
2023 | Confidential and ProprietaryGoogle Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Car
Framework
Core

2023 | Confidential and ProprietaryGoogle Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

CONFIDENTIALITY REMINDER

Everything shared in this presentation is under NDA

2023 | Confidential and ProprietaryGoogle Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Ethan
Lee

Software Engineer

Gaurav
Bhola

Software Engineer

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

01 Car Framework Architecture

02 Using Car APIs

03 Handling Permissions

04 Users in Cars

05 Demystifying UXRestrictions

Agenda

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Car Framework
Architecture

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Car Framework
Key Components in the Android Stack:

● App Layer

● Java Framework

● Native

● BSP

Android Stack

Standard
Android App

Core Android
API

Car Specific
App

Car API

System Server Car Service

Standard
Android HAL Vehicle HAL Car Watchdog

Linux Kernel

Applications

Java Framework

Privileged

Native

BSP

CarService
HelperService

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

The Car Stack vs
Traditional Android

Android Stack

Standard
Android App

Core Android
API

Car Specific
App

Car API

System Server Car Service

Standard
Android HAL Vehicle HAL Car Watchdog

CarService
HelperService

Linux Kernel

Applications

Java Framework

Privileged

Native

BSP

Car Framework

Difference between the Traditional Android Stack
and the Car Stack:

● Car-specific apps use Car APIs to access functionality
implemented by Car Service.

● Car Service communicates with the System Server via
CarServiceHelperService to access core Android
functionalities.

● CarServiceHelperService’s main purpose is to start Car
service. However, CSHS is used when there is no specified
API to communicate with System Server.

● Car Service also connects to car-specific native services
such as CarWatchdog. These services handle Car-specific
tasks before the system server and Car Service are intialized.

● Car hardware is abstracted away using Vehicle HALs and
car-specific HALs.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Car Service and Car Managers
What is Car Service?

● Car Service provides the implementation for car specific
functionalities and policies. It allows applications to interact
with car hardware.

● Car Service (com.android.car) runs as user 0 and can serve
all users regardless of user switching.

● Another version (CarPerUserService) runs for user 10+

○ This is because Bluetooth and LocationManager only
work for the current user.

○ This service is only for internal car service usage and
does not directly serve any Car APIs.

● When a Car object is created in a client app, it will contain
an ICar Binder object so that it can communicate with
Car Service.

● ICarImpl is responsible for creating the various
CarXYZServices and implementing the ICar.aidl
interface that apps interact with.

Car Framework

Car CarXYZManager

ICarImpl CarXYZService

XYZHALService

VehicleHal

Client App Process

Car Service Process

HAL Layer

ICar Binder ICarXYZService
Binder

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Car Service
and Car Managers
What are Car Managers?

● A shared library used by applications to access car service
functionalities.

● Expose Car specific API functionality.

● Every CarXYZManager has an associated CarXYZService
counterpart.

● CarXYZManagers communicate with individual
CarXYZServices using ICarXYZService binder interfaces
defined by AIDL files.

● CarXYZServices also communicate with XYZHalServices
within Car Service.

Car Framework

Car CarXYZManager

ICarImpl CarXYZService

XYZHALService

VehicleHal

Client App Process

Car Service Process

HAL Layer

ICar Binder ICarXYZService
Binder

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Car Framework

Car Service Inter-Process
Communication
Communication between Apps and Car Service

● The Car SDK contains Car.java and other public classes. Any app can
create a Car object. A client app will use the Car object to retrieve
different managers (ex. CarUserManager, CarPowerManager).

● Internally, Car Service is an Android Service. It implements ICar.aidl in
ICarImpl. Any app or service that connects to Car Service will receive an
ICar binder object. The Car object will contain an ICar binder object to
communicate with ICarImpl.

● When the onServiceConnected callback completes for Car object it will
receive an ICar binder object.

● Every Car Manager will have a binder for its corresponding component.
For example, CarUserManager will connect to CarUserService using
ICarUserService.aidl.

