Compatibility Definition

androi

Android 11

Last updated: August 11, 2021
Copyright © 2019, Google LLC All rights reserved.




Table of Contents

1.1 Document Structure

1.1.1. Requirements by Device Type

1.1.2. Requirement ID
1.1.3. Requirement ID in Section 2

2.1 Device Configurations

2.2. Handheld Requirements
2.2.1. Hardware
2.2.2. Multimedia
2.2.3. Software
2.2.4. Performance and Power
2.2.5. Security Model
2.2.6. Developer Tools and Options
Compatibility

2.3. Television Requirements
2.3.1. Hardware
2.3.2. Multimedia
2.3.3. Software
2.3.4. Performance and Power
2.3.5. Security Model
2.3.6. Developer Tools and Options
Compatibility

2.4. Watch Requirements
2.4.1. Hardware
2.4.2. Multimedia
2.4.3. Software
2.4.4. Performance and Power
2.4.5. Security Model

2.5. Automotive Requirements
2.5.1. Hardware
2.5.2. Multimedia
2.5.3. Software
2.5.4. Performance and Power
2.5.5. Security Model

2.5.6. Developer Tools and Options
Compatibility

android

2.6. Tablet Requirements
2.6.1. Hardware
2.6.2. Security Model
2.6.2. Software

3.1. Managed API Compatibility
3.1.1. Android Extensions
3.1.2. Android Library

3.2. Soft API Compatibility
3.2.1. Permissions
3.2.2. Build Parameters
3.2.3. Intent Compatibility
3.2.3.1. Common Application Intents
3.2.3.2. Intent Resolution
3.2.3.3. Intent Namespaces
3.2.3.4. Broadcast Intents
3.2.3.5. Conditional Application Intents
3.2.4. Activities on secondary/multiple
displays
3.3. Native API Compatibility
3.3.1. Application Binary Interfaces
3.3.2. 32-bit ARM Native Code Compatibility
3.4. Web Compatibility
3.4.1. WebView Compatibility
3.4.2. Browser Compatibility
3.5. API Behavioral Compatibility
3.5.1. Application Restriction
3.6. APl Namespaces
3.7. Runtime Compatibility
3.8. User Interface Compatibility
3.8.1. Launcher (Home Screen)
3.8.2. Widgets
3.8.3. Notifications

3.8.3.1. Presentation of Notifications
3.8.3.2. Notification Listener Service

Page 2 of 136



3.8.3.3. DND (Do not Disturb)
3.8.4. Search
3.8.5. Alerts and Toasts
3.8.6. Themes
3.8.7. Live Wallpapers
3.8.8. Activity Switching
3.8.9. Input Management
3.8.10. Lock Screen Media Control
3.8.11. Screen savers (previously Dreams)
3.8.12. Location
3.8.13. Unicode and Font
3.8.14. Multi-windows
3.8.15. Display Cutout
3.8.16. Device Controls

3.9. Device Administration
3.9.1 Device Provisioning
3.9.1.1 Device owner provisioning
3.9.1.2 Managed profile provisioning
3.9.2 Managed Profile Support
3.9.3 Managed User Support

3.10. Accessibility

3.11. Text-to-Speech

3.12. TV Input Framework

3.13. Quick Settings

3.14. Media Ul

3.15. Instant Apps

3.16. Companion Device Pairing
3.17. Heavyweight Apps

3.18. Contacts

5.1. Media Codecs
5.1.1. Audio Encoding
5.1.2. Audio Decoding

android

5.1.3. Audio Codecs Details

5.1.4. Image Encoding

5.1.5. Image Decoding

5.1.6. Image Codecs Details

5.1.7. Video Codecs

5.1.8. Video Codecs List

5.1.9. Media Codec Security

5.1.10. Media Codec Characterization

5.2. Video Encoding
5.2.1. H.263
5.2.2. H.264
5.2.3. VP8
5.2.4.VP9
5.2.5. H.265

5.3. Video Decoding
5.3.1. MPEG-2
5.3.2. H.263
5.3.3. MPEG-4
5.3.4.H.264
5.3.5. H.265 (HEVC)
5.3.6. VP8
5.3.7.VP9

5.3.8. Dolby Vision
5.3.9. AV1

5.4. Audio Recording

5.4.1. Raw Audio Capture and Microphone
Information

5.4.2. Capture for Voice Recognition
5.4.3. Capture for Rerouting of Playback
5.4.4. Acoustic Echo Canceler
5.4.5. Concurrent Capture
5.4.6. Microphone Gain Levels

5.5. Audio Playback

5.5.1. Raw Audio Playback
5.5.2. Audio Effects

Page 3 of 136



5.5.3. Audio Output Volume
5.6. Audio Latency
5.7. Network Protocols
5.8. Secure Media

5.9. Musical Instrument Digital Interface
(MIDI)

5.10. Professional Audio

5.11. Capture for Unprocessed

6.1. Developer Tools
6.2. Developer Options

7.1. Display and Graphics

7.1.1. Screen Configuration
7.1.1.1. Screen Size and Shape
7.1.1.2. Screen Aspect Ratio
7.1.1.3. Screen Density

7.1.2. Display Metrics

7.1.3. Screen Orientation

7.1.4. 2D and 3D Graphics Acceleration
7.1.4.1 OpenGL ES
7.1.4.2 Vulkan
7.1.4.3 RenderScript
7.1.4.4 2D Graphics Acceleration
7.1.4.5 Wide-gamut Displays

7.1.5. Legacy Application Compatibility
Mode

7.1.6. Screen Technology
7.1.7. Secondary Displays

7.2. Input Devices
7.2.1. Keyboard
7.2.2. Non-touch Navigation
7.2.3. Navigation Keys
7.2.4. Touchscreen Input
7.2.5. Fake Touch Input
7.2.6. Game Controller Support

android

7.2.6.1. Button Mappings
7.2.7. Remote Control

7.3. Sensors

7.3.1. Accelerometer

7.3.2. Magnetometer
7.3.3.GPS

7.3.4. Gyroscope

7.3.5. Barometer

7.3.6. Thermometer

7.3.7. Photometer

7.3.8. Proximity Sensor
7.3.9. High Fidelity Sensors
7.3.10. Biometric Sensors
7.3.12. Pose Sensor
7.3.13. Hinge Angle Sensor

7.4. Data Connectivity

7.4.1. Telephony
7.4.1.1. Number Blocking Compatibility
7.4.1.2. Telecom API

7.4.2. IEEE 802.11 (Wi-Fi)
7.4.2.1. Wi-Fi Direct

7.4.2.2. Wi-Fi Tunneled Direct Link Setup

7.4.2.3. Wi-Fi Aware
7.4.2.4. Wi-Fi Passpoint

7.4.2.5. Wi-Fi Location (Wi-Fi Round Trip

Time - RTT)
7.4.2.6. Wi-Fi Keepalive Offload

7.4.2.7. Wi-Fi Easy Connect (Device
Provisioning Protocol)

7.4.3. Bluetooth

7.4.4. Near-Field Communications

7.4.5. Networking protocols and APls
7.4.5.1. Minimum Network Capability
7.4.5.2. IPv6
7.4.5.3. Captive Portals

7.4.6. Sync Settings

Page 4 of 136



7.4.7. Data Saver
7.4.8. Secure Elements

7.5. Cameras
7.5.1. Rear-Facing Camera
7.5.2. Front-Facing Camera
7.5.3. External Camera
7.5.4. Camera API Behavior
7.5.5. Camera Orientation
7.6. Memory and Storage
7.6.1. Minimum Memory and Storage
7.6.2. Application Shared Storage
7.6.3. Adoptable Storage
7.7.USB
7.7.1. USB peripheral mode
7.7.2. USB host mode
7.8. Audio
7.8.1. Microphone
7.8.2. Audio Output
7.8.2.1. Analog Audio Ports
7.8.2.2. Digital Audio Ports
7.8.3. Near-Ultrasound
7.8.4. Signal Integrity
7.9. Virtual Reality
7.9.1. Virtual Reality Mode

