Google
Automotive
Partner

Bootcamp

Performance
Analysis /

Ethan
Lee

Software Engineer

V7 kas op

A Scientific Approach to
Performance Analysis

Getting Started with
Perfetto

Trace Analysis
Walkthrough

SQL Queries

Anatomy of a Trace

Perfetto Pitfalls

Making Debugging
Easier

Performance Tuning

A Scientific
Approach to
Performance

Analysis

What is Performance Analysis?

e Performance issues require a systematic process to uncover
their root cause.

e The right tools need to be identified to gather insights into
critical parts of complex systems.

e There are a number of techniques which engineers can use
to delve deeper into the execution of a system.

Google confidential and proprietary | Do not distribute

Google Automotive Partner Bootcamp

Performance Analysis?

There are two techniques that are widely used for performance analysis: and

e Tracing involves collecting highly detailed data about e Profiling involves sampling some usage of a resource by a program.

system execution. e The most common types are memory profiling and CPU profiling.

e Traces contain enough detail to build a timeline of events. . : : :
e Memory profiling surfaces information about heap memory allocation.

e Traces give us insight into what a program does over time (e.g. which
functions are being run) and context about execution (e.g. function
call parameters).

e CPU profiling gathers information about the call stack running on a
CPU over time.

Perfetto?

Profiling and tracing have different use cases:

Why use profiling over tracing?
e Traces, while detailed, are impractical for capturing high-frequency events like every function call due to the sheer volume of data involved.
e Profilers address this limitation through sampling, selectively recording data points to drastically reduce storage requirements.

Why use tracing over profiling?

e Profilers offer valuable insights into where resources are consumed within a program'’s call stack, but they lack the ability to explain the underlying reasons behind
those resource allocations.

e Forinstance, a profiler might reveal that function foo() called malloc numerous times and allocated X bytes, but it cannot tell us why foo() was making those calls.

e Traces fill this gap by combining application and kernel events, providing in-depth context to understand the root cause of resource consumption.

Perfetto Effectively

This approach allows one to easily
compare the delta of a potential
regression. To achieve this, one
should have an established
baseline to compare against.

Perfetto will enable one to
gather insights beyond just
surface level observations.

It is imperative that we can
translate user-perceptible
signals into measurable metrics
that can be tested.

Using Perfetto in this approach
means that multiple iterations
will need to be collected. In order
to establish reliable metrics, it is
necessary to gather information
on a large enough population to
capture reproducible issues.

How to Use Perfetto Effectively

How does Perfetto and our performance analysis flow fit into our goals?

4 N\ (‘/—7\
Select the CUJ to Requires more Performance Issue
—_
profile Record a Trace instrumentation? Fixed?
(Start J Instrument the
cuJ < End

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

A Feature Rich Tool

Ease of Use

Perfetto provides an end-to-end
solution to capture Android system
traces quickly to identify issues in
critical user flows.

Flexibility

Via Perfetto trace configs, users are
able to modify tracing behavior via
buffers or data sources. For
example, one can easily change
data sources to capture various
ftrace events or atrace events.

Trace Analysis

Perfetto provides a
comprehensive trace viewer web
Ul that empowers one to inspect,
visualize, and analyze the
collected data.

E

Data Mining

One can leverage SQL-like syntax
to query the trace data, making
complex analysis easier.

System tracing

Linux ftrace

/proc pollers

Heap profilers

Data sources
Linux/Android

Tracing daemon
UNIX socket

Perfetto Work?

Record traces

Chrome tracing In-app tracing

Chrome-specific

App-specific data-sources
data-sources PP~SP

Track event library
TRACE_EVENT(...

Tracing service In-process
Mojo service thread

Tracing C++ Library
Android / Linux / MacOS / Windows

Analyze traces

Trace Processor
Android / Linux / MacOS / Win

Trace importers
Protobuf, JSON, systrace

SQL query engine
Based on SQLite

Trace-based metrics
JSON / Protobuf / CSV

https://perfetto.dev/docs

Visualize traces

Perfetto Ul
HTML / JS

Trace Processor
Web Assembly

ADB over WebUSB
For Android

Works offline
After first visit

https://perfetto.dev/docs

Perfetto Work?

e Kernel tracing is enabled via Linux ftrace, which allows kernel

events such as scheduling events and syscalls to be recorded.

e /proc pollers allow the sampling of process-wide cpu and
memory counters over a time period.

e Heap profilers also enable capturing information for the
Native and Java heap.

https://perfetto.devidocs —>

System tracing

Linux ftrace

/proc pollers

Heap profilers
Data sources

Linux/Android

Tracing daemon
UNIX socket

Record traces
Chrome tracing In-app tracing

Chrome-specific

App-specific data-sources
data-sources PR=SP

Track event library
TRACE_EVENT(...

Tracing service In-process
Mojo service thread

Tracing C++ Library
Android / Linux / MacOS / Windows

https://perfetto.dev/docs

Perfetto Work?
Analyze traces Visualize traces
e The Trace Processor is a C++ library that takes in raw trace data
and surfaces it through an SQL interface for straight-forward . Perfetto Ul
QUGFYing. Android / Linux / MacOS / Win HTML / JS
e Trace importers allow simple ingestion of multiple formats
e Trace-based metrics creates pre-formatted and extensible Trace importers Trace Processor
. . . Protobuf, JSON, systrace Web Assembly
queries that provide trace summaries. (e.g. CPU usage at
different frequency states).
SQL query engine ADB over WebUSB
Based on SQLite For Android
Trace-based metrics Works offline
JSON / Protobuf / CSV After first visit
https://perfetto.devidocs —>

https://perfetto.dev/docs

Perfetto Work?

A trace visualizer is instrumental for analysis and is powered by
WebAssembly.

The Perfetto Ul works fully offline after initial opening.

https://perfetto.devidocs —>

Analyze traces

Trace Processor
Android / Linux / MacQOS / Win

Trace importers
Protobuf, JSON, systrace

SQL query engine
Based on SQLite

Trace-based metrics
JSON / Protobuf / CSV

Visualize traces

Perfetto Ul
HTML / JS

Trace Processor
Web Assembly

ADB over WebUSB
For Android

Works offline
After first visit

https://perfetto.dev/docs

Getting Started
with Perfetto

Collecting a Perfetto Trace

1. Download the recording script using the below command:

$ curl -0 https://raw.githubusercontent.com/google/perfetto/master/tools/record android_trace

$ chmod u+x record android_trace

2. Start tracing using:

$./record android trace -o <trace-name>.trace -c <previous trace file>

3. Run the desired CUJ or experiment
4. End the trace using Ctrl+C for the command run in Step 2
5. The trace will be automatically be opened in the browser after the collection has completed

Viewing a Trace

If one wants to open an existing trace file,
navigate to ui.perfetto.dev to open and
access a trace:

D Perfetto

Navigation

[(5 Open trace file
IC]I Open with legacy UI

O) Record new trace

Example Traces

[& Open Android example

[Ej Open Chrome example

Support

(? Keyboard shortcuts
[@) Documentation

[a Flags

{ZF Reportabug

O) Recerd-metatrace

Quick Start:
Viewing a Trace

Once the trace is generated, one can also
generate a permalink to the existing trace
that can be shared:

Google Automotive Partner Bootcamp

P Perfetto

Navigation

Current Trace

boottrace perfetto-trace (244 MB)

Cpu 0 (little)
Cpu 1 (little)
Cpu 2 (little)
Cpu 3 (little)
Cpu 4 (mid)
Cpu 5 (mid)

Cpu 6 (mid)

Cpu 0 Frequency
Cpu 1 Frequency
Cpu 2 Frequency
Cpu 3 Frequency
Cpu 4 Frequency

Cpu 5 Frequency

p
p
p
p
p
p
p
Cpu 7 (big)
p
p
p
p
p
p
p

Cpu 6 Frequency

Cpu 7 Frequency

Android App Startups

Android logs

GPU Memory

(TN N1 O S 11 1L TN
| T IIIIIIIIIIIIIIIII-IIIUII-IIIIHI.IIIII -IIIIIII

O A (AT T T T
RN 00T OO O D e Y T e e O NUED
AT RRRAY W ORER A O Tk i

A AU RO VOO TRt 0
0 AN T Lo 1 IIIIIIIII-II-II--IIII--\II |

N NN T | I IHHIIIIIIII\IIIIII-IIIIIIIII-IIIIII

256H e e e = T e ey

‘,S'QNI

256H2 gaas : T - —_— BT T T T

i“i‘lﬂ_l B

2.5GH2 | T

2.5GHz

25cH: . [, \(e 11 A W1 SNSRI o | I ir SHIE S LR TGN |

-nummmn“——— Il—lll l-llllll
ERR N R n Nl mmin el n i P e mwnn nn ne v om

Google confidential and proprietary | Do not distribute

Demo Video

An example video of a trace being
collected from beginning to end.

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

https://docs.google.com/file/d/1LJbpkh1tsQzcBYYe0m_YKVN3ROtsMulx/preview?resourcekey=0-qxMxahyfyNa5jqTlLkcTkQ

Collect Boot Time Tracing

In Android TM+, the trace can be collected as seen previously. However the
following setting must be enabled before the device is restarted:

adb shell setprop persist.debug.perfetto.boottrace 1

In Android SC-, the following steps are required to setup the device:

Boot tracing in Android SC- requires selinux to be set to permissive.
The following .rc file on the right must be created.
adb root && adb remount must be run to remount the device.

B WDN -

adb push perfetto boot.rc /etc/init/perfetto _boot.rc
adb push perfetto_trace config.textproto
/data/misc/perfetto-traces/boottrace.pbtxt

Use the following commands to push the .rc and config file to the device:

cat >> perfetto boot.rc << "EOF'
service perfetto boot /system/bin/perfetto --txt -c
/data/misc/perfetto-traces/boottrace.pbtxt -o
/data/misc/perfetto-traces/boottrace.perfetto-trace

class late start

disabled

user shell

group nobody

oneshot

seclabel u:object r:perfetto_exec:so

stdio_to kmsg

capabilities DAC_READ_ SEARCH

on property:persist.perfetto.boottrace=1
rm /data/misc/perfetto-traces/boottrace.perfetto-trace
start perfetto boot

EOF

Collect Boot Time Tracing

The following steps are required to collect the trace:
1. Reboot the device using adb reboot

2. Stop perfetto and pull the trace:

adb shell pkill perfetto

adb pull /data/misc/perfetto-traces/boottrace.perfetto-trace

Trace
Anatomy

Setup

e Perfetto provides granular control over data collection. Unlike always-on logging systems
(e.g., Linux's rsyslog, Android's logcat), its tracing data sources start in an idle state.

e The TraceConfigis a protobuf message that controls your Perfetto tracing session. It
outlines:

e System-wide Settings:
o Maximum trace duration.
o Number and size of memory buffers.
o Maximum output file size.

e Data Source Specifications:

o For kernel tracing, which ftrace events to enable.
o For the heap profiler, the target process name and sampling rate.
e Data Routing: Specifies which buffer each data source should write into

Note: a sample config can be found at perfetto.dev/docs/concepts/config

Perfetto Trace Config

How the Tracing Service Uses the TraceConfig

e The tracing service (traced) is your config manager. Trace config
When you start a tracing session, the service:
Duration: 10s -
o Reads System Settings: It determines its behavior Suff 4o/: aMB
. . . urrters: c
based on the TraceConfig's outer section (duration, ; —. Data source 1
#1/: 16MB H e.g, ftrace
buffers, etc.).
Traced]
o Activates Data Sources: It finds Producers that , tracing service
. . . data source: “linux.ftrace”
match the data sources listed in the config. Then, #0415 | () 10s
. : Ft fi
it starts each Producer and provides the relevant Fiﬁizéfzvéﬁt; “sched_switch” #1 16 MB Data source 2
DataSourceConﬁg settings Ftrace_events: “sched wakeup” | e.g, heap prof
. }

data source: “android.heapprofd”

heapprofd_config {
sampling interval bytes: 1
process_cmdline: “adbd”
Continuous_dump_config {
dump_phase ms: 10000
Dump_interval _ms: 10000

}
}

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Trace Config

This section defines the number, size and policy of in-memory
buffers owned by the tracing service.

Fill Policy:

o ARING _BUFFER (default) fill policy will wrap over when
full and replace the oldest trace data in the buffer.

o A DISCARD fill policy will stop accepting data once full.

The target_buffer field can be specified to indicate different
buffers for data sources.

Defining several buffers
buffers: {

size kb: 4096

fill policy: RING_BUFFER

}
buffers {

size kb: 4096

fill policy: RING_BUFFER
}

Trace Config

This data source will enable Android logcat messages
to be shown:

data_sources: {
config {
name: "android.log"
android log config {

¥

Trace Config

data_sources: {
Various CPU frequency stats can be collected with the following config {
data sources: name: "linux.sys stats"”
target buffer: 1

o Enabling the power/cpu_frequency ftrace event
sys_stats config {

o Setting cpufreq_period_ms > O (Note: only works on ;
Android SC-V2 and above) cpufreq_period_ms: 500

data_sources: {
config {
name: "linux.ftrace"
ftrace config {
ftrace_events: "power/cpu frequency"

Cpu 0 Frequency 2.5 GHz

T — Genin ftrace_events: "power/cpu idle

Cpu 2 Frequency 2.5 GHz | : ﬁ ftrace _events: "power/suspend resume"