● Important Note: Every service within Car Service is not a separate
process, but a separate object within the Car Service process.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

onServiceConnected

Car Service Inter-Process
Communication
Communication between Car.java and Car Service

● The Car object receives the ICar binder object after the
onServiceConnected callback completes.

● The Car object communicates with Car Service via the ICar
binder object.

Car Framework

Car.java

CarService
Interface

Returns ICar Binder

1: An ICar Binder
is returned to Car.java

Car.java

ICarImpl
Implements ICar.aidl

2: Car.java communicates
via ICar.aidl

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

onServiceConnected

Car Service Inter-Process
Communication
Communication between Car Service
and System Server

● CarServiceHelperService’s main purpose is
to initialize Car Service.

● When the onServiceConnected callback completes,
CarServiceHelperService will receive an ICar binder object
as well to communicate with the Car Service process.

Car Framework

CarServiceHelperService

CarService
Interface

Returns ICar Binder

1: An ICar Binder
is returned to CSHS

ICarImpl
Implements ICar.aidl

2: CSHS communicates
 via ICar.aidl

CarServiceHelperService

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

How the Car
API Works

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

How the Car API works

Accessing
Car APIs
● Apps uses Car.createCar() to get a Car instance.

● If a statusChangeListener is not included in the
arguments, the connection is synchronous. The client
will be killed if Car Service dies.

● If a statusChangeListener is included in the arguments,
the connection is asynchronous. The listener callback
method will be called if Car Service is connected or
disconnected (died).

● Apps use Car.getCarManager() to get a specific car
manager, e.g. CarPropertyManager.

● Apps use APIs defined within car managers, e.g.
CarPropertyManager.getProperty(propId, areaId)

private void init() {

 Car mCar = Car.createCar(mContext);

 mCarPropertyManager =

 (CarPropertyManager)

mCar.getCarManager(CarPropertyManager.class);

}

private int getProperty(int propId, int areaId) {

 return mCarPropertyManager.getProperty(propId, areaId);

}

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

private void init() {

 Car mCar = Car.createCar(mContext);

 (CarPropertyManager) mCarPropertyManager =

 mCar.getCarManager(CarPropertyManager.class);

}

private int getProperty(int propId, int areaId) {

 return mCarPropertyManager.getProperty(propId, areaId);

}

What actually
happens?
● Car.createCar() uses the Service Manager to get an

ICar binder object that connects to Car Service.

● Car.getCarManager() uses ICar.getCarService to get a
binder object for that specific car service. For example,
ICarProperty for CarPropertyService if the client wants
to obtain CarPropertyManager.

Client Service
Manager Car Service

Car.createCar()

Car.getCarManager()

Client now has a
CarPropertyManager instance

carPropertyManager.getPropertyValue()

Client Service
Manager Car Service

bindService package:
com.android.car

ICar Binder object

Client now has a
Car instance

Checks client permission
ICar.getCarService(“class”)

ICarProperty.getPropertiesAsync

ICarProperty Binder object

Property value

How the Car API works

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Car Service
● Car Service is launched by System Server via CarServiceHelperService

during the device boot phase.

● If CarService crashes, it will be restarted.

● CarXXXServices are initialized sequentially during Car Service init.

● See ‘CarService.initAllServices’ trace in logcat.

● Car Service runs as ‘com.android.car’ process and is highly privileged.

● All permission checks for Car APIs are performed in Car Service.

● The majority of Car API business logic is implemented within Car Service.

● Car Service depends on multiple HALs, e.g. audio HAL, vehicle HAL etc.
and a few native daemons, e.g. car watchdog daemon and car power
policy daemon.