7.9.2. Virtual Reality Mode - High
Performance

7.10. Haptics

8.1. User Experience Consistency
8.2. File 1/0 Access Performance
8.3. Power-Saving Modes

8.4. Power Consumption Accounting

8.5. Consistent Performance

9.1. Permissions

android

9.2. UID and Process Isolation

9.3. Filesystem Permissions

9.4. Alternate Execution Environments
9.5. Multi-User Support

9.6. Premium SMS Warning

9.7. Security Features

9.8. Privacy
9.8.1. Usage History
9.8.2. Recording
9.8.3. Connectivity
9.8.4. Network Traffic
9.8.5. Device ldentifiers
9.8.6. Content Capture
9.8.7. Clipboard Access
9.8.8. Location
9.8.9. Installed apps
9.8.10. Connectivity Bug Report
9.8.11. Data blobs sharing

9.9. Data Storage Encryption
9.9.1. Direct Boot
9.9.2. Encryption requirements
9.9.3. Encryption Methods

9.9.3.1. File Based Encryption with Metadata
Encryption

9.9.3.2. Per-User Block-Level Encryption
9.9.4. Resume on Reboot
9.10. Device Integrity

9.11. Keys and Credentials

9.11.1. Secure Lock Screen and
Authentication

9.11.2. StrongBox
9.11.3. Identity Credential

9.12. Data Deletion
9.13. Safe Boot Mode

9.14. Automotive Vehicle System
Isolation

9.15. Subscription Plans

Page 50f 136



9.16. Application Data Migration

10.1. Compatibility Test Suite
10.2. CTS Verifier

12.1. Changelog Viewing Tips

dnd I'Oid Page 6 of 136



1. Introduction

This document enumerates the requirements that must be met in order for devices to be compatible
with Android 11.

The use of “MUST”, “MUST NOT", “REQUIRED", “SHALL", “SHALL NOT", “SHOULD", “SHOULD NOT",
“RECOMMENDED", “MAY”, and “OPTIONAL" is per the IETF standard defined in REC2119 .

As used in this document, a “device implementer” or “implementer” is a person or organization
developing a hardware/software solution running Android 11. A “device implementation” or
“implementation” is the hardware/software solution so developed.

To be considered compatible with Android 11, device implementations MUST meet the requirements
presented in this Compatibility Definition, including any documents incorporated via reference.

Where this definition or the software tests described in section 10 is silent, ambiguous, or
incomplete, it is the responsibility of the device implementer to ensure compatibility with existing
implementations.

For this reason, the Android Open Source Project is both the reference and preferred implementation
of Android. Device implementers are STRONGLY RECOMMENDED to base their implementations to
the greatest extent possible on the “upstream” source code available from the Android Open Source
Project. While some components can hypothetically be replaced with alternate implementations, it is
STRONGLY RECOMMENDED to not follow this practice, as passing the software tests will become
substantially more difficult. It is the implementer’s responsibility to ensure full behavioral
compatibility with the standard Android implementation, including and beyond the Compatibility Test
Suite. Finally, note that certain component substitutions and modifications are explicitly forbidden by
this document.

Many of the resources linked to in this document are derived directly or indirectly from the Android
SDK and will be functionally identical to the information in that SDK’s documentation. In any cases
where this Compatibility Definition or the Compatibility Test Suite disagrees with the SDK
documentation, the SDK documentation is considered authoritative. Any technical details provided in
the linked resources throughout this document are considered by inclusion to be part of this
Compatibility Definition.

1.1 Document Structure
1.1.1. Requirements by Device Type

Section 2 contains all of the requirements that apply to a specific device type. Each subsection of
Section 2 is dedicated to a specific device type.

All the other requirements, that universally apply to any Android device implementations, are listed in
the sections after Section 2 . These requirements are referenced as "Core Requirements" in this
document.

1.1.2. Requirement ID
Requirement ID is assigned for MUST requirements.

e The ID is assigned for MUST requirements only.
e STRONGLY RECOMMENDED requirements are marked as [SR] but ID is not assigned.
e The ID consists of : Device Type ID - Condition ID - Requirement ID (e.g. C-0-1).

Each ID is defined as below:

e Device Type ID (see more in 2. Device Types )
o C: Core (Requirements that are applied to any Android device
implementations)

o H: Android Handheld device
o T: Android Television device
o A: Android Automotive implementation
o W: Android Watch implementation
o Tab: Android Tablet implementation
e Condition ID
o When the requirement is unconditional, this ID is set as 0.

o When the requirement is conditional, 1 is assigned for the 1st condition and
the number increments by 1 within the same section and the same device

type.

Clnd I'Oid Page 7 of 136


http://www.ietf.org/rfc/rfc2119.txt
http://source.android.com/

e Requirement ID
o This ID starts from 1 and increments by 1 within the same section and the
same condition.

1.1.3. Requirement ID in Section 2

The Requirement ID in Section 2 starts with the corresponding section ID that is followed by the
Requirement ID described above.

e The ID in Section 2 consists of : Section ID / Device Type ID - Condition ID - Requirement
ID (e.g. 7.4.3/A-0-1).

2. Device Types

While the Android Open Source Project provides a software stack that can be used for a variety of
device types and form factors, there are a few device types that have a relatively better established
application distribution ecosystem.

This section describes those device types, and additional requirements and recommendations
applicable for each device type.

All Android device implementations that do not fit into any of the described device types MUST still
meet all requirements in the other sections of this Compatibility Definition.

2.1 Device Configurations

For the major differences in hardware configuration by device type, see the device-specific
requirements that follow in this section.

2.2. Handheld Requirements

An Android Handheld device refers to an Android device implementation that is typically used by
holding it in the hand, such as an mp3 player, phone, or tablet.

Android device implementations are classified as a Handheld if they meet all the following criteria:

e Have a power source that provides mobility, such as a battery.

e Have a physical diagonal screen size in the range of 3.3 inches (or 2.5 inches for devices
which launched on an API level earlier than Android 11) to 8 inches.

The additional requirements in the rest of this section are specific to Android Handheld device
implementations.

. Note: Requirements that do not apply to Android Tablet devices are marked with an *.
2.2.1. Hardware

Handheld device implementations:

e [7.1.1.1/H-0-1] MUST have at least one Android-compatible display that meets all
requirements described on this document.

e [7.1.1.3/H-SR] Are STRONGLY RECOMMENDED to provide users an affordance to
change the display size (screen density).

If Handheld device implementations support software screen rotation, they:
e [7.1.1.1/H-1-1]* MUST make the logical screen that is made available for third party
applications be at least 2 inches on the short edge(s) and 2.7 inches on the long edge(s).

Devices which launched on an API level earlier than that of this document are exempted
from this requirement.

If Handheld device implementations do not support software screen rotation, they:
e [7.1.1.1/H-2-1]* MUST make the logical screen that is made available for third party
applications be at least 2.7 inches on the short edge(s). Devices which launched on an
API level earlier than that of this document are exempted from this requirement.

If Handheld device implementations claim support for high dynamic range displays through

android

Page 8 of 136



Configuration.isScreenHdr() , they:

[7.1.4.5/H-1-1] MUST advertise support for the EGL_EXT gl colorspace bt2020 pq,
EGL EXT surface SMPTE2086 metadata, EGL EXT surface CTA861 3 metadata,
VK_EXT_swapchain_colorspace , and VK_EXT hdr_metadata extensions.

Handheld device implementations:

If Handheld device implementations declare support via a system property graphics.gpu.profiler.support

[7.1.4.6/H-0-1] MUST report whether the device supports the GPU profiling capability via
a system property graphics.gpu.profiler.support .

, they:

[7.1.4.6/H-1-1] MUST report as output a protobuf trace that complies with the schema
for GPU counters and GPU renderstages defined in the Perfetto documentation .
[7.1.4.6/H-1-2] MUST report conformant values for the device’s GPU counters following
the gpu counter trace packet proto.

[ 7.1 .4.6/H-1-3] MUST report conformant values for the device’s GPU RenderStages
following the render stage trace packet proto.

[7.1.4.6/H-1-4] MUST report a GPU Frequency tracepoint as specified by the format:
power/gpu_frequency .