Cpu 3 Frequency 2.5 GHz }

Cpu 4 Frequency 2.5GHz }

Cpu 5 Frequency 2.5 GHz }
Cpu 6 Frequency 2.5GHz

2.5 GHz

Perfetto Trace Config

Defining Data Sources (Jankiness)

Jankiness can be examined with the frame timeline data source.

data_sources: {
config {
name: "android.surfaceflinger.frametimeline"”
target buffer: 2

Expected Timeline 4812

4815

sa09 | a2

Actual Timeline 4815

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Trace Config

e Thelinux.process_stats data source gathers per-process
statistics from the /proc/<pid>/status and
/proc/<pid>/oom_score _adj files on Linux systems

©)

Process memory usage (RSS, VMSize, etc.)
Open file descriptors

Out-of-memory (OOM) score (indicates how likely the
kernel is to terminate the process when memory is low)

data_sources: {
config {
name: "linux.process stats"
process stats config {

scan_all processes on_start:

proc_stats poll ms: 1000

- A system_server 1352

true

mem.virt

mem.rss

mem.rss.anon

mem.rss.file

mem.rss.shmem

mem.swap

mem.locked

mem.rss.watermark

oom_score_adj

Trace Config

data_sources: {
config {
name: "linux.sys_stats"
target_buffer: 1
sys_stats_config {

e Thelinux.sys stats data source gathers a range of 213 peeiles] [se HEE
system-level statistics from Linux. The following stat counters statcounters: STATCPETHES
. meminfo_period_ms: 1000
can be CO”eCted' meminfo_counters: MEMINFO_ACTIVE_ANON
o Stat Counters (proc:/stat): meminfo_counters: MEMINFO ACTIVE_FILE
meminfo_counters: MEMINFO_INACTIVE_ANON
m STAT CPU TIMES meminfo_counters: MEMINFO_INACTIVE_FILE
- - meminfo_counters: MEMINFO_KERNEL_STACK
e user: Time spent running in user mode meminfo_counters: MEMINFO_MLOCKED
. . . . meminfo_counters: MEMINFO_SHMEM
e nice: Time spent running niced user processes meminfo_counters: MEMINFO_SLAB
LT . meminfo_counters: MEMINFO_SLAB_UNRECLAIMABLE
* SyStem Tlme Spent N SyStem (kernel) mOde meminfo_counters: MEMINFO_VMALLOC_USED
: . TS H meminfo_counters: MEMINFO_MEM_FREE
o Idle Tlme the process was Idle meminfo_counters: MEMINFO_SWAP_FREE
o) i :
Mem Info Counters (proc/meminfo): mstat_pendod ne: 1606
m Provides information such as free memory, vmstat_counters: VMSTAT_PGFAULT
vmstat_counters: VMSTAT_PGMAJFAULT
anonymous memaory. vmstat_counters: VMSTAT PGFREE
vmstat_counters: VMSTAT_PGPGIN
(©) VM Stat Counters (prOC/VmStat) vmstat_counters: VMSTAT_PGPGOUT
. . . . tat ters: VMSTAT_PSWPIN
m Provides information on virtual memory such as vmetat counters: VNSTAT PSPOUT
H vmstat_counters: VMSTAT_PGSCAN_DIRECT
page faUItS’ pages N and OUt’ etC vmstat_counters: VMSTAT_PGSTEAL_DIRECT
o Note: cpufreq_period_ms is only available above SC-V2. ISR R EERa TS LESE LSRR
- - vmstat_counters: VMSTAT_PGSTEAL_KSWAPD
m The following error will be encountered otherwise: vmstat_counters: VMSTAT_WORKINGSET_REFAULT
[] NO 'F]_e]_d named "CpU'FI”‘eq_per‘iOd_mS" in # Below field not available on < Android SC-V2 releases.
. cpufreq_period_ms: 500
proto SysStatsConfig. }

Trace Config

A rMisc Global Tracks

ION allocations (heap: all) imetric

mem.ion

MemAvailable

MemFree

MemTotal

nr_active_anon

nr_active_file

nr_file_pages

nr_free_pages

nr_inactive_anon
nr_inactive_file

nr_mapped

nr_zspages
num_forks
pgpgin

Pgpgout

psSwpin

 ARSEIRSR R AE NRSE RN N SRR

swpout

Trace Config

data_sources: {
config {

. .. . name: "linux.ftrace"
Capturing ftrace events allows developers insights into kernel code. target buffer: 2

They are useful for analyzing latency or performance issues outside of ftrace_config {

userspace. # Memory events
ftrace_events: "power/suspend_resume"
ftrace_events: "mm_event/mm_event_record"

°
Memory Events ftrace_events: "kmem/rss_stat"

e Low Memory Killer Events ftrace_events: "ion/ion_stat"
ftrace _events: "dmabuf heap/dma_heap stat”
e Sched Events ftrace_events: "kmem/ion_heap_grow"

ftrace_events: "kmem/ion_heap_shrink"

LMKD events

ftrace_events: "lowmemorykiller/lowmemory kill"
ftrace_events: "oom/oom_score_adj update"
ftrace_events: "oom/mark_victim"

sched events

ftrace events: "sched/sched process exit"
ftrace events: "sched/sched process free"
ftrace_events: "sched/sched switch"
ftrace_events: "sched/sched wakeup"
ftrace_events: "sched/sched wakeup new"
ftrace_events: "sched/sched_waking"

Perfetto Trace Config

Defining Data Sources (ftrace)

In order to capture CPU scheduling events, ftrace events: "sched/sched switch” needs to be added to the linux.ftrace data source.
With this enabled the following can be captured:

o Threads scheduled per CPU
Why a thread got de-scheduled (pre-emption, blocked by a mutex)
o When a thread becomes runnable

C.. € com.. com.google.android.companiondevi.. .. system_server {1593] system_ser... idmap2d [212... idmajﬂd [2122!“

CDU 0 (little T. | [RS8 Thr. Thread-2 [2107 ActivityManager [1654] ActivityMa.. Al binder:2122_.. binder:2122_1[213

syste.. | sys.. . system_server [1593] : system_server [1593] system_server [1593] - N sy.. [E2 system_server |[... s Jco
andro and tr... android.bg [1653] android.bg [1653] android.bg [1653] an.. B android.bg [165 e

Cpu 1 (little

stack-unwinding [2076] | | Lit. ActivityManager | binder:2122.. Thread-2 [2107] b Thread-2 [2107]
com.. com.google.android.ca... : @ne c| c. e | system_server[159.. 'idmap2d [2.. I ; com...
sod... soda_process [31944] | ActivityManager [1 binder:21 \ v Lit
Cpu 4 (mid) Bl
; SY... R (R | 28 .. | com.androi.. system... : system_serv...
Cpu S(mld) Ac B fr. I I .. | carcarlau.. inder inder:1593..

0u 6 (mid) com.a.. | com.andro.. s.. com.android.car.. S com.an.. - NI : . com.android.car.c.. Jcom... sy. com.android.car.. ©
car.c.. car.carla.. b car.carlauncher .. b carca b 3 car.carlauncher [.. car... bi car.carlauncher...

