
2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Performance
Analysis /
Tuning 101

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

CONFIDENTIALITY REMINDER

Everything shared in this presentation is under NDA

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Ethan
Lee

Software Engineer

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

01 A Scientific Approach to
Performance Analysis

02 Getting Started with
Perfetto

03 Anatomy of a Trace

04 Perfetto Pitfalls

05 Trace Analysis
Walkthrough

06 SQL Queries

07 Making Debugging
Easier

08 Performance Tuning

Agenda

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

A Scientific
Approach to
Performance
Analysis

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

What is Performance Analysis?
● Performance issues require a systematic process to uncover

their root cause.

● The right tools need to be identified to gather insights into
critical parts of complex systems.

● There are a number of techniques which engineers can use
to delve deeper into the execution of a system.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Performance Analysis

What is Performance Analysis?
There are two techniques that are widely used for performance analysis: Tracing and Profiling

Profiling
● Profiling involves sampling some usage of a resource by a program.

● The most common types are memory profiling and CPU profiling.

● Memory profiling surfaces information about heap memory allocation.

● CPU profiling gathers information about the call stack running on a
CPU over time.

Tracing
● Tracing involves collecting highly detailed data about

system execution.

● Traces contain enough detail to build a timeline of events.

● Traces give us insight into what a program does over time (e.g. which
functions are being run) and context about execution (e.g. function
call parameters).

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Profiling and tracing have different use cases:

Why use profiling over tracing?

● Traces, while detailed, are impractical for capturing high-frequency events like every function call due to the sheer volume of data involved.

● Profilers address this limitation through sampling, selectively recording data points to drastically reduce storage requirements.

Why use tracing over profiling?

● Profilers offer valuable insights into where resources are consumed within a program's call stack, but they lack the ability to explain the underlying reasons behind
those resource allocations.

● For instance, a profiler might reveal that function foo() called malloc numerous times and allocated X bytes, but it cannot tell us why foo() was making those calls.

● Traces fill this gap by combining application and kernel events, providing in-depth context to understand the root cause of resource consumption.

Perfetto addresses this by supporting the collection, analysis and visualization of both tracing and profiling.

Why Choose Perfetto?

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

How to Use Perfetto Effectively

Perfetto will enable one to
gather insights beyond just
surface level observations.
It is imperative that we can
translate user-perceptible
signals into measurable metrics
that can be tested.

This approach allows one to easily
compare the delta of a potential
regression. To achieve this, one
should have an established
baseline to compare against.

Using Perfetto in this approach
means that multiple iterations
will need to be collected. In order
to establish reliable metrics, it is
necessary to gather information
on a large enough population to
capture reproducible issues.

How does Perfetto and our performance analysis flow fit into our goals?

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

How to Use Perfetto Effectively
How does Perfetto and our performance analysis flow fit into our goals?

Start

Select the CUJ to
profile

Requires more
instrumentation? NoRecord a Trace

Instrument the
CUJ

Performance Issue
Fixed?Implement Fix

Yes

End

Yes

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Perfetto: A Feature Rich Tool

Flexibility
Via Perfetto trace configs, users are
able to modify tracing behavior via
buffers or data sources. For
example, one can easily change
data sources to capture various
ftrace events or atrace events.

Ease of Use
Perfetto provides an end-to-end
solution to capture Android system
traces quickly to identify issues in
critical user flows.

Data Mining
One can leverage SQL-like syntax
to query the trace data, making
complex analysis easier.

Trace Analysis
Perfetto provides a
comprehensive trace viewer web
UI that empowers one to inspect,
visualize, and analyze the
collected data.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

How does Perfetto Work?

Data sources
Linux/Android

Linux ftrace

/proc pollers

Heap profilers

Tracing daemon
UNIX socket

Tracing service
Mojo

In-process
service thread

Track event library
TRACE_EVENT(...)

Chrome-specific
data-sources App-specific data-sources

Tracing C++ Library
Android / Linux / MacOS / Windows

System tracing Chrome tracing In-app tracing
Record traces

Trace Processor
Android / Linux / MacOS / Win

Trace importers
Protobuf, JSON, systrace

Analyze traces

SQL query engine
Based on SQLite

Trace-based metrics
JSON / Protobuf / CSV

Perfetto UI
HTML / JS

Trace Processor
Web Assembly

Visualize traces

ADB over WebUSB
For Android

Works offline
After first visit

https://perfetto.dev/docs

https://perfetto.dev/docs

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

How does
Perfetto Work?