System Server Start

Car Service Start

Car Service Init

Register to Service Manager

Connect to VHAL

How the Car API works

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Car Service at Resume
● At resume (from RAM or disk), Car Service resumes working

from the last snapshot

● No reconnection to VHAL

● No Car Service init

● No registration to ServiceManager

● After Resume, a power state change is sent to notify:

○ DEEP_SLEEP_EXIT for resume from RAM

○ HIBERNATION_EXIT for resume from disk

● After Cold Boot, Car Service is initialized as usual, with no signal sent

Kernel Resume

Car Service Resume

Kernel Start

Car Service Start

Car Service Init

Connect to VHAL

Car Service ReadyCar Service Ready

ON

SUSPEND_EXIT

ON

<Cold boot sequence> <Resume sequence>

How the Car API works

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Car Service
Crash Recovery
● In the event that the vehicle HAL crashes, Car Service finishes

and restarts. It can also crash due to bugs or configuration issues.

● By default, all clients of Car Services are killed as there is no
guarantee that an app will function properly after Car Service
is restarted.

● All Car instances created using Car.createCar will be invalidated.

● For critical apps that should not crash, special handling is required.

● These apps should use Car.createCar with a LifeCycle Listener
that handles Car Service crash or restart.

● All existing CarXYZManager instances are invalidated and
apps should recreate all CarXYZManager instances and do
necessary re-initialization.

How the Car API works

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

How the Car API works

Car Service
Crash Recovery
● Example Car Service Crash Recovery implementation:

private void init() {

 // This waits for the car service connection to be established.

 Car.createCar(mContext, null, CAR_WAIT_TIMEOUT_WAIT_FOREVER,

this::onLifecycleChanged);

}

private void onLifecycleChanged(Car car, boolean ready) {

 synchronized (mLock) {

 if (ready) {

 mCarPropertyManager =

 (CarPropertyManager) car.getCarManager(CarPropertyManager.class);

 // Do initialization with CarXXXManager here, e.g. subscribe to

property events.

 } else {

 Log.e(“Car service is disconnected”);

 mCarPropertyManager = null;

 // Clear all internal state associated with CarXXXManager.

 }

 }

}

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Using Car Managers

CarUxRestrictions
Manager

(android.car.drivingstate)
 is used to register and
receive User Experience
restrictions imposed based
on a car’s driving state.

CarPackageManager

(android.car.content.pm)
provides car specific APIs
for package management.

CarPropertyManager

(android.car.hardware.
property) provides an
interface for interacting
with Vehicle specific
functionalities abstracted as
“Vehicle Properties”.

CarPowerManager

(android.car.hardware.
power) is used to
receive power policy
change notifications.

CarInputManager

(android.car.input) is used
to capture selected input
events.

There are different managers for a wide array of use cases:

Car Managers

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Using Car Managers

CarRemoteAccess
Manager

(android.car.remoteaccess)
allows applications to listen
to remote task requests
even while Android is
not running.

CarAudioManager

(android.car.media) is
used for handling audio
in a car, such as dynamic
audio routing.

CarUserManager

(android.car.user) is used to
manage users in a car.

CarWatchdogManager

(android.car.watchdog)
allows applications to
collect the latest system
resource overuse statistics.

There are different managers for a wide array of use cases:

Car Managers

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Permissions

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

prebuilt_etc {

 name: "allowed_privapp_com.android.settings",

 sub_dir: "permissions",

 src: "com.android.settings.xml",

 filename_from_src: true,

}

Privileged Permissions
● Privileged permissions declared within an app without explicit grant leads to a crash during boot up.

● Each package’s privileged permissions need to be added to an XML file under:

○ [system|vendor]/etc/permissions as privapp-permissions*.xml

Car Permissions

<permissions>

 <privapp-permissions package="com.android.example">

 <permission name="android.car.permission.CONTROL_CAR_CLIMATE"/>

 </privapp-permissions>

</permissions>

● Each app can also add its own XML file as <package-name>.xml and it will be added from the app’s Android.bp:

android_app {

 name: "Settings",

 required: ["allowed_privapp_com.android.settings"],

 privileged: true,

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

adb logcat *:e | grep -i -A 10 "FATAL EXCEPTION IN SYSTEM PROCESS:

04-08 18:58:56.556 4282 4282 E AndroidRuntime: *** FATAL EXCEPTION IN

SYSTEM PROCESS: main

04-08 18:58:56.556 4282 4282 E AndroidRuntime:

java.lang.IllegalStateException: Signature|privileged permissions not in

privapp-permissions allowlist: {com.android.car.messenger

(/system/priv-app/CarMessengerApp):

android.car.permission.ACCESS_CAR_PROJECTION_STATUS}

04-08 18:58:56.556 4282 4282 E AndroidRuntime: at

com.android.server.pm.permission.PermissionManagerService.systemReady(Permi

ssionManagerService.java:4449)

...