Handheld device implementations:

[ 7.1 .5/H-0-1] MUST include support for legacy application compatibility mode as
implemented by the upstream Android open source code. That is, device implementations
MUST NOT alter the triggers or thresholds at which compatibility mode is activated, and
MUST NOT alter the behavior of the compatibility mode itself.

[ 7.2 .1/H-0-1] MUST include support for third-party Input Method Editor (IME)
applications.

[ 7.2 .3/H-0-3] MUST provide the Home function on all the Android-compatible displays
that provide the home screen.

[ 7.2 .3/H-0-4] MUST provide the Back function on all the Android-compatible displays and
the Recents function on at least one of the Android-compatible displays.

[ 7.2 .3/H-0-2] MUST send both the normal and long press event of the Back function (
KEYCODE BACK ) to the foreground application. These events MUST NOT be consumed
by the system and CAN be triggered by outside of the Android device (e.g. external
hardware keyboard connected to the Android device).

[ 7.2 .4/H-0-1] MUST support touchscreen input.

[ 7.2 .4/H-SR] Are STRONGLY RECOMMENDED to launch the user-selected assist app, in
other words the app that implements VoicelnteractionService, or an activity handling the
ACTION_ASSIST on long-press of KEYCODE_MEDIA_PLAY_PAUSE or
KEYCODE_HEADSETHOOK if the foreground activity does not handle those long-press
events.

[ 7.3 .1/H-SR] Are STRONGLY RECOMMENDED to include a 3-axis accelerometer.

If Handheld device implementations include a 3-axis accelerometer, they:

e [7.3.1/H-1-1] MUST be able to report events up to a frequency of at least 100 Hz.

If Handheld device implementations include a GPS/GNSS receiver and report the capability to
applications through the android.hardware.location.gps feature flag, they:

[ 7.3 .3/H-2-1] MUST report GNSS measurements, as soon as they are found, even if a
location calculated from GPS/GNSS is not yet reported.

[ 7.3 .3/H-2-2] MUST report GNSS pseudoranges and pseudorange rates, that, in open-sky
conditions after determining the location, while stationary or moving with less than 0.2
meter per second squared of acceleration, are sufficient to calculate position within 20
meters, and speed within 0.2 meters per second, at least 95% of the time.

If Handheld device implementations include a 3-axis gyroscope, they:

[ 7.3 .4/H-3-1] MUST be able to report events up to a frequency of at least 100 Hz.
[ 7.3 .4/H-3-2] MUST be capable of measuring orientation changes up to 1000 degrees
per second.

android

Page 9 of 136


https://developer.android.com/reference/android/content/res/Configuration.html#isScreenHdr%2528%2529
https://developer.android.com/studio/command-line/perfetto
https://android.googlesource.com/platform/external/perfetto/+/refs/heads/master/protos/perfetto/trace/gpu/gpu_counter_event.proto
https://android.googlesource.com/platform/external/perfetto/+/refs/heads/master/protos/perfetto/trace/gpu/gpu_render_stage_event.proto
https://android.googlesource.com/platform/external/perfetto/+/refs/heads/master/protos/perfetto/trace/ftrace/power.proto
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK
https://developer.android.com/reference/android/content/Intent#ACTION_ASSIST
https://developer.android.com/reference/android/view/KeyEvent#KEYCODE_MEDIA_PLAY_PAUSE
https://developer.android.com/reference/android/view/KeyEvent#KEYCODE_HEADSETHOOK

Handheld device implementations that can make a voice call and indicate any value other than
PHONE TYPE NONE in getPhoneType :

e [ 7.3 .8/H] SHOULD include a proximity sensor.

Handheld device implementations:

e [7.3.11/H-SR] Are RECOMMENDED to support pose sensor with 6 degrees of freedom.
e [7.4 .3/H] SHOULD include support for Bluetooth and Bluetooth LE.

If Handheld device implementations include a metered connection, they:

e [7.4 .7/H-1-1] MUST provide the data saver mode.

If Handheld device implementations include a logical camera device that lists capabilities using
CameraMetadata. REQUEST _AVAILABLE CAPABILITIES LOGICAL MULTL CAMERA , they:

e [7.5.4/H-1-1] MUST have normal field of view (FOV) by default and it MUST be between
50 and 90 degrees.

Handheld device implementations:

e [7.6.1/H-0-1] MUST have at least 4 GB of non-volatile storage available for application
private data (a.k.a. "/data" partition).

e [7.6.1/H-0-2] MUST return “true” for ActivityManager.isLowRamDevice() when there is less
than 1GB of memory available to the kernel and userspace.

If Handheld device implementations declare support of only a 32-bit ABI:

[ 7.6 .1/H-1-1] The memory available to the kernel and userspace MUST be at least
416MB if the default display uses framebuffer resolutions up to qHD (e.g. FWVGA).

[ 7.6 .1/H-2-1] The memory available to the kernel and userspace MUST be at least
592MB if the default display uses framebuffer resolutions up to HD+ (e.g. HD, WSVGA).

[ 7.6 .1/H-3-1] The memory available to the kernel and userspace MUST be at least
896MB if the default display uses framebuffer resolutions up to FHD (e.g. WSXGA+).

[ 7.6 .1/H-4-1] The memory available to the kernel and userspace MUST be at least
1344MB if the default display uses framebuffer resolutions up to QHD (e.g. QWXGA).

If Handheld device implementations declare support of 32-bit and 64-bit ABIs:

e [7.6 .1/H-5-1] The memory available to the kernel and userspace MUST be at least
816MB if the default display uses framebuffer resolutions up to qHD (e.g. FWVGA).

e [7.6 .1/H-6-1] The memory available to the kernel and userspace MUST be at least
944MB if the default display uses framebuffer resolutions up to HD+ (e.g. HD, WSVGA).

e [7.6 .1/H-7-1] The memory available to the kernel and userspace MUST be at least
1280MB if the default display uses framebuffer resolutions up to FHD (e.g. WSXGA+).

e [7.6 .1/H-8-1] The memory available to the kernel and userspace MUST be at least
1824MB if the default display uses framebuffer resolutions up to QHD (e.g. QWXGA).

Note that the "memory available to the kernel and userspace" above refers to the memory space
provided in addition to any memory already dedicated to hardware components such as radio, video,
and so on that are not under the kernel’s control on device implementations.

If Handheld device implementations include less than or equal to 1GB of memory available to the
kernel and userspace, they:

6 .1/H-9-1] MUST declare the feature flag android.hardware.ram.low .

7.
7.6 .1/H-9-2] MUST have at least 1.1 GB of non-volatile storage for application private

o
o
data (a.k.a. "/data" partition).

If Handheld device implementations include more than 1GB of memory available to the kernel and
userspace, they:

e [7.6 .1/H-10-1] MUST have at least 4GB of non-volatile storage available for application
private data (a.k.a. "/data" partition).

android

Page 10 of 136


https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_RAM_LOW

e SHOULD declare the feature flag android.hardware.ram.normal .

Handheld device implementations:

e [7.6.2/H-0-1] MUST NOT provide an application shared storage smaller than 1 GiB.
e [ 7.7 .1/H] SHOULD include a USB port supporting peripheral mode.

If handheld device implementations include a USB port supporting peripheral mode, they:

e [7.7 .1/H-1-1] MUST implement the Android Open Accessory (AOA) API.

If Handheld device implementations include a USB port supporting host mode, they:

e [7.7 .2/H-1-1] MUST implement the USB audio class as documented in the Android SDK

documentation.

Handheld device implementations:

e [ 7.8 .1/H-0-1] MUST include a microphone.
[ ]
[7.8

.2/H-0-1] MUST have an audio output and declare android.hardware.audio.output .

If Handheld device implementations are capable of meeting all the performance requirements for

supporting VR mode and include support for it, they:

e [7.9 .1/H-1-1] MUST declare the android.hardware.vr.high_performance feature flag.

e [7.9 .1/H-1-2] MUST include an application implementing
android.service.vr.VrListenerService that can be enabled by VR applications via

android.app.Activity#setVrModeEnabled .