Data sources
Linux/Android

Linux ftrace

/proc pollers

Heap profilers

Tracing daemon
UNIX socket

Tracing service
Mojo

In-process
service thread

Track event library
TRACE_EVENT(...)

Chrome-specific
data-sources App-specific data-sources

Tracing C++ Library
Android / Linux / MacOS / Windows

System tracing Chrome tracing In-app tracing
Record tracesSystem Wide Tracing for Android and Linux

● Kernel tracing is enabled via Linux ftrace, which allows kernel
events such as scheduling events and syscalls to be recorded.

● /proc pollers allow the sampling of process-wide cpu and
memory counters over a time period.

● Heap profilers also enable capturing information for the
Native and Java heap.

https://perfetto.dev/docs

https://perfetto.dev/docs

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Trace Processor
Android / Linux / MacOS / Win

Trace importers
Protobuf, JSON, systrace

Analyze traces

SQL query engine
Based on SQLite

Trace-based metrics
JSON / Protobuf / CSV

Perfetto UI
HTML / JS

Trace Processor
Web Assembly

Visualize traces

ADB over WebUSB
For Android

Works offline
After first visit

How does
Perfetto Work?
Trace Analysis

● The Trace Processor is a C++ library that takes in raw trace data
and surfaces it through an SQL interface for straight-forward
querying.

● Trace importers allow simple ingestion of multiple formats

● Trace-based metrics creates pre-formatted and extensible
queries that provide trace summaries. (e.g. CPU usage at
different frequency states).

https://perfetto.dev/docs

https://perfetto.dev/docs

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Trace Processor
Android / Linux / MacOS / Win

Trace importers
Protobuf, JSON, systrace

Analyze traces

SQL query engine
Based on SQLite

Trace-based metrics
JSON / Protobuf / CSV

Perfetto UI
HTML / JS

Trace Processor
Web Assembly

Visualize traces

ADB over WebUSB
For Android

Works offline
After first visit

How does
Perfetto Work?
Trace Visualization

● A trace visualizer is instrumental for analysis and is powered by
WebAssembly.

● The Perfetto UI works fully offline after initial opening.

https://perfetto.dev/docs

https://perfetto.dev/docs

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Getting Started
with Perfetto

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Quick Start: Collecting a Perfetto Trace
After defining an appropriate trace configuration, one can run the trace collection.
1. Download the recording script using the below command:

$ curl -O https://raw.githubusercontent.com/google/perfetto/master/tools/record_android_trace

$ chmod u+x record_android_trace

2. Start tracing using:

3. Run the desired CUJ or experiment
4. End the trace using Ctrl+C for the command run in Step 2
5. The trace will be automatically be opened in the browser after the collection has completed

$./record_android_trace -o <trace-name>.trace -c <previous trace file>

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Quick Start:
Viewing a Trace
If one wants to open an existing trace file,
navigate to ui.perfetto.dev to open and
access a trace:

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Quick Start:
Viewing a Trace
Once the trace is generated, one can also
generate a permalink to the existing trace
that can be shared:

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Demo Video
An example video of a trace being
collected from beginning to end.

https://docs.google.com/file/d/1LJbpkh1tsQzcBYYe0m_YKVN3ROtsMulx/preview?resourcekey=0-qxMxahyfyNa5jqTlLkcTkQ

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Special Case: Collect Boot Time Tracing
In Android TM+, the trace can be collected as seen previously. However the
following setting must be enabled before the device is restarted:

adb shell setprop persist.debug.perfetto.boottrace 1

In Android SC-, the following steps are required to setup the device:

1. Boot tracing in Android SC- requires selinux to be set to permissive.
2. The following .rc file on the right must be created.
3. adb root && adb remount must be run to remount the device.
4. Use the following commands to push the .rc and config file to the device:

adb push perfetto_boot.rc /etc/init/perfetto_boot.rc

adb push perfetto_trace_config.textproto

/data/misc/perfetto-traces/boottrace.pbtxt

cat >> perfetto_boot.rc << 'EOF'

service perfetto_boot /system/bin/perfetto --txt -c

/data/misc/perfetto-traces/boottrace.pbtxt -o

/data/misc/perfetto-traces/boottrace.perfetto-trace

 class late_start

 disabled

 user shell

 group nobody

 oneshot

 seclabel u:object_r:perfetto_exec:s0

 stdio_to_kmsg

 capabilities DAC_READ_SEARCH

on property:persist.perfetto.boottrace=1

 rm /data/misc/perfetto-traces/boottrace.perfetto-trace

 start perfetto_boot

EOF

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Special Case: Collect Boot Time Tracing
The following steps are required to collect the trace:

1. Reboot the device using adb reboot

2. Stop perfetto and pull the trace:

adb shell pkill perfetto

adb pull /data/misc/perfetto-traces/boottrace.perfetto-trace

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Trace
Anatomy

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Selecting the right trace config will allow one to collect the necessary data
from the system.

