced Encryption Standard (AES) crypto performance above 50 MiB/seconds:

  • [C-2-1] MUST support verified boot for device integrity.

If a device implementation is already launched without supporting verified boot on an earlier version of Android, such a device can not add support for this feature with a system software update and thus are exempted from the requirement.

9.11. Keys and Credentials

The Android Keystore System allows app developers to store cryptographic keys in a container and use them in cryptographic operations through the KeyChain API or the Keystore API . Geräteimplementierungen:

  • [C-0-1] MUST at least allow more than 8,192 keys to be imported.
  • [C-0-2] The lock screen authentication MUST rate-limit attempts and MUST have an exponential backoff algorithm. Beyond 150 failed attempts, the delay MUST be at least 24 hours per attempt.
  • SHOULD not limit the number of keys that can be generated

When the device implementation supports a secure lock screen, it:

  • [C-1-1] MUST back up the keystore implementation with secure hardware.
  • [C-1-2] MUST have implementations of RSA, AES, ECDSA and HMAC cryptographic algorithms and MD5, SHA1, and SHA-2 family hash functions to properly support the Android Keystore system's supported algorithms in an area that is securely isolated from the code running on the kernel and above. Secure isolation MUST block all potential mechanisms by which kernel or userspace code might access the internal state of the isolated environment, including DMA. The upstream Android Open Source Project (AOSP) meets this requirement by using the Trusty implementation, but another ARM TrustZone-based solution or a third-party reviewed secure implementation of a proper hypervisor-based isolation are alternative options.
  • [C-1-3] MUST perform the lock screen authentication in the isolated execution environment and only when successful, allow the authentication-bound keys to be used. The upstream Android Open Source Project provides the Gatekeeper Hardware Abstraction Layer (HAL) and Trusty, which can be used to satisfy this requirement.
  • [C-1-4] MUST support key attestation where the attestation signing key is protected by secure hardware and signing is performed in secure hardware. The attestation signing keys MUST be shared across large enough number of devices to prevent the keys from being used as device identifiers. One way of meeting this requirement is to share the same attestation key unless at least 100,000 units of a given SKU are produced. If more than 100,000 units of an SKU are produced, a different key MAY be used for each 100,000 units.

Note that if a device implementation is already launched on an earlier Android version, such a device is exempted from the requirement to have a hardware-backed keystore and support the key attestation, unless it declares the android.hardware.fingerprint feature which requires a hardware-backed keystore.

9.11.1. Secure Lock Screen

If device implementations have a secure lock screen and include one or more trust agent, which implements the TrustAgentService System API, then they:

  • [C-1-1] MUST indicate the user in the Settings and Lock screen user interface of situations where either the screen auto-lock is deferred or the screen lock can be unlocked by the trust agent. The AOSP meets the requirement by showing a text description for the "Automatically lock setting" and "Power button instantly locks setting" menus and a distinguishable icon on the lock screen.
  • [C-1-2] MUST respect and fully implement all trust agent APIs in the DevicePolicyManager class, such as the KEYGUARD_DISABLE_TRUST_AGENTS constant.
  • [C-1-3] MUST NOT fully implement the TrustAgentService.addEscrowToken() function on a device that is used as the primary personal device (eg handheld) but MAY fully implement the function on device implementations typically shared.
  • [C-1-4] MUST encrypt the tokens added by TrustAgentService.addEscrowToken() before storing them on the device.
  • [C-1-5] MUST NOT store the encryption key on the device.
  • [C-1-6] MUST inform the user about the security implications before enabling the escrow token to decrypt the data storage.

If device implementations add or modify the authentication methods to unlock the lock screen, then for such an authentication method to be treated as a secure way to lock the screen, they:

If device implementations add or modify the authentication methods to unlock the lock screen if based on a known secret then for such an authentication method to be treated as a secure way to lock the screen, they:

  • [C-3-1] The entropy of the shortest allowed length of inputs MUST be greater than 10 bits.
  • [C-3-2] The maximum entropy of all possible inputs MUST be greater than 18 bits.
  • [C-3-3] MUST not replace any of the existing authentication methods (PIN,pattern, password) implemented and provided in AOSP.
  • [C-3-4] MUST be disabled when the Device Policy Controller (DPC) application has set the password quality policy via the DevicePolicyManager.setPasswordQuality() method with a more restrictive quality constant than PASSWORD_QUALITY_SOMETHING .