Privileged Permissions
● The specific error can be found using the following command:

Car Permissions

● Sample output can be found below:

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Users
in Cars

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

User Management
in Cars
● Each app runs under a UID and can run multiple processes.

● UID != User ID : uid = fn(userid, appid) = 100,000 * userid + appid

● The System Server, Car Service and native services run in their own
processes under the system UID.

Headless System User:

● User 0 is always running and runs without a UI (headless)
● This system user runs in the background

Other Users:

● Users 10 and above are started during boot up and have a UI,
representing human users.

● In AAOS, user 0 is started first and then the current user is switched to
user 10.

Multi-User Multi-Display (MUMD):

● For Automotive, there is also support for multiple concurrent users with
their multiple displays. This concept is covered in its own dedicated
GAPB presentation.

Users in Cars Google

GServices
(andriod id 1)

GServices
(andriod id 0)

Package A, uid=112345

Activites Providers Services

data/user.1/<package A>

Package A, uid=012345

Activites Providers Services

data/user.1/<package A>
(aka /data/date/<packageA>)

User 0
Account A1
Account A2

User 1
Account A1
Account A3

…

Binder uid Binder uid

System process data/system/users/01/

data/system/users/1/

Package Manager Account
Manager

Wallpaper
Service

Sync Manager User
Manager

Wallpaper
Service

userid

ActivityManager (e.g)

u0

u1

Stacks, Services,
Providers

Stacks, Services,
Providers

…

userid appid

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Boot User
Initialization

Users in Cars

How does the boot user get initialized?

● During Car Service’s initialization, Car Service queries the
User HAL to determine the initial (boot) user.

● Based on the User HAL response, Car Service will set
the boot user.

● If there is no response from the User HAL or this
functionality is not implemented, Car Service will by default
set the last active user as the boot user.

● After the boot user is set, the framework switches the
current user from user 0 to the boot user.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Listening for Car User
LifeCycle Events

Users in Cars

Listeners can receive the following types of life cycle events:

● USER_LIFECYCLE_EVENT_TYPE_STARTING

● USER_LIFECYCLE_EVENT_TYPE_SWITCHING

● USER_LIFECYCLE_EVENT_TYPE_UNLOCKING

● USER_LIFECYCLE_EVENT_TYPE_UNLOCKED

● USER_LIFECYCLE_EVENT_TYPE_POST_UNLOCKED

● USER_LIFECYCLE_EVENT_TYPE_STOPPING

● USER_LIFECYCLE_EVENT_TYPE_STOPPED

● USER_LIFECYCLE_EVENT_TYPE_CREATED

● USER_LIFECYCLE_EVENT_TYPE_REMOVED

● USER_LIFECYCLE_EVENT_TYPE_VISIBLE

● USER_LIFECYCLE_EVENT_TYPE_INVISIBLE

● CarUserManager exposes key user lifecycle
events via UserLifecycleListeners

● System apps and services can add new listeners
using CarUserManager.addListener()

.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

User Switch Monitor App
● This test application can be used for debugging user lifecycle events.