● Perfetto provides granular control over data collection. Unlike always-on logging systems
(e.g., Linux's rsyslog, Android's logcat), its tracing data sources start in an idle state.

● The TraceConfig is a protobuf message that controls your Perfetto tracing session. It
outlines:

● System-wide Settings:

○ Maximum trace duration.

○ Number and size of memory buffers.

○ Maximum output file size.

● Data Source Specifications:

○ For kernel tracing, which ftrace events to enable.

○ For the heap profiler, the target process name and sampling rate.

● Data Routing: Specifies which buffer each data source should write into

Note: a sample config can be found at perfetto.dev/docs/concepts/config

Trace Config Setup

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Perfetto Trace Config
How the Tracing Service Uses the TraceConfig

● The tracing service (traced) is your config manager.
When you start a tracing session, the service:

○ Reads System Settings: It determines its behavior
based on the TraceConfig's outer section (duration,
buffers, etc.).

○ Activates Data Sources: It finds Producers that
match the data sources listed in the config. Then,
it starts each Producer and provides the relevant
DataSourceConfig settings.

Data source 1
e.g, ftrace

Data source 2
e.g, heap prof

Traced
tracing service

#0 4 MB

#1 16 MB

10s

Trace config

Duration: 10s

Buffers: #0/: 4MB
Buffers: #1/: 16MB

data source: “linux.ftrace”

Ftrace_config {
 Ftrace_events: “sched_switch”
 Ftrace_events: “sched_wakeup”
}

data source: “android.heapprofd”

heapprofd_config {
 sampling_interval_bytes: 1
 process_cmdline: “adbd”
 Continuous_dump_config {
 dump_phase_ms: 10000
 Dump_interval_ms: 10000
 }
}

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Perfetto Trace Config
Defining Buffers:

● This section defines the number, size and policy of
in-memory buffers owned by the tracing service.

● Fill Policy:

○ A RING_BUFFER (default) fill policy will wrap over when
full and replace the oldest trace data in the buffer.

○ A DISCARD fill policy will stop accepting data once full.

Dynamic Buffer Mapping:

● The target_buffer field can be specified to indicate different
buffers for data sources.

Defining several buffers

buffers: {

 size_kb: 4096

 fill_policy: RING_BUFFER

}

buffers {

 size_kb: 4096

 fill_policy: RING_BUFFER

}

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Perfetto Trace Config

data_sources: {

 config {

 name: "android.log"

 android_log_config {

 }

 }

}

Defining Data Sources (Logcat)

This data source will enable Android logcat messages
to be shown:

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Perfetto Trace Config
data_sources: {

 config {

 name: "linux.sys_stats"

 target_buffer: 1

 sys_stats_config {

 cpufreq_period_ms: 500

 }

}

data_sources: {

 config {

 name: "linux.ftrace"

 ftrace_config {

 ftrace_events: "power/cpu_frequency"

 ftrace_events: "power/cpu_idle"

 ftrace_events: "power/suspend_resume"

 }

 }

}

Defining Data Sources (CPU Frequency)

Various CPU frequency stats can be collected with the following
data sources:

० Enabling the power/cpu_frequency ftrace event
० Setting cpufreq_period_ms > 0 (Note: only works on

Android SC-V2 and above)

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

data_sources: {

 config {

 name: "android.surfaceflinger.frametimeline"

 target_buffer: 2

 }

}

Perfetto Trace Config
Defining Data Sources (Jankiness)

Jankiness can be examined with the frame timeline data source.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Perfetto Trace Config
data_sources: {

 config {

 name: "linux.process_stats"

 process_stats_config {

 scan_all_processes_on_start: true

 proc_stats_poll_ms: 1000

 }

 }

}

Defining Data Sources (linux.process_stats)

● The linux.process_stats data source gathers per-process
statistics from the /proc/<pid>/status and
/proc/<pid>/oom_score_adj files on Linux systems

○ Process memory usage (RSS, VMSize, etc.)