If Handheld device implementations include one or more USB-C port(s) in host mode and implement
(USB audio class), in addition to requirements in section 7.7.2 , they:

e [7.8.2.2/H-1-1] MUST provide the following software mapping of HID codes:

Function Mappings Context Behavior
Input : Short press
Output : Play or pause
Input : Long press
Media Output': Launch voice command
lavback Sends :
playback | . ndroid.speech.action. VOICE_ SEARCH_HANDS_FREE if
the device is locked or its screen is off. Sends
HID usage page : 0x0C android.speech.RecognizerIntent. ACTION_WEB SEARCH
HID usage : 0xOCD otherwise
A Kernel key : KEY PLAYPAUSE
Android key : Input : Short press
KEYCODE_MEDIA_PLAY_PAUSE | |ncoming | Output : Accept call
call Input : Long press
Output : Reject call
Input : Short press
Ongoing |Output: End call
call Input : Long press
Output : Mute or unmute microphone
HID usage page : 0x0C Media
B HID usage : 0xOE9 playback, | Input : Short or long press
Kernel key : KEY VOLUMEUP Ongoing | Output : Increases the system or headset volume
Android key : VOLUME_UP call
HID usage page : 0x0C Media
HID usage : 0xOEA i
. playback, | Input : Short or long press
¢ Kernel key : Ongoing | Output : Decreases the system or headset volume
KEY VOLUMEDOWN callg g |Output: y
Android key : VOLUME DOWN

android

Page 11 of 136


https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_RAM_NORMAL
http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO

HID usage page : 0x0C

HID usage : 0xOCF ﬁ! Can
D Kernel key : trigaered Input : Short or long press
KEY VOICECOMMAND rag Output : Launch voice command
. . in any
Android key : .
instance.

KEYCODE_VOICE_ASSIST

e [7.8.2.2/H-1-2] MUST trigger ACTION_HEADSET_PLUG upon a plug insert, but only after
the USB audio interfaces and endpoints have been properly enumerated in order to
identify the type of terminal connected.

When the USB audio terminal types 0x0302 is detected, they:

e [7.8.2.2/H-2-1] MUST broadcast Intent ACTION_HEADSET_PLUG with "microphone”
extra set to 0.

When the USB audio terminal types 0x0402 is detected, they:

e [7.8.2.2/H-3-1] MUST broadcast Intent ACTION_HEADSET_PLUG with "microphone”
extra setto 1.

When API AudioManager.getDevices() is called while the USB peripheral is connected they:

e [7.8.2.2/H-4-1] MUST list a device of type AudioDevicelnfo. TYPE_USB_HEADSET and
role isSink() if the USB audio terminal type field is 0x0302.

e [7.8.2.2/H-4-2] MUST list a device of type AudioDevicelnfo. TYPE_USB_HEADSET and
role isSink() if the USB audio terminal type field is 0x0402.

e [7.8.2.2/H-4-3] MUST list a device of type AudioDevicelnfo. TYPE_USB_HEADSET and
role isSource() if the USB audio terminal type field is 0x0402.

e [7.8.2.2/H-4-4] MUST list a device of type AudioDevicelnfo.TYPE_USB_DEVICE and role
isSink() if the USB audio terminal type field is 0x603.

e [7.8.2.2/H-4-5] MUST list a device of type AudioDevicelnfo.TYPE_USB_DEVICE and role
isSource() if the USB audio terminal type field is 0x604.

e [7.8.2.2/H-4-6] MUST list a device of type AudioDevicelnfo.TYPE_USB_DEVICE and role
isSink() if the USB audio terminal type field is 0x400.

e [7.8.2.2/H-4-7] MUST list a device of type AudioDevicelnfo.TYPE_USB_DEVICE and role
isSource() if the USB audio terminal type field is 0x400.

e [7.8 .2.2/H-SR] Are STRONGLY RECOMMENDED upon connection of a USB-C audio
peripheral, to perform enumeration of USB descriptors, identify terminal types and
broadcast Intent ACTION_HEADSET_PLUG in less than 1000 milliseconds.

If Handheld device implementations include at least one haptic actuator, they:

e [7.10 /H-SR]* Are STRONGLY RECOMMENDED NOT to use an eccentric rotating mass

(ERM) haptic actuator(vibrator).

[ 7.10 /H]* SHOULD position the placement of the actuator near the location where the

device is typically held or touched by hands.

e [7.10 /H-SR]* Are STRONGLY RECOMMENDED to implement all public constants forclear
haptics in android.view.HapticFeedbackConstants namely (CLOCK_TICK,
CONTEXT_CLICK, KEYBOARD_PRESS, KEYBOARD_RELEASE, KEYBOARD_TAP,
LONG_PRESS, TEXT_HANDLE_MOVE, VIRTUAL_KEY, VIRTUAL_KEY_RELEASE, CONFIRM,
REJECT, GESTURE_START and GESTURE_END).

e [7.10 /H-SR]* Are STRONGLY RECOMMENDED to implement all public constants forclear
haptics in android.os.VibrationEffect namely (EFFECT_TICK, EFFECT_CLICK,
EFFECT_HEAVY_CLICK and EFFECT_DOUBLE_CLICK) and all public constants for rich
haptics in android.os.VibrationEffect.Composition namely (PRIMITIVE_CLICK and
PRIMITIVE_TICK).

e [7.10 /H-SR]* Are STRONGLY RECOMMENDED to use these linked haptic constants
mappings .

e [7.10 /H-SR]* Are STRONGLY RECOMMENDED to follow quality assessment for
createOneShot() and createWaveform() API's.

e [7.10 /H-SR]* Are STRONGLY RECOMMENDED to verify the capabilities for amplitude
scalability by running android.os.Vibrator.hasAmplitudeControl() .

android

Page 12 of 136


https://developer.android.com/reference/android/content/Intent#ACTION_HEADSET_PLUG
https://developer.android.com/reference/android/media/AudioDeviceInfo#TYPE_USB_HEADSET
https://developer.android.com/reference/android/media/AudioDeviceInfo#TYPE_USB_DEVICE
https://source.android.com/devices/haptics
https://developer.android.com/reference/android/view/HapticFeedbackConstants#constants
https://source.android.com/devices/haptics
https://developer.android.com/reference/android/os/VibrationEffect
https://source.android.com/devices/haptics
https://developer.android.com/reference/android/os/VibrationEffect.Composition
https://source.android.com/devices/haptics
https://source.android.com/devices/haptics
https://developer.android.com/reference/android/os/VibrationEffect#createOneShot%2528long,%20int%2529
https://developer.android.com/reference/android/os/VibrationEffect#createOneShot%2528long,%20int%2529
https://developer.android.com/reference/android/os/Vibrator#hasAmplitudeControl%2528%2529

Linear resonant actuator (LRA) is a single mass spring system which has a dominant resonant
frequency where the mass translates in the direction of desired motion.

If Handheld device implementations include at least one linear resonant actuator, they:

e [7.10 /H]* SHOULD move the haptic actuator in the X-axis of portrait orientation.

If Handheld device implementations have a haptic actuator which is X-axis Linear resonant actuator
(LRA), they:

e [7.10 /H-SR]* Are STRONGLY RECOMMENDED to have the resonant frequency of the X-
axis LRA be under 200 Hz.

If handheld device implementations follow haptic constants mapping, they:

e [7.10 /H-SR]* Are STRONGLY RECOMMENDED to perform a quality assessment for haptic
constants.