If device implementations add or modify the authentication methods to unlock the lock screen if based on a physical token or the location, then for such an authentication method to be treated as a secure way to lock the screen, they:

  • [C-4-1] MUST have a fall-back mechanism to use one of the primary authentication methods which is based on a known secret and meets the requirements to be treated as a secure lock screen.
  • [C-4-2] MUST be disabled and only allow the primary authentication to unlock the screen when the Device Policy Controller (DPC) application has set the policy with either the DevicePolicyManager.setKeyguardDisabledFeatures(KEYGUARD_DISABLE_TRUST_AGENTS) method or the DevicePolicyManager.setPasswordQuality() method with a more restrictive quality constant than PASSWORD_QUALITY_UNSPECIFIED .
  • [C-4-3] The user MUST be challenged for the primary authentication (egPIN, pattern, password) at least once every 72 hours or less.

If device implementations add or modify the authentication methods to unlock the lock screen based on biometrics, then for such an authentication method to be treated as a secure way to lock the screen, they:

  • [C-5-1] MUST have a fall-back mechanism to use one of the primary authentication methods which is based on a known secret and meets the requirements to be treated as a secure lock screen.
  • [C-5-2] MUST be disabled and only allow the primary authentication to unlock the screen when the Device Policy Controller (DPC) application has set the keguard feature policy by calling the method DevicePolicyManager.setKeyguardDisabledFeatures(KEYGUARD_DISABLE_FINGERPRINT) .
  • [C-5-3] MUST have a false acceptance rate that is equal or stronger than what is required for a fingerprint sensor as described in section 7.3.10, or otherwise MUST be disabled and only allow the primary authentication to unlock the screen when the Device Policy Controller (DPC) application has set the password quality policy via the DevicePolicyManager.setPasswordQuality() method with a more restrictive quality constant than PASSWORD_QUALITY_BIOMETRIC_WEAK .
  • [C-5-4] The user MUST be challenged for the primary authentication (egPIN, pattern, password) at least once every 72 hours or less.

If device implementations add or modify the authentication methods to unlock the lock screen and if such an authentication method will be used to unlock the keyguard, but will not be treated as a secure lock screen, then they:

9.12. Data Deletion

All device implementations:

  • [C-0-1] MUST provide users a mechanism to perform a "Factory Data Reset".
  • [C-0-2] MUST delete all user-generated data. That is, all data except for the following:
    • The system image
    • Any operating system files required by the system image
  • [C-0-3] MUST delete the data in such a way that will satisfy relevant industry standards such as NIST SP800-88.
  • [C-0-4] MUST trigger the above "Factory Data Reset" process when the DevicePolicyManager.wipeData() API is called by the primary user's Device Policy Controller app.
  • MAY provide a fast data wipe option that conducts only a logical data erase.

9.13. Safe Boot Mode

Android provides Safe Boot Mode, which allows users to boot up into a mode where only preinstalled system apps are allowed to run and all third-party apps are disabled. This mode, known as "Safe Boot Mode", provides the user the capability to uninstall potentially harmful third-party apps.

Device implementations are:

  • [SR] STRONGLY RECOMMENDED to implement Safe Boot Mode.

If device implementations implement Safe Boot Mode, they:

  • [C-1-1] MUST provide the user an option to enter Safe Boot Mode in such a way that is uninterruptible from third-party apps installed on the device, except when the third-party app is a Device Policy Controller and has set the UserManager.DISALLOW_SAFE_BOOT flag as true.

  • [C-1-2] MUST provide the user the capability to uninstall any third-party apps within Safe Mode.

  • SHOULD provide the user an option to enter Safe Boot Mode from the boot menu using a workflow that is different from that of a normal boot.

9.14. Automotive Vehicle System Isolation

Android Automotive devices are expected to exchange data with critical vehicle subsystems by using the vehicle HAL to send and receive messages over vehicle networks such as CAN bus.

The data exchange can be secured by implementing security features below the Android framework layers to prevent malicious or unintentional interaction with these subsystems.

10. Software Compatibility Testing

Device implementations MUST pass all tests described in this section. However, note that no software test package is fully comprehensive. For this reason, device implementers are STRONGLY RECOMMENDED to make the minimum number of changes as possible to the reference and preferred implementation of Android available from the Android Open Source Project. This will minimize the risk of introducing bugs that create incompatibilities requiring rework and potential device updates.

10.1. Compatibility Test Suite

Geräteimplementierungen:

  • [C-0-1] MUST pass the Android Compatibility Test Suite (CTS) available from the Android Open Source Project, using the final shipping software on the device.