Cpu 3 (little

com.an... 3 com.android.car.carlauncher [2124]

(little)
(little)
Cpu 2 (little) traced_perf [2075] | com... c system_server [15.. | idmap2d [21.. com.google.android.companiondevicesupport [2090] a.. com.google.android.companiondevicesupport [2090]
(little)
(

Thread.. Thread-2 [2142]

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Trace Config

config {
name: "linux.ftrace"
target_buffer: 2
ftrace_config {

Predefined groups of trace events that make it easier to enable tracing for il R SRS
specific areas of the system. atrace_categorles: “aldl

atrace_categories: "am
atrace_categories: "dalvik"
atrace_categories: "binder_lock"

The atrace_apps functionality in Perfetto enables selective tracing of atrace_categories: "binder_driver’
specific applications on Android. It allows you to capture trace data only atrace_categorles: "disk”
from the processes of interest.

atrace_categories: "freq'
atrace_categories: "idle"

atrace_categories: "gfx"

atrace_categories: "hal"

A com.google.android.gms.persistent 3
/ 502

— _ : S— atrace_categories: "pm
Aty Thesda . atrace_categories: "power”
e e B L s s atrace_categories: "rro"
. e, # atrace apps
atrace_apps: "lmkd"

atrace_apps: "system_server"

atrace_apps: "com.android.systemui"

atrace_apps: "com.google.android.gms"
atrace_apps: "com.google.android.gms.persistent”
atrace_apps: "android:ui"

atrace_apps: "com.google.android.apps.maps”

Trace Config

If not recording time limit is specified, one will have to manually terminate

the tracing session. # No recording time limit (press CTRL+C to stop recording).
Alternatively: uncomment the line below to set a time limit.
If duration_ms is specified then, the trace will terminate automatically. #duration_ms: 1800000
. write into file: true
If write_into_file is true, then Perfetto will periodically stream results into a il e, paried 8 BEEE
trace file. max_file size bytes: 100000000000

. . . .) flush period ms: 5000
Flush_period_ms defines the default drain period. A shorter period

means a smaller userspace buffer is required. However, this will increase
the performance intrusiveness of tracing.

Max_file_size_bytes is used to cap the size of a trace file.

Flush_period_ms is used to periodically issue a Flush() to all data sources,
forcing them to commit their data into the tracing service.

Anatomy of a Trace: Binder Transactions

There are two types of binder transactions:

1. Unidirectional: Using the oneway keyword in the AIDL language,
these transactions do not wait for a reply after sending a parcel.

2. Bidirectional: The transmitting end is blocked until it receives a reply.

Note: This is only available in UDC onwards.

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Anatomy of a Trace: Bidirectional Transactions

Bidirectional Transaction:

ActiveStore:getStorageEndpoint
ServiceStore:on

|dentified by a corresponding binder transaction and binder reply pair. '
e

© bindertransaction | '

pool-4-thread-1 17764

R | R | Running Ru Rl R FR

Binder:17769_3 17788 R| Run R UNEEESS R |E| R| R Running
I binder reply I
IStorageService$Stub:dispatchTransaction

BindingContext:regi
 BindingContextStatsimpl
BindingContextSregisterCa
BindingContextSregisterCallback$ 1:invoke
BindingContext$registerCallback$151:invokeSuspend
Store:activate$default
Store:activate
StoreSCompanion$defaultFactory$1:invoke
ReferenceModeStoreSCompanion:create
DirectStoreSCompanion;create
DriverFactory:getDriver W DatabaseDriverregist...
DatabaseDriverProvider.getDriver S M| Datab... | DirectStore$...
AndroidSqliteDatabaseManager.getDa... Data.. DirectStores...

: AndroidSqlit istry.... DirectStore:...
Binder-17769.3 17788 ' droidSqliteDatabaseRegistry: Data irec ore.
. Iy | [Data... | DirectStore:...

Dat... DirectSt...
DD DirectS

| Databas..

1 Databas.

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Anatomy of a Trace: Unidirectional Transactions

Unidirectional Transaction:

Indicated by an arrow in a Perfetto trace.

DefaultDispatch 17799 | Runnable (Preemed)

BindingContextSidle$1$1:invokeSuspend
IResultCallback$StubSProxy:onResult

~ Current Selection

Slice Details

Name binder transaction async
Category binder
Start time 3s 377ms 694us

Duration Os
0x11 ghis is a one-way call: async, no return; allow replies with file descrig

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Common
Pitfalls

Pitfalls

One of the reasons that a trace may be empty is that another process is using ftrace. Run either of the following to set the current_tracer to nop:
Run the following command to determine if the current_tracer is nop: > adb shell echo “nop > /sys/kernel/tracing/current_tracer”
> adb shell cat /sys/kernel/tracing/current_tracer > adb shell echo “0 > /sys/kernel/tracing/tracing_on"

> adb shell cat /sys/kernel/debug/tracing/current_tracer # older kernel may still use debugfs

L UL AN Rl JAUEE B LI RUIREL BRaL Ad X 1 % ¢ | 1| . __ _ _________[lI} | | TN I FPSN—Ye— I C——rUa—— N TR () [PEvry SN By (5 V]) (SSSSS-—YY SISy

(LU BN I mmi N nr 'm LRl m FOM T P I PO i 1) aa—ieemaw e imwotmi o | " I TR migiiee & /e wiliam 0oy 1 e)) mioramo |

A Chrome Scroll Jank

Lalencies

v Misc Global Tracks

v Kernel threads

v surfaceflinger 945

Vv Process 1494

v Process 4026

v Process 2130

v Process 4160

Pitfalls

data_sources: {

config {
Another common pitfall is insufficient data buffer size. Increasing buffer name: "linux.ftrace"
size may alleviate scenarios in which key CUJ data is dropped. target buffer: 2

ftrace config {
Do not include the below:

If too many events are being collected, there are some that can be
ftrace _events: "raw _syscalls/sys enter"”

dropped to avoid trampling the output trace file. Including sys_enter
and sys_exit will lead to all system calls being logged. The below trace ftrace _events: "raw_syscalls/sys exit"
demonstrates this, where the tracks do not terminate.

- A system_server 1156
system_server 1156 | I (R AN IR Y | XN U DT O T 160 T TS T g O

B0 TEE TN 0 R 1 L0 A AT T A

RenderThread 2798 =
| ” sys_epoll_pwait

system_server 1156

RenderThread 2798

RenderThread 2839 y Exit (Dead)

RenderThread 2839 sys_nanosleep] sys_exit

Signal Catcher 1174
Signal Catcher 1174
perfetto_hprof_1175

perfetto_hprof_ 1175
ADB-JDWP Connec 1176
ADB-JDWP Connec 1176

Trace
N EWAIE

Key Steps

Narrow the search space: one can achieve this by determining the
beginning and ending points via Android system logs or atrace logs.