2.2.2. Multimedia

Handheld device implementations MUST support the following audio encoding and decoding formats
and make them available to third-party applications:

[ 5.1 /H-0-1] AMR-NB

[ 5.1 /H-0-2] AMR-WB

[ 5.1 /H-0-3] MPEG-4 AAC Profile (AAC LC)

[ 5.1 /H-0-4] MPEG-4 HE AAC Profile (AAC+)

[ 5.1 /H-0-5] AAC ELD (enhanced low delay AAC)

Handheld device implementations MUST support the following video encoding formats and make
them available to third-party applications:

2 /H-0-1] H.264 AVC

5.
5.2 /H-0-2] VP8

o[
[

Handheld device implementations MUST support the following video decoding formats and make
them available to third-party applications:

[ 5.3 /H-0-1] H.264 AVC

[ 5.3 /H-0-2] H.265 HEVC
[ 5.3 /H-0-3] MPEG-4 SP
[ 5.3 /H-0-4] VP8

[ 5.3 /H-0-5] VP9

2.2.3. Software

Handheld device implementations:

e [3.2.3.1/H-0-1] MUST have an application that handles the ACTION_GET_CONTENT,
ACTION_OPEN_DOCUMENT , ACTION_OPEN_DOCUMENT _TREE, and
ACTION_CREATE_DOCUMENT intents as described in the SDK documents, and provide
the user affordance to access the document provider data by using DocumentsProvider
API.

e [3.2.3.1 /H-0-2]* MUST preload one or more applications or service components with an
intent handler, for all the public intent filter patterns defined by the following application
intents listed here .

e [3.2.3.1 /H-SR] Are STRONGLY RECOMMENDED to preload an email application which
can handle ACTION_SENDTO or ACTION_SEND or ACTION_SEND_MULTIPLE intents to
send an email.

e [3.4.1/H-0-1] MUST provide a complete implementation of the android.webkit. Webview
API.

e [3.4.2/H-0-1] MUST include a standalone Browser application for general user web
browsing.

e [3.8.1/H-SR] Are STRONGLY RECOMMENDED to implement a default launcher that

supports in-app pinning of shortcuts, widgets and widgetFeatures .

[ 3.8 .1/H-SR] Are STRONGLY RECOMMENDED to implement a default launcher that

Clnd I'Oid Page 13 of 136


https://source.android.com/devices/haptics
https://developer.android.com/reference/android/content/Intent.html#ACTION_GET_CONTENT
https://developer.android.com/reference/android/content/Intent#ACTION_OPEN_DOCUMENT
https://developer.android.com/reference/android/content/Intent.html#ACTION_OPEN_DOCUMENT_TREE
https://developer.android.com/reference/android/content/Intent.html#ACTION_CREATE_DOCUMENT
https://developer.android.com/reference/android/provider/DocumentsProvider
https://developer.android.com/about/versions/11/reference/common-intents-30
https://developer.android.com/reference/android/content/Intent#ACTION_SENDTO
https://developer.android.com/reference/android/content/Intent#ACTION_SEND
https://developer.android.com/reference/android/content/Intent#ACTION_SEND_MULTIPLE
https://developer.android.com/reference/android/appwidget/AppWidgetProviderInfo.html#widgetFeatures

provides quick access to the additional shortcuts provided by third-party apps through the
ShortcutManager API.

[ 3.8 .1/H-SR] Are STRONGLY RECOMMENDED to include a default launcher app that
shows badges for the app icons.

[ 3.8 .2/H-SR] Are STRONGLY RECOMMENDED to support third-party app widgets.

[ 3.8 .3/H-0-1] MUST allow third-party apps to notify users of notable events through the
Notification and NotificationManager API classes.

[ 3.8 .3/H-0-2] MUST support rich notifications.

[ 3.8 .3/H-0-3] MUST support heads-up notifications.

[ 3.8 .3/H-0-4] MUST include a notification shade, providing the user the ability to directly
control (e.g. reply, snooze, dismiss, block) the notifications through user affordance such
as action buttons or the control panel as implemented in the AOSP.

[ 3.8 .3/H-0-5] MUST display the choices provided through Remotelnput.Builder setChoices()
in the notification shade.

[ 3.8 .3/H-SR] Are STRONGLY RECOMMENDED to display the first choice provided through
Remotelnput.Builder setChoices() in the notification shade without additional user
interaction.

[ 3.8 .3/H-SR] Are STRONGLY RECOMMENDED to display all the choices provided through
Remotelnput.Builder setChoices() in the notification shade when the user expands all
notifications in the notification shade.

[ 3.8 .3.1/H-SR] Are STRONGLY RECOMMENDED to display actions for which
Notification.Action.Builder.setContextual is set as true in-line with the replies displayed by
Notification.Remoteinput.Builder.setChoices .

[ 3.8 .4/H-SR] Are STRONGLY RECOMMENDED to implement an assistant on the device to
handle the Assist action .

If Handheld device implementations support Assist action, they:

If Handheld device implementations support conversation notifications and group them into a separate

[ 3.8 .4/H-SR] Are STRONGLY RECOMMENDED to use long press on HOME key as the
designated interaction to launch the assist app as described in section 7.2.3 . MUST
launch the user-selected assist app, in other words the app that implements
VoicelnteractionService , or an activity handling the ACTION ASSIST intent.

section from alerting and silent non-conversation notifications, they:

[ 3.8 .4/H-1-1]* MUST display conversation notifications ahead of non conversation
notifications with the exception of ongoing foreground service notifications and
importance:high notifications.

If Android Handheld device implementations support a lock screen, they:

[ 3.8 .10/H-1-1] MUST display the Lock screen Notifications including the Media
Notification Template.

If Handheld device implementations support a secure lock screen, they:

If Handheld device implementations include support for ControlsProviderService and Control APIs and

[ 3.9 /H-1-1] MUST implement the full range of device administration policies defined in
the Android SDK documentation.

[ 3.9 /H-1-2] MUST declare the support of managed profiles via the
android.software.managed users feature flag, except when the device is configured so that it
would report itself as a low RAM device or so that it allocates internal (non-removable)
storage as shared storage.

allow third-party applications to publish device controls , then they:

[ 3.8 .16/H-1-1] MUST declare the feature flag android.software.controls and set it to true .

[ 3.8 .16/H-1-2] MUST provide a user affordance with the ability to add, edit, select, and
operate the user’s favorite device controls from the controls registered by the third-party
applications through the ControlsProviderService and the Control APIs.

[ 3.8 .16/H-1-3] MUST provide access to this user affordance within three interactions
from a default Launcher.

[ 3.8 .16/H-1-4] MUST accurately render in this user affordance the name and icon of
each third-party app that provides controls via the ControlsProviderService APl as well as

android

Page 14 of 136


https://developer.android.com/reference/android/content/pm/ShortcutManager.html
https://developer.android.com/reference/android/app/Notification.html
https://developer.android.com/reference/android/app/NotificationManager.html
https://developer.android.com/reference/android/app/RemoteInput.Builder.html#setChoices%2528java.lang.CharSequence%5B%5D%2529
https://developer.android.com/reference/android/app/RemoteInput.Builder.html#setChoices%2528java.lang.CharSequence%5B%5D%2529
https://developer.android.com/reference/android/app/RemoteInput.Builder.html#setChoices%2528java.lang.CharSequence%5B%5D%2529
https://developer.android.com/reference/android/app/Notification.Action.Builder.html#setContextual%2528boolean%2529
https://developer.android.com/reference/android/app/RemoteInput.Builder.html#setChoices%2528java.lang.CharSequence%5B%5D%2529
http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST
https://developer.android.com/reference/android/service/voice/VoiceInteractionService
https://developer.android.com/preview/features/conversations#api-notifications
https://developer.android.com/reference/android/app/NotificationManager#IMPORTANCE_HIGH
http://developer.android.com/guide/topics/admin/device-admin.html
http://developer.android.com/reference/android/app/ActivityManager.html#isLowRamDevice%2528%2529
https://developer.android.com/reference/android/service/controls/ControlsProviderService
https://developer.android.com/reference/android/service/controls/Control
https://developer.android.com/preview/features/device-control
https://developer.android.com/reference/android/content/pm/PackageManager#FEATURE_CONTROLS
https://developer.android.com/reference/android/service/controls/ControlsProviderService
https://developer.android.com/reference/android/service/controls/Control#getDeviceType%2528%2529
https://developer.android.com/reference/android/service/controls/ControlsProviderService

any specified fields provided by the Control APls.

Conversely, If Handheld device implementations do not implement such controls, they:

3.8 .16/H-2-1] MUST report null for the ControlsProviderService and the Control APIs.

3.8 .16/H-2-2] MUST declare the feature flag android.software.controls and set it to false .

o[
o[

Handheld device implementations:

e [3.10 /H-0-1] MUST support third-party accessibility services.