  • [C-0-2] MUST ensure compatibility in cases of ambiguity in CTS and for any reimplementations of parts of the reference source code.

Das CTS ist für die Ausführung auf einem tatsächlichen Gerät konzipiert. Wie jede Software kann auch das CTS selbst Fehler enthalten. The CTS will be versioned independently of this Compatibility Definition, and multiple revisions of the CTS may be released for Android 8.0.

Geräteimplementierungen:

  • [C-0-3] MUST pass the latest CTS version available at the time the device software is completed.

  • SHOULD use the reference implementation in the Android Open Source tree as much as possible.

10.2. CTS-Verifizierer

The CTS Verifier is included with the Compatibility Test Suite, and is intended to be run by a human operator to test functionality that cannot be tested by an automated system, such as correct functioning of a camera and sensors.

Geräteimplementierungen:

  • [C-0-1] MUST correctly execute all applicable cases in the CTS verifier.

The CTS Verifier has tests for many kinds of hardware, including some hardware that is optional.

Geräteimplementierungen:

  • [C-0-2] MUST pass all tests for hardware that they possess; for instance, if a device possesses an accelerometer, it MUST correctly execute the Accelerometer test case in the CTS Verifier.

Test cases for features noted as optional by this Compatibility Definition Document MAY be skipped or omitted.

  • [C-0-2] Every device and every build MUST correctly run the CTS Verifier, as noted above. However, since many builds are very similar, device implementers are not expected to explicitly run the CTS Verifier on builds that differ only in trivial ways. Specifically, device implementations that differ from an implementation that has passed the CTS Verifier only by the set of included locales, branding, etc. MAY omit the CTS Verifier test.

11. Updatable Software

  • [C-0-1] Device implementations MUST include a mechanism to replace the entirety of the system software. The mechanism need not perform “live” upgrades—that is, a device restart MAY be required.

Es kann jede Methode verwendet werden, sofern sie die gesamte auf dem Gerät vorinstallierte Software ersetzen kann. Beispielsweise wird jeder der folgenden Ansätze diese Anforderung erfüllen:

  • “Over-the-air (OTA)” downloads with offline update via reboot.
  • “Tethered” updates over USB from a host PC.
  • “Offline” updates via a reboot and update from a file on removable storage.

  • [C-0-2] The update mechanism used MUST support updates without wiping user data. That is, the update mechanism MUST preserve application private data and application shared data. Beachten Sie, dass die Upstream-Android-Software einen Update-Mechanismus enthält, der diese Anforderung erfüllt.

If the device implementations includes support for an unmetered data connection such as 802.11 or Bluetooth PAN (Personal Area Network) profile, then, they:

  • [C-1-1] MUST support OTA downloads with offline update via reboot.

For device implementations that are launching with Android 6.0 and later, the update mechanism SHOULD support verifying that the system image is binary identical to expected result following an OTA. The block-based OTA implementation in the upstream Android Open Source Project, added since Android 5.1, satisfies this requirement.

Also, device implementations SHOULD support A/B system updates . The AOSP implements this feature using the boot control HAL.

If an error is found in a device implementation after it has been released but within its reasonable product lifetime that is determined in consultation with the Android Compatibility Team to affect the compatibility of third-party applications, then:

  • [C-2-1] The device implementer MUST correct the error via a software update available that can be applied per the mechanism just described.

Android includes features that allow the Device Owner app (if present) to control the installation of system updates. If the system update subsystem for devices report android.software.device_admin then, they:

12. Document Changelog

For a summary of changes to the Compatibility Definition in this release:

For a summary of changes to individuals sections:

  1. Einführung
  2. Gerätetypen
  3. Software
  4. Application Packaging
  5. Multimedia
  6. Developer Tools and Options
  7. Hardwarekompatibilität
  8. Leistung und Kraft
  9. Security Model
  10. Software Compatibility Testing
  11. Updatable Software
  12. Document Changelog
  13. Kontaktiere uns

12.1. Changelog Viewing Tips

Changes are marked as follows:

  • CDD
    Substantive changes to the compatibility requirements.

  • Dokumente
    Cosmetic or build related changes.

For best viewing, append the pretty=full and no-merges URL parameters to your changelog URLs.

13. Kontaktieren Sie uns

You can join the android-compatibility forum and ask for clarifications or bring up any issues that you think the document does not cover.