Inspect CPU, memory tracks, etc: This will help identify symptoms of a
regression so that the analysis window can be tightened.

Understand context: After capturing a smaller window, it is possible to
understand what actions are being performed. (Ex. What is occurring
during at this point in the user switch lifecycle?)

|dentify Culprit Process: Given context, it is possible to visualize
offending processes in the trace. Adding more logging via atrace will also
allow one to trace points in a codepath.

Analyze thread-level interactions: Looking at markers such as thread
state and binder transactions during the window will allow one to make
informed hypotheses.

Trace Analysis Summary

Sample flow illustrating:

1. CUJ profiling

2. Trace recording

3. CUJ instrumenting
4. Performance Fixes

Select the CUJ to
profile

|

[Start

Google Automotive Partner Bootcamp

>

Instrument the
CuJ

Requires more

instrumentation?

Performance
Issue Fixed?

S

Google confidential and proprietary | Do not distribute

Trace Analysis Walkthrough

Looking at a trace can be overwhelming. There are several key steps to help narrow down a problem area to root cause a performance issue. A trace analysis walkthrough

will help guide investigations. Initially a trace was collected that captured a user switch from user 10 to user 11.

1. Narrow the search space: Use Android logs to identify key starting and stopping points. In this case flag UserController.startUser-11-fg-start-mode-1 and

onCompletedEventUser 11 act as the stop and start points.

19490d21:13:06 19490d21:13:08 19490d21:13:10 19490d21:13:12 19490d21:13:14
000000 000 000000 000 000000 000 000000 000 000 000 000

F;Ij User 11 Start

Cpu 0 (little

(little)
Cpu' (it | I —IIIIII-IIIIIIII_ 110 1T
Cpu (itle) (1 O | A O R T 11
Cpu3 (it 1l 0 N e
(
(
(

Cou 4 (mid) T T T T T T T T T gy T
Cpu ' (mi) (/0 OO 10NN OOV 0N 0 O 0 0 O) O
Cpu' (i) (LA ATV T ot (e T T |

Cpu7 (b | MIEEE W (0D TNDNDNY TN [kT I

Cpu 0 Frequency 25 SHzepgurmur gy P p—

Cpu 1 Frequency (25 GHe g IR S —— o — s — 17} e L i

Cpu 2 Frequency 2:5 GHz TN L Ay

Cpu 3 Frequency B T | AR

Cpu 4 Frequency (2562 WCCIE T Cirwm gLy s, []

Cpu 5 Frequency 256H UL TTTAL Lo o LELICRL L LU | LAV M LN (L

Cpu 6 Frequency ‘2-53"1 RV TN T] [| [001 o [T TR T T T 17 1 I LB LRl LR

Cpu 7 Frequency 2.5CHz [5””“ 0T T L L T L) L LI T U ey A T

FaY o VNI W PRSUR . 025G

 Current SelectionJ Android Logs '
Android Logs [0,0]/2 Log Level Verbose v Filter by tag...

Timestamp Level Tag Process name Message

19490d21:13:06.2 D SystemServerTiming system_server UserController.startUser-11-fg-start-mode-1

‘ 19490d21:13:06.5 V SystemServerTiming system_server UserController.startUser-11-fg-start-mode-1 took to complete: 367ms

Google Automotive Partner Bootcamp

Google confidential and proprietary | Do not distribute

Trace Analysis Walkthrough

2. Inspect CPU and memory tracks: In this case, it is apparent that there are big and gold cores being underutilized during the user switch.

19490d21:13:06 19490d21:13:08 19490d21:13:10 19490d21:13:12 19490d21:13:14
000000 000 000000 000 000000 000 000000 000 000 000 000

B user 11 5t Big and Gold Cores Idle

0 (little

—

)

Cpu 1 (ittle) | | H il

Cpu 2 itte) | [W I N AT N1 AL 0 T 111
)

0
(
(
Cpu3 ite LT R | | II_-I-I_I-IIII-MI_ |
Cpu 4 (i) | O A LTI T l_-l-ll _ | [T [
Cpu' (i) (/1 O NN 000 A MMUAN I VT N 0 [_ | I INHA
Cpu' (i) AR 10 N | _lll-l\lll--_lﬂl-lﬂlllﬂlﬂl-]lﬂllﬂlﬂlll | 11
Cpu (big | | [R Hﬂl!ﬂlm[llﬂﬂl.ﬂﬂllml[-m—‘ -l

Cpu 0 Frequency 256Hz A
il "

Cpu 1 Frequency 25 GHzon et
Cpu 2 Frequency 2:5 GHa e sy oy

|
Cpu 3 Frequency B T T | i1l Hi

Cpu 4 Frequency fz'“"z arrmr T gL b A o Bl Rl

Cpu 5 Frequency 2.56GHz L "Iﬂ . | Il il L 8 lﬂlﬂﬂ“ | | ‘ | ' T :

Cpu 6 Frequency 256“! 1RO TN TR T AT T T T O 1 1 v 3 (51 TV T o T T {1 Tl

Cpu 7 Frequency 'ZSGHz , gﬂﬂll L |- Mﬂjﬂ -
. [,

N256G

Current Selection J Android Logs l

Android Logs [0,0]/2

Timestamp Level Tag Process name Message

19496d21:13:06.2 D SystemServerTiming system_server UserController.startUser-11-fg-start-mode-1

9490d21:13:06.5 V SystemServerTiming system_server UserController.startUser-11-fg-start-mode-1 took to complete: 367ms

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Trace Analysis Walkthrough

After identifying the area of interest, it is necessary to zoom in on events occurring during this underutilization.
This can be achieved by zeroing in on log events or processes that have significant activity during that period.

19490d21:13:06 19490d21:13:08 19490d21:13:10 19490d21:13:12 19490d21:13:14
000000 000 000 000 000 000000 000 000000 000 000 000 000

Ir—l:l:l User 11 Start

(little)
(ite) 1] | | | H T
Cpu 2 (it [1amm | II--II-—IEI--IMWH |
Cpu 8 it (T] | il 0 T IS M
(
(
(mi