[ 3.10 /H-SR] Are STRONGLY RECOMMENDED to preload accessibility services on the
device comparable with or exceeding functionality of the Switch Access and TalkBack (for
languages supported by the preinstalled Text-to-speech engine) accessibility services as
provided in the talkback open source project .

[ 3.11 /H-0-1] MUST support installation of third-party TTS engines.

[ 3.11 /H-SR] Are STRONGLY RECOMMENDED to include a TTS engine supporting the
languages available on the device.

e [3.13 /H-SR] Are STRONGLY RECOMMENDED to include a Quick Settings Ul component.

If Android handheld device implementations declare FEATURE BLUETOOTH or FEATURE_ WIFI
support, they:

e [3.16 /H-1-1] MUST support the companion device pairing feature.

If the navigation function is provided as an on-screen, gesture-based action:

e [ 7.2 .3/H] The gesture recognition zone for the Home function SHOULD be no higher than
32 dp in height from the bottom of the screen.

If Handheld device implementations provide a navigation function as a gesture from anywhere on the
left and right edges of the screen:

e [7.2 .3/H-0-1] The navigation function's gesture area MUST be less than 40 dp in width on
each side. The gesture area SHOULD be 24 dp in width by default.

2.2.4. Performance and Power

e [8.1 /H-0-1] Consistent frame latency . Inconsistent frame latency or a delay to render
frames MUST NOT happen more often than 5 frames in a second, and SHOULD be below
1 frames in a second.

e [8.1 /H-0-2] User interface latency . Device implementations MUST ensure low latency
user experience by scrolling a list of 10K list entries as defined by the Android
Compatibility Test Suite (CTS) in less than 36 secs.

e [8.1 /H-0-3] Task switching . When multiple applications have been launched, re-
launching an already-running application after it has been launched MUST take less than
1 second.

Handheld device implementations:

e [8.2 /H-0-1] MUST ensure a sequential write performance of at least 5 MB/s.
e [8.2 /H-0-2] MUST ensure a random write performance of at least 0.5 MB/s.
e [8.2 /H-0-3] MUST ensure a sequential read performance of at least 15 MB/s.
e [8.2 /H-0-4] MUST ensure a random read performance of at least 3.5 MB/s.

If Handheld device implementations include features to improve device power management that are
included in AOSP or extend the features that are included in AOSP, they:

e [8.3 /H-1-1] MUST provide user affordance to enable and disable the battery saver
feature.

e [8.3 /H-1-2] MUST provide user affordance to display all apps that are exempted from
App Standby and Doze power-saving modes.

Handheld device implementations:

e [ 8.4 /H-0-1] MUST provide a per-component power profile that defines the current
consumption value for each hardware component and the approximate battery drain

Clnd I'Oid Page 15 of 136


https://developer.android.com/reference/android/service/controls/Control
https://developer.android.com/reference/android/service/controls/ControlsProviderService
https://developer.android.com/reference/android/service/controls/Control
https://developer.android.com/reference/android/content/pm/PackageManager#FEATURE_CONTROLS
https://github.com/google/talkback
http://source.android.com/devices/tech/power/values.html

caused by the components over time as documented in the Android Open Source Project
site.

e [8.4 /H-0-2] MUST report all power consumption values in milliampere hours (mAh).

e [ 8.4 /H-0-3] MUST report CPU power consumption per each process's UID. The Android
Open Source Project meets the requirement through the uid_cputime kernel module
implementation.

e [8.4 /H-0-4] MUST make this power usage available via the adb shell dumpsys batterystats
shell command to the app developer.

e [ 8.4 /H] SHOULD be attributed to the hardware component itself if unable to attribute
hardware component power usage to an application.

If Handheld device implementations include a screen or video output, they:

e [8.4 /H-1-1] MUST honor the android.intent.action.POWER_USAGE_SUMMARY intent and
display a settings menu that shows this power usage.

2.2.5. Security Model

Handheld device implementations:

e [9.1 /H-0-1] MUST allow third-party apps to access the usage statistics via the
android.permission.PACKAGE_USAGE_STATS permission and provide a user-accessible
mechanism to grant or revoke access to such apps in response to the

android.settings. ACTION_USAGE_ACCESS _SETTINGS intent.

Handheld device implementations (* Not applicable for Tablet):

e [9.11 /H-0-2]* MUST back up the keystore implementation with an isolated execution
environment.

e [9.11 /H-0-3]* MUST have implementations of RSA, AES, ECDSA, and HMAC
cryptographic algorithms and MD5, SHA1, and SHA-2 family hash functions to properly
support the Android Keystore system's supported algorithms in an area that is securely
isolated from the code running on the kernel and above. Secure isolation MUST block all
potential mechanisms by which kernel or userspace code might access the internal state
of the isolated environment, including DMA. The upstream Android Open Source Project
(AOSP) meets this requirement by using the Trusty implementation, but another ARM
TrustZone-based solution or a third-party reviewed secure implementation of a proper
hypervisor-based isolation are alternative options.

e [9.11 /H-0-4]* MUST perform the lock screen authentication in the isolated execution
environment and only when successful, allow the authentication-bound keys to be used.
Lock screen credentials MUST be stored in a way that allows only the isolated execution
environment to perform lock screen authentication. The upstream Android Open Source
Project provides the Gatekeeper Hardware Abstraction Layer (HAL) and Trusty, which can
be used to satisfy this requirement.

e [9.11 /H-0-5]* MUST support key attestation where the attestation signing key is
protected by secure hardware and signing is performed in secure hardware. The
attestation signing keys MUST be shared across large enough number of devices to
prevent the keys from being used as device identifiers. One way of meeting this
requirement is to share the same attestation key unless at least 100,000 units of a given
SKU are produced. If more than 100,000 units of an SKU are produced, a different key
MAY be used for each 100,000 units.

Note that if a device implementation is already launched on an earlier Android version, such a device
is exempted from the requirement to have a keystore backed by an isolated execution environment

and support the key attestation, unless it declares the android.hardware.fingerprint feature which
requires a keystore backed by an isolated execution environment.

When Handheld device implementations support a secure lock screen, they:

e [9.11 /H-1-1] MUST allow the user to choose the shortest sleep timeout, that is a
transition time from the unlocked to the locked state, as 15 seconds or less.

e [9.11 /H-1-2] MUST provide user affordance to hide notifications and disable all forms of
authentication except for the primary authentication described in 9.11.1 Secure Lock
Screen . The AOSP meets the requirement as lockdown mode.

If Handheld device implementations include multiple users and do not declare the
android.hardware.telephony feature flag, they:

android

Page 16 of 136


http://source.android.com/devices/tech/power/batterystats.html
http://developer.android.com/reference/android/content/Intent.html#ACTION_POWER_USAGE_SUMMARY
https://developer.android.com/reference/android/provider/Settings.html#ACTION&lowbar;USAGE&lowbar;ACCESS&lowbar;SETTINGS
https://source.android.com/security/trusty/
http://source.android.com/devices/tech/security/authentication/gatekeeper.html

e [9.5 /H-2-1] MUST support restricted profiles, a feature that allows device owners to
manage additional users and their capabilities on the device. With restricted profiles,
device owners can quickly set up separate environments for additional users to work in,
with the ability to manage finer-grained restrictions in the apps that are available in those
environments.

If Handheld device implementations include multiple users and declare the android.hardware.telephony
feature flag, they:

e [9.5 /H-3-1] MUST NOT support restricted profiles but MUST align with the AOSP
implementation of controls to enable /disable other users from accessing the voice calls
and SMS.

2.2.6. Developer Tools and Options Compatibility

Handheld device implementations (* Not applicable for Tablet):

e [ 6.1 /H-0-1]* MUST support the shell commandcmd testharness .