● The app exists at packages/services/Car/tests/UserSwitchMonitorApp/

● Follow the below to install the app:

Users in Cars

$ m UserSwitchMonitorApp

$ adb install --user 0

$OUT/system/app/UserSwitchMonitorApp/UserSwitchMonitorApp.apk

$ adb shell pm grant --user 0 com.google.android.car.userswitchmonitor

android.permission.INTERACT_ACROSS_USERS

$ adb shell am start-foreground-service --user 0

com.google.android.car.userswitchmonitor/.UserSwitchMonitorService

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

User Switch
Monitor App

Users in Cars
$ adb logcat UserSwitchMonitor *:s

... UserSwitchMonitor: onEvent(0): Event[type=STARTING,user=11]

... UserSwitchMonitor: onEvent(0): Event[type=SWITCHING,from=10,to=11]

... UserSwitchMonitor: onEvent(0): Event[type=UNLOCKING,user=11]

... UserSwitchMonitor: onEvent(0): Event[type=UNLOCKED,user=11]

... UserSwitchMonitor: onEvent(0): Event[type=STOPPING,user=10]

... UserSwitchMonitor: onEvent(0): Event[type=STOPPED,user=10]

... UserSwitchMonitor: onEvent(0): Event[type=STARTING,user=10]

... UserSwitchMonitor: onEvent(0): Event[type=SWITCHING,from=11,to=10]

$ adb shell dumpsys activity service

com.google.android.car.userswitchmonitor/.UserSwitchMonitorService

Received 12 events:

 1: Event[type=STARTING,user=11]

 2: Event[type=SWITCHING,from=10,to=11]

 3: Event[type=UNLOCKING,user=11]

 4: Event[type=UNLOCKED,user=11]

 5: Event[type=STOPPING,user=10]

 6: Event[type=STOPPED,user=10]

 7: Event[type=STARTING,user=10]

 8: Event[type=SWITCHING,from=11,to=10]

ADB Logcat Output:

Dumpsys Output:

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Demystifying
UXRestrictions

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

What is UX RE?

A part of Car Service that orchestrates:

1. Different kinds of restrictions on user experiences,

2. Selectively,

3. And under certain conditions

Demystifying UXRestrictions

UX RE

User Experience Restriction Engine

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

What is UX RE?

Selectively
The UXREngine selectively applies
restrictions only to the relevant displays
as set in the configuration.

Different kinds
Type 1: Restricting a no_keyboard,
no_camera, no_video etc. (must be
enforced by apps themselves)

Type 2: Restricting the entire UI if it is not
distraction optimized.

Certain conditions
The conditions are derived from a
combination of Driving State + UXRe
Configuration + Occupant Zone
Configuration

Demystifying UXRestrictions

2023 | Confidential and ProprietaryGoogle Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Demystifying UXRestrictions

UXRestriction Lifecycle

Occupant Zone config UXRE mapping
config

CarOccupantZoneManagerService

CarUXReService

During
Build Time

During Boot

CarUXRestrictionService
Is initialized by reading the
mapping and zone config

Car Service

2023 | Confidential and ProprietaryGoogle Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Demystifying UXRestrictions

UXRestriction Lifecycle @ Runtime: Type 1 and Type 2

App

CarDrivingStateService

CarUXReService

At Runtime
Examples include:
● Gboard restricts the keyboard when it receives the no_keyboard UXR.
● A CAL app restricts string length when a relevant UXR is received.
● Car Service may block the entire UI.

Car Service

At Runtime
● Apps register a callback that receive new restrictions if they have changed.
● Car Service receives driving state changes from the CarDrivingStateService.
● New restrictions are generated using the UXRE mapping and driving state.

Via CarUxRestrictionsManager

2023 | Confidential and ProprietaryGoogle Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Car Service

Demystifying UXRestrictions

UXRestriction Lifecycle: Type 2

CarPackageManagerService

CarDrivingStateService

CarUXReService

At Runtime
● Car Service receives driving state changes from CarDrivingStateService.
● CarUXReService computes restrictions from the UXRe mapping config and

the driving state.
● CarPackageManagerService determines if the current activity is distraction

optimized.
● If the current activity is not distraction optimized, then an

ActivityBlockingActivity is launched that blocks the offending activity.

Car System UI

ActivityBlockingActivity

CarActivityService

App

show

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Thank you