○ Open file descriptors

○ Out-of-memory (OOM) score (indicates how likely the
kernel is to terminate the process when memory is low)

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Perfetto Trace Config
Defining Data Sources (linux.sys_stats)

● The linux.sys_stats data source gathers a range of
system-level statistics from Linux. The following stat counters
can be collected:
○ Stat Counters (proc/stat):

■ STAT_CPU_TIMES
● user: Time spent running in user mode
● nice: Time spent running niced user processes
● system: Time spent in system (kernel) mode
● idle: Time the process was idle

○ Mem Info Counters (proc/meminfo):
■ Provides information such as free memory,

anonymous memory.
○ VM Stat Counters (proc/vmstat):

■ Provides information on virtual memory such as
page faults, pages in and out, etc.

○ Note: cpufreq_period_ms is only available above SC-V2.
■ The following error will be encountered otherwise:
■ No field named "cpufreq_period_ms" in

proto SysStatsConfig.

data_sources: {

 config {

 name: "linux.sys_stats"

 target_buffer: 1

 sys_stats_config {

 stat_period_ms: 500

 stat_counters: STAT_CPU_TIMES

 meminfo_period_ms: 1000

 meminfo_counters: MEMINFO_ACTIVE_ANON

 meminfo_counters: MEMINFO_ACTIVE_FILE

 meminfo_counters: MEMINFO_INACTIVE_ANON

 meminfo_counters: MEMINFO_INACTIVE_FILE

 meminfo_counters: MEMINFO_KERNEL_STACK

 meminfo_counters: MEMINFO_MLOCKED

 meminfo_counters: MEMINFO_SHMEM

 meminfo_counters: MEMINFO_SLAB

 meminfo_counters: MEMINFO_SLAB_UNRECLAIMABLE

 meminfo_counters: MEMINFO_VMALLOC_USED

 meminfo_counters: MEMINFO_MEM_FREE

 meminfo_counters: MEMINFO_SWAP_FREE

 vmstat_period_ms: 1000

 vmstat_counters: VMSTAT_PGFAULT

 vmstat_counters: VMSTAT_PGMAJFAULT

 vmstat_counters: VMSTAT_PGFREE

 vmstat_counters: VMSTAT_PGPGIN

 vmstat_counters: VMSTAT_PGPGOUT

 vmstat_counters: VMSTAT_PSWPIN

 vmstat_counters: VMSTAT_PSWPOUT

 vmstat_counters: VMSTAT_PGSCAN_DIRECT

 vmstat_counters: VMSTAT_PGSTEAL_DIRECT

 vmstat_counters: VMSTAT_PGSCAN_KSWAPD

 vmstat_counters: VMSTAT_PGSTEAL_KSWAPD

 vmstat_counters: VMSTAT_WORKINGSET_REFAULT

 # Below field not available on < Android SC-V2 releases.

 cpufreq_period_ms: 500

 }

 }

}

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Perfetto Trace Config
Defining Data Sources (linux.sys_stats)

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Perfetto Trace Config
Defining Data Sources (ftrace)

Capturing ftrace events allows developers insights into kernel code.
They are useful for analyzing latency or performance issues outside
of userspace.

● Memory Events

● Low Memory Killer Events

● Sched Events

data_sources: {

 config {

 name: "linux.ftrace"

 target_buffer: 2

 ftrace_config {

 # Memory events

 ftrace_events: "power/suspend_resume"

 ftrace_events: "mm_event/mm_event_record"

 ftrace_events: "kmem/rss_stat"

 ftrace_events: "ion/ion_stat"

 ftrace_events: "dmabuf_heap/dma_heap_stat"

 ftrace_events: "kmem/ion_heap_grow"

 ftrace_events: "kmem/ion_heap_shrink"

 # LMKD events

 ftrace_events: "lowmemorykiller/lowmemory_kill"

 ftrace_events: "oom/oom_score_adj_update"

 ftrace_events: "oom/mark_victim"

 # sched events

 ftrace_events: "sched/sched_process_exit"

 ftrace_events: "sched/sched_process_free"

 ftrace_events: "sched/sched_switch"

 ftrace_events: "sched/sched_wakeup"

 ftrace_events: "sched/sched_wakeup_new"

 ftrace_events: "sched/sched_waking"

 }

 }

}

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Perfetto Trace Config
Defining Data Sources (ftrace)

In order to capture CPU scheduling events, ftrace_events: "sched/sched_switch" needs to be added to the linux.ftrace data source.