Cpu 0 (little
Cpu 1 (little

Cpu 4 (i) | (MUY DR | ARG I
Cpu' (i) 1 T

Cpu' (i) | AU T Y M nMS |

Cpu7 (big) | | - | N T TN |0 N T I T

Cpu 0 Frequency 2.5 GHz ;

| : ‘ [
Cpu 1 Frequency 28 GHe iy muwmg. L. ,lw

,_I l ‘,l,." ,}l .',I TR .l" —— v . T L L

Cpu 3 Frequency RNl 14 6 b | il || III

Cpu 4 Frequency T M, T T MH) W”F’F'M'ﬂ! —rq—nnrml " bl

Cpu 5 Frequency 2.56Hz ' lll Iul [} ILLL S HHLH“ L : L1

Cpu 2 Frequency l25GHz A AT A

L_LHJJUI.UIMLU

Cpu 6 Frequency |25G“1 1 Y A Hllllﬂ!l L USRI R WL LU 1 lﬂll DURAN AL UL ULSLE 1L IR IIII_IIIFI llI 1L

cpu7 Frequency I 5w | AR 111 B
1 [—E——————

N256

Current Selection J Android Logs [' Area of |nterest
Android Logs [0,0]/2

Tv

Timestamp Level Tag Process name Message

| 194906d21:13:06.2 D SystemServerTiming system_server UserController.startUser-11-fg-start-mode-1
19490d21:13:06.5 V SystemServerTiming system_server UserController.startUser-11-fg-start-mode-1 took to complete: 367ms

Google Automotive Partner Bootcamp

Google confidential and proprietary | Do not distribute

Trace Analysis Walkthrough

3. Understand Context: Here, only 4 out of 8 cores are being utilized, which undoubtedly contribute to a prolonged user switch. This idleness appears early on in the user
switch when user 11 is being started. SystemServiceManager is responsible for starting system services during user initialization. SystemServiceManager will wait until all
services are created. It is clear that com.android.role.RoleService is the last service to be initialized and also requires the most time.

UTC 1970-02-18 19490d21:13:05 19490d21:13:06 19490d21:13:07 19490d21:13:08 19490d21:13:09 19490d21:13:10 19490d21:13:11 19490d21:13:12 19490d21:13:13 19490d21:13:14
000000 000 000000 000 000 000 000 000000 000 000000000 000000 000 000000 000 000 000 000 000000 000 000000000

User 11 Start RoleService Done

1 T PO I
A R KA T S0 o
(OMNED [N UUDORE [AN M|

Cpu 0 Frequency 25 GHa, e nuAge I ————) (T TSN LI RS Ly u

Cpu 1 Frequency %5 GHz o g nmnwurrunm.w.muln’ml-w: L AT L] s T wu

Cpu 2 Frequency 25 BHz prr AR AT A TULL S L R L o TR TA B1100 WS T T WL TR A0 LR S (T TR L Bl T

Cpu 3 Frequency Tt o ol W W) I Rl A | i

Cpu 4 Frequency et RN L TR TR — B L L TR TR (118

Cpu 5 Frequency 12~5 GHz LLULL L I I \[u_ulllylﬂflw.,l,[;U!MIML.V- SITHT) T S 11 s 1o IUTRTTIAON ST 1T M)) T

Cpu 6 Frequency 2:5GHz | Il mIE OCIRE)RR E LR R LR LEASS L AL UL LCTANRUR LU 0T AL | J U LIBL I
Cpu 7 Frequency 2.5GHz [E LI P] AL AL W W0 AUTACTY (R LI

GPU Memory o '—vﬁr = ‘ »—;:‘. ":-.‘i'.'—’.«—v-'-/?f
Cpu 0 cpu-clock

Cpu 1 cpu-clock

Cpu 2 cpu-clock

Cpu 3 cpu-clock

Cpu 4 cpu-clock

Current Selection J Android Logs

Android Logs [0,0]/15 Log Level Verbose v BSRCIUEEWIRVELEREES Filter by tag... Search logs...

Timestamp Level Tag Process name Message

19490d21:13:06.5 SystemServiceManager system_server Calling onStartUser 11
SystemServiceManager system_server Service com.android.server.om.OverlayManagerService took 506 ms in onStartUser-11

194 SystemServiceManager system_server Service com.android.server.StorageManagerService$Lifecycle took 117 ms in onStartUser-11
SystemServiceManager system_server Service com.android.server.policy.PermissionPolicyService took 644 ms in onStartUser-11

SystemServiceManager system_server Service com.android.role.RoleService took 1298 ms in onStartUser-11 4 com.and rOid.rOIe. ROIese rVice

SystemServiceManager system_server Calling onSwitchUser 11 (from 10)

SystemServiceManager system_server Calling onUnlockingUser 11 o n U se rSta rti n g m et h od ret u r n s

SystemServiceManager system_server Calling onUnlockedUser 11

R490d21:13:10. SystemServiceManager system_server Calling onStopUser 10

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Trace Analysis Walkthrough

4. Identify Culprit Process: Android logs allow us to identify that the com.google.android.permissioncontroller process is largely responsible for starting the RoleService.
Zooming in further, it is apparent that the RoleControllerService thread handles majority of the initialization.

2000d00:00:00 4000d00:00:00 6000d00:00:00 8000d00:00:00 10000d00:00:00 12000d00:00:00 14000d00:00:00 16000d00:00:00 18000d00:00:00

UTC 1970-02-18 19490d21:13:06 19490d21:13:07 19490d21:13:08 19490d21:13:09 19490d21:13:10 19490d21:13:11 19490d21:13:12
000 000 000 000000 000 000000000 000 000 000 000000000 000000 000 000 000 000
F‘aj User 11 Start RoleService Done
.]
¥ | [N W Bl

1 ST OrE v e L T T T T T T
(NRMAND DM WUINULAMANAN |0 VIOT O
(I A 5T

ActivityManager 1366 I 5 \7 1 : | Lock contention on a monitor lock (owner tid: 1452)

0001-992-thread 24857 ssm.onStartUser-11_com.android.rol...

Kernel threads

system_server 1303

com.google.android.apps.automoti
ve.templates.host 25028

traced_probes 1121

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Trace Analysis Walkthrough

5. Look for thread level interactions: Inspecting the com.google.android.permissioncontroller process and its threads may reveal further details about thread state. For
example, a long period of uninterruptible sleep could indicate heavy I/O usage. In this case there is nothing that indicates anything out of the ordinary.

A com.google.android.permissioncontro
ller 24864

ssioncontroller 24864

ssioncontroller 24864 . _ - : ’ BTSRRI ' : v
fapex/com.android.permission/priv-app/GooglePermissionController@MASTER/GooglePermissionControlier. apk

Wn«m«mmmwmmmwﬁmmmmmmwmmmmm-pt)
Open dex file Iapexloom.lndrold.pelmlssiwmw&ogIMﬁMMdls@mswglePMMmﬂaapk
Verify dex file fapex/com.android. permission/priv-app/GooglePermissionController @MASTER/GooglePermissionController. apk

L

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Trace Analysis Walkthrough

5. Analyzing the RoleControllerService thread reveals that there is an excess of costly binder transactions occurring.
It is clear that these inter-process communication transactions are the cause of the slow down.