Handheld device implementations (* Not applicable for Tablet):

o Perfetto

o [ 6.1 /H-0-2]* MUST expose a /system/bin/perfetto binary to the shell user which
cmdline complies with the perfetto documentation .
[ 6.1 /H-0-3]* The perfetto binary MUST accept as input a protobuf config that
complies with the schema defined in the perfetto documentation .
o [ 6.1 /H-0-4]* The perfetto binary MUST write as output a protobuf trace that
complies with the schema defined in the perfetto documentation .
[ 6.1 /H-0-5]* MUST provide, through the perfetto binary, at least the data
sources described in the perfetto documentation .
o [ 6.1 /H-0-6]* The perfetto traced daemon MUST be enabled by default

(system property persist.traced.enable ).

o]

o]

2.3. Television Requirements

An Android Television device refers to an Android device implementation that is an entertainment
interface for consuming digital media, movies, games, apps, and/or live TV for users sitting about ten
feet away (a “lean back” or “10-foot user interface”).

Android device implementations are classified as a Television if they meet all the following criteria:

e Have provided a mechanism to remotely control the rendered user interface on the
display that might sit ten feet away from the user.

e Have an embedded screen display with the diagonal length larger than 24 inches OR
include a video output port, such as VGA, HDMI, DisplayPort, or a wireless port for display.

The additional requirements in the rest of this section are specific to Android Television device
implementations.

2.3.1. Hardware

Television device implementations:

e [7.2.2/T-0-1] MUST support D-pad .
e [7.2 .3/T-0-1] MUST provide the Home and Back functions.

[ 7.2 .3/T-0-2] MUST send both the normal and long press event of the Back function (
KEYCODE _BACK ) to the foreground application.

[7.2 .6.1/T-0-1] MUST include support for game controllers and declare the
android.hardware.gamepad feature flag.

[ 7.2 .7/T] SHOULD provide a remote control from which users can accessnon-touch
navigation and core navigation keys inputs.

If Television device implementations include a 3-axis gyroscope, they:

e [7.3.4/T-1-1] MUST be able to report events up to a frequency of at least 100 Hz.
e [7.3.4/T-1-2] MUST be capable of measuring orientation changes up to 1000 degrees per

android

Page 17 of 136


https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/reference/android/content/res/Configuration.html#NAVIGATION_DPAD
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK

second.

Television device implementations:

e [7.4 .3/T-0-1] MUST support Bluetooth and Bluetooth LE.
e [7.6.1/T-0-1] MUST have at least 4 GB of non-volatile storage available for application
private data (a.k.a. "/data" partition).

If Television device implementations include a USB port that supports host mode, they:

e [7.5.3/T-1-1] MUST include support for an external camera that connects through this
USB port but is not necessarily always connected.

If TV device implementations are 32-bit:

e [7.6.1/T-1-1] The memory available to the kernel and userspace MUST be at least
896MB if any of the following densities are used:
o 400dpi or higher on small/normal screens
o xhdpi or higher on large screens
o tvdpi or higher on extra large screens

If TV device implementations are 64-bit:

e [7.6 .1/T-2-1] The memory available to the kernel and userspace MUST be at least
1280MB if any of the following densities are used:
o 400dpi or higher on small/normal screens
o xhdpi or higher on large screens
o tvdpi or higher on extra large screens

Note that the "memory available to the kernel and userspace" above refers to the memory space
provided in addition to any memory already dedicated to hardware components such as radio, video,
and so on that are not under the kernel’s control on device implementations.

Television device implementations:

[78 1/T] SHOULD include a microphone.
7.8 .2/T-0-1] MUST have an audio output and declare android.hardware.audio.output .

2.3.2. Multimedia

Television device implementations MUST support the following audio encoding and decoding
formats and make them available to third-party applications:

e [5.1/T-0-1] MPEG-4 AAC Profile (AAC LC)

e [5.1/T-0-2] MPEG-4 HE AAC Profile (AAC+)

e [5.1/T-0-3] AAC ELD (enhanced low delay AAC)

Television device implementations MUST support the following video encoding formats and make
them available to third-party applications:

e [5.2/T-0-1]1H.264

e [5.2/T-0-2] VP8

Television device implementations:

e [5.2.2/T-SR] Are STRONGLY RECOMMENDED to support H.264 encoding of 720p and
1080p resolution videos at 30 frames per second.

Television device implementations MUST support the following video decoding formats and make
them available to third-party applications:

3 /T-0-1] MPEG-4 SP
4 /T-0-2] H.264 AVC
5/T-0-3] H.265 HEVC

e [533
e [534
e [535
e [5.3.6/T-0-4] VP8

android

Page 18 of 136



e [5.3.7/T-0-5] VP9
e [5.3.1/T-0-6] MPEG-2

Television device implementations MUST support MPEG-2 decoding, as detailed in Section 5.3.1, at
standard video frame rates and resolutions up to and including:

e [5.3.1/T-1-1] HD 1080p at 59.94 frames per second with Main Profile High Level.

e [5.3.1/T-1-2] HD 1080i at 59.94 frames per second with Main Profile High Level. They
MUST deinterlace interlaced MPEG-2 video and make it available to third-party
applications.

Television device implementations MUST support H.264 decoding, as detailed in Section 5.3.4, at
standard video frame rates and resolutions up to and including:

e [5.3.4/T-1-1] HD 1080p at 60 frames per second with Baseline Profile
e [5.3.4/T-1-2] HD 1080p at 60 frames per second with Main Profile
e [5.3.4/T-1-3] HD 1080p at 60 frames per second with High Profile Level 4.2

Television device implementations with H.265 hardware decoders MUST support H.265 decoding, as
detailed in Section 5.3.5, at standard video frame rates and resolutions up to and including:

e [5.3.5/T-1-1] HD 1080p at 60 frames per second with Main Profile Level 4.1

If Television device implementations with H.265 hardware decoders support H.265 decoding and the
UHD decoding profile, they:

e [5.3.5/T-2-1] MUST support the UHD decoding profile at 60 frames per second with
Main10 Level 5 Main Tier profile

Television device implementations MUST support VP8 decoding, as detailed in Section 5.3.6, at
standard video frame rates and resolutions up to and including:

e [5.3.6/T-1-1]1 HD 1080p at 60 frames per second decoding profile

Television device implementations with VP9 hardware decoders MUST support VP9 decoding, as
detailed in Section 5.3.7, at standard video frame rates and resolutions up to and including:

e [5.3.7/T-1-1]1 HD 1080p at 60 frames per second with profile 0 (8 bit color depth)

If Television device implementations with VP9 hardware decoders support VP9 decoding and the
UHD decoding profile, they:

e [5.3.7 /T-2-1] MUST support the UHD decoding profile at 60 frames per second with
profile 0 (8 bit color depth).

e [5.3.7 /T-2-1] Are STRONGLY RECOMMENDED to support the UHD decoding profile at 60
frames per second with profile 2 (10 bit color depth).

Television device implementations:

e [5.5/T-0-1] MUST include support for system Master Volume and digital audio output
volume attenuation on supported outputs, except for compressed audio passthrough
output (where no audio decoding is done on the device).

If Television device implementations do not have a built in display, but instead support an external
display connected via HDMI, they:

e [ 5.8 /T-0-1] MUST set the HDMI output mode to select the maximum resolution that can
be supported with either a 50Hz or 60Hz refresh rate.

e [5.8 /T-SR] Are STRONGLY RECOMMENDED to provide a user configurable HDMI refresh
rate selector.

e [5.8] SHOULD set the HDMI output mode refresh rate to either 50Hz or 60Hz, depending
on the video refresh rate for the region the device is sold in.

If Television device implementations do not have a built in display, but instead support an external
display connected via HDMI, they:

android

Page 19 of 136



e [5.8 /T-1-1] MUST support HDCP 2.2.

If Television device implementations do not support UHD decoding, but instead support an external
display connected via HDMI, they:

e [5.8 /T-2-1] MUST support HDCP 1.4

2.3.3. Software

Television device implementations:

e [ 3 /T-0-1] MUST declare the features android.software.leanback and
android.hardware.type.television .

e [3.2.3.1/T-0-1] MUST preload one or more applications or service components with an
intent handler, for all the public intent filter patterns defined by the following application
intents listed here .

e [3.4.1/T-0-1] MUST provide a complete implementation of the android.webkit. Webview
API.