With this enabled the following can be captured:

० Threads scheduled per CPU
० Why a thread got de-scheduled (pre-emption, blocked by a mutex)
० When a thread becomes runnable

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

data_sources: {

 config {

 name: "linux.ftrace"

 target_buffer: 2

 ftrace_config {

 # Memory events

 atrace_categories: "aidl"

 atrace_categories: "am"

 atrace_categories: "dalvik"

 atrace_categories: "binder_lock"

 atrace_categories: "binder_driver"

 atrace_categories: "disk"

 atrace_categories: "freq"

 atrace_categories: "idle"

 atrace_categories: "gfx"

 atrace_categories: "hal"

 atrace_categories: "pm"

 atrace_categories: "power"

 atrace_categories: "rro"

 # atrace apps

 atrace_apps: "lmkd"

 atrace_apps: "system_server"

 atrace_apps: "com.android.systemui"

 atrace_apps: "com.google.android.gms"

 atrace_apps: "com.google.android.gms.persistent"

 atrace_apps: "android:ui"

 atrace_apps: "com.google.android.apps.maps"

 }

 }

}

Perfetto Trace Config
Atrace Categories:
Predefined groups of trace events that make it easier to enable tracing
for specific areas of the system.

Fine-grained Process Tracing:
The atrace_apps functionality in Perfetto enables selective tracing of
specific applications on Android. It allows you to capture trace data only
from the processes of interest.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Perfetto Trace Config
Writing to a Trace Output File:
If not recording time limit is specified, one will have to manually terminate
the tracing session.

If duration_ms is specified then, the trace will terminate automatically.

If write_into_file is true, then Perfetto will periodically stream results into a
trace file.

Flush_period_ms defines the default drain period. A shorter period
means a smaller userspace buffer is required. However, this will increase
the performance intrusiveness of tracing.

Max_file_size_bytes is used to cap the size of a trace file.

Flush_period_ms is used to periodically issue a Flush() to all data
sources, forcing them to commit their data into the tracing service.

No recording time limit (press CTRL+C to stop recording).

Alternatively: uncomment the line below to set a time limit.

#duration_ms: 1800000

write_into_file: true

file_write_period_ms: 5000

max_file_size_bytes: 100000000000

flush_period_ms: 5000

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Anatomy of a Trace: Binder Transactions
There are two types of binder transactions:

1. Unidirectional: Using the oneway keyword in the AIDL language,
these transactions do not wait for a reply after sending a parcel.

2. Bidirectional: The transmitting end is blocked until it receives a reply.

Note: This is only available in UDC onwards.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Anatomy of a Trace: Bidirectional Transactions
Bidirectional Transaction:

Identified by a corresponding binder transaction and binder reply pair.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Anatomy of a Trace: Unidirectional Transactions
Unidirectional Transaction:

Indicated by an arrow in a Perfetto trace.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Common
Pitfalls

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Common Pitfalls
External Process Interference
One of the reasons that a trace may be empty is that another process is using ftrace.

Run the following command to determine if the current_tracer is nop:

> adb shell cat /sys/kernel/tracing/current_tracer

> adb shell cat /sys/kernel/debug/tracing/current_tracer # older kernel may still use debugfs

Run either of the following to set the current_tracer to nop:

> adb shell echo “nop > /sys/kernel/tracing/current_tracer”

> adb shell echo “0 > /sys/kernel/tracing/tracing_on"

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Common Pitfalls
Insufficient Buffer Size
Another common pitfall is insufficient data buffer size. Increasing buffer
size may alleviate scenarios in which key CUJ data is dropped.

Excessive event collection
If too many events are being collected, there are some that can be
dropped to avoid trampling the output trace file. Including sys_enter
and sys_exit will lead to all system calls being logged. The below trace
demonstrates this, where the tracks do not terminate.

data_sources: {

 config {

 name: "linux.ftrace"

 target_buffer: 2

 ftrace_config {

 # Do not include the below:

 ftrace_events: "raw_syscalls/sys_enter"

 ftrace_events: "raw_syscalls/sys_exit"

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Trace
Analysis

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Trace Analysis Key Steps
Summary:
1. Narrow the search space: one can achieve this by determining the

beginning and ending points via Android system logs or atrace logs.

2. Inspect CPU, memory tracks, etc: This will help identify symptoms of a
regression so that the analysis window can be tightened.

3. Understand context: After capturing a smaller window, it is possible to
understand what actions are being performed. (Ex. What is occurring
during at this point in the user switch lifecycle?)