19490d21:13:06 07 1) 19490d21:13:08 | 19490d21:13:08 19490d21:13:09 | 19490d21:1
500 000 000 (000000 000 500 000 000 000 000 000 500 000 000

A — By
v — Faj User 11 Start ;J RoleService Done

pool-992-thread 24857

bindApplication
/apex/com... I

ssioncontroller 24864

RoleControllerS 24887

Kernel threads

system_server 1303

com.google.android.apps.automoti
ve.templates.host 25028

traced_probes 1121

Current Selection \ Android Logs | Flow Events T ¥

Slice binder transaction Contextual Options ~

Details Following Flows

Name binder transaction v Flow

Category binder Slice binder reply 2,

Start time 19490d21:13:07.915 442 744 Delay 0Os

Absolute Time 2023-06-30T21:13:07.915442952 Thread binder:1303_14 3899 (system_server 1303)
» Duration 354us 115ns

Runnable (Preempted) 280us 729 Arguments

> Running 7 ns (20.72%)

Thread RoleControllerS [24887] 0x08 Java Layer Dependent

Process com.google.android.permissioncontroller [24864]

‘ data size - 292
SQLID slice[18934] - destination name - binder:1303_14

calling tid ~ 24887

Google Automotive Partner Bootcamp

Google confidential and proprietary | Do not distribute

Advanced

Topics:
SQL Queries

SQL Queries

Beyond visually inspecting system issues via the Perfetto Ul, it is also possible to gain a deeper understanding through SQL queries.

One can access SQL queries via the below interface:

/4D Perfetto

Enter query and press Cmd/Ctrl + Enter

Navigation :

B5 Open trace file FRO!
OIN t trac
o

O) Re Query result (0 rows) - 0.8ms DROP VIEW IF EXISTS slice_with_utid; CREATE VIEW slice_with_utid AS SELECT ts, dur, slice.name as slice_name, slice.id as slice_id, utid, thread.name as thread_name FROM slice JOIN thread_track ON thread_track.id = slice.track_id JOIN thread USING (utid); Copy query Copy result (.tsv) Close

Query history (1 queries)

Current Trace DROP VIEW IF EXISTS slice_with_utid;
CREATE VIEW slice_with_utid AS
SELECT
ts,
dur,
slice.name as slice_name,
slice.id as slice_id, utid,
thread.name as thread_name

Example Traces

SQL Queries

One common example is collecting the CPU Time for slices. The first step is to build a table that links slices with their thread state.

DROP VIEW IF EXISTS slice with utid;
CREATE VIEW slice with utid AS
SELECT
ts,
dur,
slice.name as slice name,
slice.id as slice_id, utid,
thread.name as thread name
FROM slice
JOIN thread_track ON thread track.id = slice.track id
JOIN thread USING (utid);

DROP TABLE IF EXISTS slice_thread _state_breakdown;
CREATE VIRTUAL TABLE slice_thread state breakdown
USING SPAN_LEFT_JOIN(

slice with utid PARTITIONED utid,

thread state PARTITIONED utid

)s

SQL Queries

From the previous table, the CPU time for each slide in a Running state can be listed.

SELECT slice id, slice name, SUM(dur) AS cpu_time
FROM slice thread state breakdown

WHERE state = 'Running'’

GROUP BY slice id;

F Enter query and press Cmd/Ctrl + Enter

SELECT s e id, slice name, SUM(dur
tat

Query result (10000 rows) - 686.1ms SELECT slice_id, slice_name, SUM(dur) AS cpu_time FROM slice_thread_state_breakdown WHERE state = 'Running' GROUP BY slice_id; Copy query Copy result (.tsv) Close

slice_id slice_name cpu_time

Contending for pthread mutex 28594
sys_epoll_pwait 11146
sys_ioctl 17916
sys_read 4479
sys_ioctl 39323
binder transaction async 2}
sys_getuid 1042

Making

Debugging
Easier

Make App Debugging Easier

Performance Analysis Flow:

CUJ profiling

Trace recording
CUJ instrumenting
Performance Fixes

hroNn -

Select the CUJ to < Requires more Performance
profile instrumentation? Issue Fixed?
[Start J Instrument the |_

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Debugging Easier

A powerful feature that can help with debugging is adding atrace logs that will appear in Perfetto.
Java applications can add trace logs using android.os.Trace.

Native applications can add trace logs using ATrace_beginSection() / ATrace_setCounter() defined in <trace.h>

Trace.traceBegin(TRACE_TAG, "Class#method");

Trace.traceEnd(TRACE_TAG);

Make App Debugging Easier

Before:

VehickStub¥sel

binder transaciion

YehicleHal 2023
kirder:t05 2 €OE

8 23 binder repl
tinder:t04 3 62¢ reply

After:

CarUserService initBootUser requestType=3
et

" UserHalServiceSnatinitializerind r
emoekqum (‘

birder transaction

binder reply
DefauitVehicleHal-setValues

PasaVehickeHardware setValues

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Performance
Tuning

Performance Tuning After Boot

What is Performance Tuning?

WiIth the aid of Perfetto, it is possible to identify performance issues and
analyze their root cause. The next step is to implement solutions to solve
these issues. One of the ways to achieve this is by iteratively tuning the
performance of the system.

Post Boot Tuning

One of the opportunities for performance tuning is during post boot.
After boot complete, there is heavy resource contention as multiple
applications attempt to perform initialization. Classically, this is known as
the Thundering Herd Problem, where lack of system resources leads to
degraded performance. There is opportunity to both improve memory
and CPU usage during the critical window after boot complete.

Google Automotive Partner Bootcamp

Google confidential and proprietary | Do not distribute

Tuning

Kernel kswapd

e kswapd is a Kernel task to manage available free memory.
e Kernel uses 3 watermarks per memory zone to track pressure
o Min, Low, and High

e When free memory <= Low and > Min

o kswapd performs asynchronous/indirect memory reclaim.

e When free memory <= Min
o kswapd performs synchronous/direct memory reclaim.
o System becomes unstable

e When free memory >= High
o kswapd temporarily enters sleep state.

o Periodically checks the memory pressure.

Reclaim types

e Indirect memory reclaim
o Increases kswapd CPU usage.

o May slow down other processes depending on the CPU &
memory pressure.

e Direct memory reclaim

o All new allocations will be blocked until kswapd frees up
memory up to min watermark.

Google Automotive Partner Bootcamp

Kswapd watermark levels

100

75

50

25

@ Total memory

BN Low

s Min

Sleep & Check

High Watermark - Indirect claim

Low Watermark - Aggressive indirect reclaim

Min Watermark - Direct reclaim

Watermark levels

Google confidential and proprietary | Do not distribute

tuning

Kernel knobs for tuning kswapd behavior:

e /proc/sys/vm/swappiness - Defines the aggressiveness of swapping out
memory pages of inactive processes.

o Range: 0-100 Default: 60

o High values can cause Kernel to swap out processes even when enough
memory is available.

o Low values can cause Kernel to not swap out processes even when the
available memory is low.

o Recommendation:
m Devices with high physical memory - use lower swappiness values.
m Devices with low physical memory - use higher swappiness values.

e /proc/sys/ivm/watermark_scale_factor - Used to scale the buffer spaces
between memory zone watermarks.

o Range: O - 1000 Default: 10
m 10 means buffer space is 0.1% of available memory.
m 1000 means buffer space is 10% of available memory.

o Low values can cause too much direct reclaim or kswapd not freeing up
enough memory in a single pass.

o High values can cause kswapd to free up more memory than needed.

Iproc/sys/vm/min_free_kbytes - Amount of free memory kept in reserve at all
times. Defines min watermark across all memory zones.

o Recommended value range: 1% - 2% of total system memory.
o High values can scale up watermark buffer spaces leading to
m kswapd freeing too much memory than needed.
m Frequent kswapd invocation causing CPU contention to spike.
o Low values can cause kswapd to not free up enough memory leading to
m System slowdown
m Hangs/crashes
m Memory fragmentation

kswapd tuning example

Before After
e /proc/sys/ivm/watermark_scale_factor - 1 e /proc/sys/vm/watermark_scale_factor - 109
e /proc/sys/vm/min_free_kbytes - 144 MiB e /proc/sys/vm/min_free_kbytes - 60 MiB
e /proc/sys/vm/swappiness - 60 e /proc/sys/vm/swappiness - 60

Watermark Level Size Relative to Total Physical Memory

Remaining - 94.72% g

- Remaining - 96.57%

High - 0.88%

High - 0.95%
Low - 0.88% Low - 0.95%
Min - 3.51% \ % Min - 1.51%

Before After

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

kswapd tuning example

Kswapd cpu time millis Working set refault file Page stolen by kswapd

1 450 180000 800000

750000

1 2 O O 160000
700000
650000 |
9 50 | 140000
600000 1
550000
700 12000

Before After Before After Before After

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

Dex
Optimization

Optimization

By default in Android, apps are executed in interpreted mode. Dex
optimization allows for compilation of selected code paths to machine
code, which accelerates code execution.

Background dex optimization already occurs regularly as users interact
with their apps. However, after initial installation, boot time performance
may be degraded if all apps run in interpreted mode. There is an
opportunity to compile key apps ahead of time to greatly reduce boot
times.

When apps run in interpreted mode, they will also undergo JIT
compilation. Post-boot, a high level of JIT compilation will lead to a high
degree of CPU contention, further exacerbating degraded startup
times. ldentifying processes with high JIT CPU time will indicate apps
that can be dex pre-optimized, forgoing JIT entirely.

Optimization

JIT compilation activity can be visualized via Perfetto.

Within a specific process, one can identify the JIT thread pool tracks. In this example,
Car Assistant is displaying a large number of JIT compilation events.

A com.google.android.carassistant:sear
ch 3267

| R R Run_| RR _RR Run § Runn_ R | Ren_ RAu_R_ Runne_ | R | I/ PR BN LTS SRR g l , E' Ji R lllll LW R i II [g R

1 e m!m i mmm|mu ulrg;z::fs mw-m_ JATE uwn || I‘II Rercke

DJ,

Optimization

Using the query will allow one to obtain a table as shown below:

5936868097
4889113085
4597115883
2342370393
1440327723
1878185791

total_curation

instances
12608
9984
6785
3474
2422
2169

JIT
JIT
JIT
JIT
JIT
JIT

prefix_name

N

com.google.android.carassistant
com.google.android.apps.map
com.android.vendin
com.google.android.apps.geo.automotive.adas
com.android.vending

com.google.android.tt)

INCLUDE PERFETTO MODULE slices.slices;

DROP VIEW IF EXISTS interesting_slices_dO;

CREATE VIEW interesting_slices_dO AS

select id as slice _id, ts, dur, name, track id, track_name, thread _name, utid, tid,
process_name, upid, pid from _slice_with_thread and_process_info where
depth=0;

DROP TABLE IF EXISTS slice_thread state breakdown;
CREATE VIRTUAL TABLE slice_thread_state breakdown
USING SPAN_LEFT JOIN(

interesting_slices_dO PARTITIONED utid,

thread_state PARTITIONED utid

);

SELECT sum(dur) total_duration, count(*) instances, substr(name, O,
lIF(instr(name, ' ") > O, instr(name, ' "), lIF(instr(name, ') > O, instr(name, '),
length(name)))) as prefix_name,

substr(process_name, O, lIF(instr(process name, ") > 0, instr(process_name, "),
length(process_name))) as process_name_prefix FROM

slice_thread_state breakdown

WHERE state = 'Running’ and prefix_name = "JIT"

group by prefix_name, process_name_prefix

order by total duration desc;

Dex Optimization
Configuration

How to Configure Dex Pre-Optimization

For more details refer to
https://source.android.com/docs/core/runtime/configure#build_options. PRODUCT DEXPREOPT SPEED APPS += \

MapsCarPrebuilt \

Add packages to the following makefile configuration:

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

https://source.android.com/docs/core/runtime/configure#build_options

Dex Optimization Configuration

How to Verify that an App is Dex Pre-Opted

Run the following ADB command:

$ adb shell pm art dump com.google.android.apps.maps
Older releases may need to use this command instead:
$ adb shell dumpsys package dexopt | grep -i
com.google.android.apps.maps -A 2

The following output indicates Google Maps is executed in interpreted mode:

[com.google.android.apps.maps]

path:
/system/product/priv-app/MapsCarPrebuilt/MapsCarPrebuilt.apk

x86 64: [status=verify] [reason=prebuilt]

Google Automotive Partner Bootcamp

The following output indicates that Google Maps was dex pre-opted:

[com.google.android.apps.maps]
path: /product/priv-app/MapsCarPrebuilt/MapsCarPrebuilt.apk

x86 64: [status=speed] [reason=prebuilt] [primary-abi]

Google confidential and proprietary | Do not distribute

Further Materials / Important Links

Summary of useful information per section:
Trace Configuration:

https://perfetto.dev/docs/reference/trace-config-proto

How to Collect a Perfetto Trace:

https://perfetto.dev/docs/quickstart/android-tracing

Android Boot Tracing:

https://perfetto.devidocs/case-studies/android-boot-tracing
CPU Tracks:

https://perfetto.devidocs/data-sources/cpu-scheduling

Memory Tracks:

https.//perfetto.dev/docs/data-sources/memory-counters

Atrace Logging:

https://perfetto.dev/docs/data-sources/atrace

Google Automotive Partner Bootcamp Google confidential and proprietary | Do not distribute

https://perfetto.dev/docs/reference/trace-config-proto
https://perfetto.dev/docs/quickstart/android-tracing
https://perfetto.dev/docs/case-studies/android-boot-tracing
https://perfetto.dev/docs/data-sources/cpu-scheduling
https://perfetto.dev/docs/data-sources/memory-counters
https://perfetto.dev/docs/data-sources/atrace

Thank

Google
Automotive
Partner
Bootcamp