4. Identify Culprit Process: Given context, it is possible to visualize
offending processes in the trace. Adding more logging via atrace will
also allow one to trace points in a codepath.

5. Analyze thread-level interactions: Looking at markers such as thread
state and binder transactions during the window will allow one to make
informed hypotheses.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Trace Analysis Summary
Sample flow illustrating:

1. CUJ profiling
2. Trace recording
3. CUJ instrumenting
4. Performance Fixes

Requires
more

instrumenta
tion?

Start

Select the CUJ to
profile Record a Trace

Instrument the
CUJ

Performance
Issue Fixed?

No

Implement Fix

Yes

End

NoRequires more
instrumentation?

Yes

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Trace Analysis Walkthrough
Looking at a trace can be overwhelming. There are several key steps to help narrow down a problem area to root cause a performance issue. A trace analysis walkthrough
will help guide investigations. Initially a trace was collected that captured a user switch from user 10 to user 11.

1. Narrow the search space: Use Android logs to identify key starting and stopping points. In this case flag UserController.startUser-11-fg-start-mode-1 and
onCompletedEventUser 11 act as the stop and start points.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Trace Analysis Walkthrough
2. Inspect CPU and memory tracks: In this case, it is apparent that there are big and gold cores being underutilized during the user switch.

Big and Gold Cores Idle

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Trace Analysis Walkthrough
After identifying the area of interest, it is necessary to zoom in on events occurring during this underutilization.
This can be achieved by zeroing in on log events or processes that have significant activity during that period.

Area of Interest

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Trace Analysis Walkthrough
3. Understand Context: Here, only 4 out of 8 cores are being utilized, which undoubtedly contribute to a prolonged user switch. This idleness appears early on in the user
switch when user 11 is being started. SystemServiceManager is responsible for starting system services during user initialization. SystemServiceManager will wait until all
services are created. It is clear that com.android.role.RoleService is the last service to be initialized and also requires the most time.

com.android.role.RoleService
onUserStarting method returns

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Trace Analysis Walkthrough
4. Identify Culprit Process: Android logs allow us to identify that the com.google.android.permissioncontroller process is largely responsible for starting the RoleService.
Zooming in further, it is apparent that the RoleControllerService thread handles majority of the initialization.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Trace Analysis Walkthrough
5. Look for thread level interactions: Inspecting the com.google.android.permissioncontroller process and its threads may reveal further details about thread state. For
example, a long period of uninterruptible sleep could indicate heavy I/O usage. In this case there is nothing that indicates anything out of the ordinary.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Trace Analysis Walkthrough
5. Analyzing the RoleControllerService thread reveals that there is an excess of costly binder transactions occurring.
It is clear that these inter-process communication transactions are the cause of the slow down.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Advanced
Topics:
SQL Queries

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Data Mining Using SQL Queries
Beyond visually inspecting system issues via the Perfetto UI, it is also possible to gain a deeper understanding through SQL queries.

One can access SQL queries via the below interface:

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Data Mining Using SQL Queries

DROP VIEW IF EXISTS slice_with_utid;

CREATE VIEW slice_with_utid AS

SELECT

 ts,

 dur,

 slice.name as slice_name,

 slice.id as slice_id, utid,

 thread.name as thread_name

FROM slice

JOIN thread_track ON thread_track.id = slice.track_id

JOIN thread USING (utid);

DROP TABLE IF EXISTS slice_thread_state_breakdown;

CREATE VIRTUAL TABLE slice_thread_state_breakdown

USING SPAN_LEFT_JOIN(

 slice_with_utid PARTITIONED utid,

 thread_state PARTITIONED utid

);

One common example is collecting the CPU Time for slices. The first step is to build a table that links slices with their thread state.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Data Mining Using SQL Queries
From the previous table, the CPU time for each slide in a Running state can be listed.

SELECT slice_id, slice_name, SUM(dur) AS cpu_time

FROM slice_thread_state_breakdown

WHERE state = 'Running'

GROUP BY slice_id;

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Making
Debugging
Easier

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Make App Debugging Easier
Performance Analysis Flow:

1. CUJ profiling
2. Trace recording
3. CUJ instrumenting
4. Performance Fixes

Requires
more

instrumenta
tion?

Start

Select the CUJ to
profile Record a Trace

Instrument the
CUJ

Performance
Issue Fixed?

No

Implement Fix

Yes

End

NoRequires more
instrumentation?

Yes

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Make App Debugging Easier

Trace.traceBegin(TRACE_TAG, "Class#method");

…
Trace.traceEnd(TRACE_TAG);

A powerful feature that can help with debugging is adding atrace logs that will appear in Perfetto.

Java applications can add trace logs using android.os.Trace.

Native applications can add trace logs using ATrace_beginSection() / ATrace_setCounter() defined in <trace.h>

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Make App Debugging Easier
Before:

After:

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Performance
Tuning

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Performance Tuning After Boot
What is Performance Tuning?

WIth the aid of Perfetto, it is possible to identify performance issues
and analyze their root cause. The next step is to implement solutions to
solve these issues. One of the ways to achieve this is by iteratively
tuning the performance of the system.

Post Boot Tuning

One of the opportunities for performance tuning is during post boot.
After boot complete, there is heavy resource contention as multiple
applications attempt to perform initialization. Classically, this is known
as the Thundering Herd Problem, where lack of system resources leads
to degraded performance. There is opportunity to both improve
memory and CPU usage during the critical window after boot complete.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Memory
Tuning

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

● kswapd is a Kernel task to manage available free memory.
● Kernel uses 3 watermarks per memory zone to track pressure

○ Min, Low, and High
● When free memory <= Low and > Min

○ kswapd performs asynchronous/indirect memory reclaim.
● When free memory <= Min

○ kswapd performs synchronous/direct memory reclaim.
○ System becomes unstable

● When free memory >= High
○ kswapd temporarily enters sleep state.
○ Periodically checks the memory pressure.

Reclaim types
● Indirect memory reclaim

○ Increases kswapd CPU usage.
○ May slow down other processes depending on the CPU &

memory pressure.
● Direct memory reclaim

○ All new allocations will be blocked until kswapd frees up
memory up to min watermark.

Kernel kswapd
Kswapd watermark levels

100

75

50

25

0
Watermark levels

Total memory

High

Low

Min

Sleep & Check

High Watermark - Indirect claim

Min Watermark - Direct reclaim

Low Watermark - Aggressive indirect reclaim

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Kernel knobs for tuning kswapd behavior:
● /proc/sys/vm/swappiness - Defines the aggressiveness of swapping out

memory pages of inactive processes.
○ Range: 0-100 Default: 60
○ High values can cause Kernel to swap out processes even when enough

memory is available.
○ Low values can cause Kernel to not swap out processes even when the

available memory is low.
○ Recommendation:

■ Devices with high physical memory - use lower swappiness values.
■ Devices with low physical memory - use higher swappiness values.

● /proc/sys/vm/watermark_scale_factor - Used to scale the buffer spaces
between memory zone watermarks.
○ Range: 0 - 1000 Default: 10

■ 10 means buffer space is 0.1% of available memory.
■ 1000 means buffer space is 10% of available memory.

○ Low values can cause too much direct reclaim or kswapd not freeing up
enough memory in a single pass.

○ High values can cause kswapd to free up more memory than needed.

kswapd tuning
● /proc/sys/vm/min_free_kbytes - Amount of free memory kept in reserve at all

times. Defines min watermark across all memory zones.
○ Recommended value range: 1% - 2% of total system memory.
○ High values can scale up watermark buffer spaces leading to

■ kswapd freeing too much memory than needed.
■ Frequent kswapd invocation causing CPU contention to spike.

○ Low values can cause kswapd to not free up enough memory leading to
■ System slowdown
■ Hangs/crashes
■ Memory fragmentation

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

kswapd tuning example
After
● /proc/sys/vm/watermark_scale_factor - 109

● /proc/sys/vm/min_free_kbytes - 60 MiB

● /proc/sys/vm/swappiness - 60

Before
● /proc/sys/vm/watermark_scale_factor - 1

● /proc/sys/vm/min_free_kbytes - 144 MiB

● /proc/sys/vm/swappiness - 60

Remaining - 94.72% Remaining - 96.57%

High - 0.88%

Low - 0.88%

Min - 3.51%

High - 0.95%

Low - 0.95%

Min - 1.51%

Before After

Watermark Level Size Relative to Total Physical Memory

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

kswapd tuning example

Kswapd cpu time millis Working set refault file Page stolen by kswapd

700
Before

1200

1450

950

After
12000

Before

160000

180000

140000

After
550000

Before

600000

After

650000

700000

750000

800000

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Dex
Optimization

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Dex Optimization
What is Dex Optimization?

By default in Android, apps are executed in interpreted mode. Dex
optimization allows for compilation of selected code paths to machine
code, which accelerates code execution.

Why is this Important?

Background dex optimization already occurs regularly as users interact
with their apps. However, after initial installation, boot time
performance may be degraded if all apps run in interpreted mode.
There is an opportunity to compile key apps ahead of time to greatly
reduce boot times.

Which Apps should be Dex Pre-Optimized?

When apps run in interpreted mode, they will also undergo JIT
compilation. Post-boot, a high level of JIT compilation will lead to a high
degree of CPU contention, further exacerbating degraded startup
times. Identifying processes with high JIT CPU time will indicate apps
that can be dex pre-optimized, forgoing JIT entirely.

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Heavy JIT Compilation in Perfetto

JIT compilation activity can be visualized via Perfetto.

Within a specific process, one can identify the JIT thread pool tracks. In this example,
Car Assistant is displaying a large number of JIT compilation events.

Dex Optimization

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Dex Optimization
INCLUDE PERFETTO MODULE slices.slices;

DROP VIEW IF EXISTS interesting_slices_d0;
CREATE VIEW interesting_slices_d0 AS
select id as slice_id, ts, dur, name, track_id, track_name, thread_name, utid, tid,
process_name, upid, pid from _slice_with_thread_and_process_info where
depth=0;

DROP TABLE IF EXISTS slice_thread_state_breakdown;
CREATE VIRTUAL TABLE slice_thread_state_breakdown
USING SPAN_LEFT_JOIN(
interesting_slices_d0 PARTITIONED utid,
thread_state PARTITIONED utid
);

SELECT sum(dur) total_duration, count(*) instances, substr(name, 0,
IIF(instr(name, ' ') > 0, instr(name, ' '), IIF(instr(name, ',') > 0, instr(name, ','),
length(name)))) as prefix_name,
substr(process_name, 0, IIF(instr(process_name, ':') > 0, instr(process_name, ':'),
length(process_name))) as process_name_prefix FROM
slice_thread_state_breakdown
WHERE state = 'Running' and prefix_name = "JIT"
group by prefix_name, process_name_prefix
order by total_duration desc;

Perfetto Query for Top Processes with the Most JIT CPU Time

Using the query will allow one to obtain a table as shown below:

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

How to Configure Dex Pre-Optimization

For more details refer to
https://source.android.com/docs/core/runtime/configure#build_options.

Add packages to the following makefile configuration:

Dex Optimization
Configuration

PRODUCT_DEXPREOPT_SPEED_APPS += \

 MapsCarPrebuilt \

https://source.android.com/docs/core/runtime/configure#build_options

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Dex Optimization Configuration
How to Verify that an App is Dex Pre-Opted

Run the following ADB command:

$ adb shell pm art dump com.google.android.apps.maps

Older releases may need to use this command instead:

$ adb shell dumpsys package dexopt | grep -i

com.google.android.apps.maps -A 2

[com.google.android.apps.maps]

path:

/system/product/priv-app/MapsCarPrebuilt/MapsCarPrebuilt.apk

x86_64: [status=verify] [reason=prebuilt]

The following output indicates Google Maps is executed in interpreted mode:

[com.google.android.apps.maps]

 path: /product/priv-app/MapsCarPrebuilt/MapsCarPrebuilt.apk

 x86_64: [status=speed] [reason=prebuilt] [primary-abi]

The following output indicates that Google Maps was dex pre-opted:

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Further Materials / Important Links
Summary of useful information per section:
Trace Configuration:

https://perfetto.dev/docs/reference/trace-config-proto

How to Collect a Perfetto Trace:

https://perfetto.dev/docs/quickstart/android-tracing

Android Boot Tracing:

https://perfetto.dev/docs/case-studies/android-boot-tracing

CPU Tracks:

https://perfetto.dev/docs/data-sources/cpu-scheduling

Memory Tracks:

https://perfetto.dev/docs/data-sources/memory-counters

Atrace Logging:

https://perfetto.dev/docs/data-sources/atrace

https://perfetto.dev/docs/reference/trace-config-proto
https://perfetto.dev/docs/quickstart/android-tracing
https://perfetto.dev/docs/case-studies/android-boot-tracing
https://perfetto.dev/docs/data-sources/cpu-scheduling
https://perfetto.dev/docs/data-sources/memory-counters
https://perfetto.dev/docs/data-sources/atrace

2023 | Confidential and ProprietaryGoogle confidential and proprietary | Do not distributeGoogle Automotive Partner Bootcamp

Thank you