If Android Television device implementations support a lock screen,they:

e [3.8.10/T-1-1] MUST display the Lock screen Notifications including the Media
Notification Template.

Television device implementations:

e [3.8.14/T-SR] Are STRONGLY RECOMMENDED to support picture-in-picture (PIP) mode
multi-window.

e [3.10/T-0-1] MUST support third-party accessibility services.

e [3.10 /T-SR] Are STRONGLY RECOMMENDED to preload accessibility services on the
device comparable with or exceeding functionality of the Switch Access and TalkBack (for
languages supported by the preinstalled Text-to-speech engine) accessibility services as
provided in the talkback open source project .

If Television device implementations report the feature android.hardware.audio.output , they:

e [3.11 /T-SR] Are STRONGLY RECOMMENDED to include a TTS engine supporting the
languages available on the device.

e [3.11/T-1-1] MUST support installation of third-party TTS engines.

Television device implementations:

e [3.12 /T-0-1] MUST support TV Input Framework.

2.3.4. Performance and Power

e [8.1/T-0-1] Consistent frame latency . Inconsistent frame latency or a delay to render
frames MUST NOT happen more often than 5 frames in a second, and SHOULD be below
1 frames in a second.

[ 8.2 /T-0-1] MUST ensure a sequential write performance of at least 5SMB/s.
[ 8.2 /T-0-2] MUST ensure a random write performance of at least 0.5MB/s.

[ 8.2 /T-0-3] MUST ensure a sequential read performance of at least 15MB/s.
[ 8.2 /T-0-4] MUST ensure a random read performance of at least 3.5MB/s.

If Television device implementations include features to improve device power management that are
included in AOSP or extend the features that are included in AOSP, they:

e [8.3 /T-1-1] MUST provide user affordance to enable and disable the battery saver
feature.

If Television device implementations do not have a battery they:

e [8.3 /T-1-2] MUST register the device as a batteryless device as described inSupporting
Batteryless Devices .

If Television device implementations have a battery they:

Clnd I'Oid Page 20 of 136


http://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_LEANBACK
https://developer.android.com/about/versions/11/reference/common-intents-30
https://github.com/google/talkback
https://source.android.com/devices/tech/power/batteryless

e [8.3 /T-1-3] MUST provide user affordance to display all apps that are exempted from
App Standby and Doze power-saving modes.

Television device implementations:

e [8.4 /T-0-1] MUST provide a per-component power profile that defines the current
consumption value for each hardware component and the approximate battery drain
caused by the components over time as documented in the Android Open Source Project
site.

[ 8.4 /T-0-2] MUST report all power consumption values in milliampere hours (mAh).

[ 8.4 /T-0-3] MUST report CPU power consumption per each process's UID. The Android
Open Source Project meets the requirement through the uid cputime kernel module
implementation.

[ 8.4 /T] SHOULD be attributed to the hardware component itself if unable to attribute
hardware component power usage to an application.

[ 8.4 /T-0-4] MUST make this power usage available via the adb shell dumpsys batterystats
shell command to the app developer.

2.3.5. Security Model

Television device implementations:

e [9.11/T-0-1] MUST back up the keystore implementation with an isolated execution
environment.

e [9.11/T-0-2] MUST have implementations of RSA, AES, ECDSA and HMAC cryptographic
algorithms and MD5, SHA1, and SHA-2 family hash functions to properly support the
Android Keystore system's supported algorithms in an area that is securely isolated from
the code running on the kernel and above. Secure isolation MUST block all potential
mechanisms by which kernel or userspace code might access the internal state of the
isolated environment, including DMA. The upstream Android Open Source Project (AOSP)
meets this requirement by using the Trusty implementation, but another ARM TrustZone-
based solution or a third-party reviewed secure implementation of a proper hypervisor-
based isolation are alternative options.

e [9.11 /T-0-3] MUST perform the lock screen authentication in the isolated execution
environment and only when successful, allow the authentication-bound keys to be used.
Lock screen credentials MUST be stored in a way that allows only the isolated execution
environment to perform lock screen authentication. The upstream Android Open Source
Project provides the Gatekeeper Hardware Abstraction Layer (HAL) and Trusty, which can
be used to satisfy this requirement.

e [9.11 /T-0-4] MUST support key attestation where the attestation signing key is protected
by secure hardware and signing is performed in secure hardware. The attestation signing
keys MUST be shared across large enough number of devices to prevent the keys from
being used as device identifiers. One way of meeting this requirement is to share the
same attestation key unless at least 100,000 units of a given SKU are produced. If more
than 100,000 units of an SKU are produced, a different key MAY be used for each 100,000
units.

Note that if a device implementation is already launched on an earlier Android version, such a device
is exempted from the requirement to have a keystore backed by an isolated execution environment
and support the key attestation, unless it declares the android.hardware.fingerprint feature which
requires a keystore backed by an isolated execution environment.

If Television device implementations support a secure lock screen, they:

e [9.11 /T-1-1] MUST allow the user to choose the Sleep timeout for transition from the
unlocked to the locked state, with a minimum allowable timeout up to 15 seconds or less.

If Television device implementations include multiple users and do not declare the
android.hardware.telephony feature flag, they:

e [9.5/T-2-1] MUST support restricted profiles, a feature that allows device owners to
manage additional users and their capabilities on the device. With restricted profiles,
device owners can quickly set up separate environments for additional users to work in,
with the ability to manage finer-grained restrictions in the apps that are available in those
environments.

If Television device implementations include multiple users and declare the android.hardware.telephony

Gnd rOid Page 21 of 136


http://source.android.com/devices/tech/power/values.html
http://source.android.com/devices/tech/power/batterystats.html
https://source.android.com/security/trusty/
http://source.android.com/devices/tech/security/authentication/gatekeeper.html

feature flag, they:

e [9.5/T-3-1] MUST NOT support restricted profiles but MUST align with the AOSP
implementation of controls to enable /disable other users from accessing the voice calls
and SMS.

2.3.6. Developer Tools and Options Compatibility
Television device implementations:

e Perfetto

o [6.1/T-0-1] MUST expose a /system/bin/perfetto binary to the shell user which
cmdline complies with the perfetto documentation .

o [ 6.1 /T-0-2] The perfetto binary MUST accept as input a protobuf config that
complies with the schema defined in the perfetto documentation .

o [ 6.1 /T-0-3] The perfetto binary MUST write as output a protobuf trace that
complies with the schema defined in the perfetto documentation .

o [ 6.1 /T-0-4] MUST provide, through the perfetto binary, at least the data
sources described in the perfetto documentation .

2.4. Watch Requirements

An Android Watch device refers to an Android device implementation intended to be worn on the
body, perhaps on the wrist.

Android device implementations are classified as a Watch if they meet all the following criteria:

e Have a screen with the physical diagonal length in the range from 1.1 to 2.5 inches.
e Have a mechanism provided to be worn on the body.

The additional requirements in the rest of this section are specific to Android Watch device
implementations.

2.4.1. Hardware
Watch device implementations:

e [7.1.1.1/W-0-1] MUST have a screen with the physical diagonal size in the range from 1.1
to 2.5 inches.

e [7.2 .3/W-0-1] MUST have the Home function available to the user, and the Back function
except for when it is in UL MODE_TYPE WATCH .

e [7.2 .4/W-0-1] MUST support touchscreen input.
e [7.3.1/W-SR] Are STRONGLY RECOMMENDED to include a 3-axis accelerometer.

If Watch device implementations include a GPS/GNSS receiver and report the capability to
applications through the android.hardware.location.gps feature flag, they:

e [7.3.3/W-1-1] MUST report GNSS measurements, as soon as they are found, even if a
location calculated from GPS/GNSS is not yet reported.

e [7.3.3/W-1-2] MUST report GNSS pseudoranges and pseudorange rates, that, in open-
sky conditions after determining the location, while stationary or moving with less than
0.2 meter per second squared of acceleration, are sufficient to calculate position within
20 meters, and speed within 0.2 meters per second, at least 95% of the time.

If Watch device implementations include a 3-axis gyroscope, they:

e [7.3.4/W-2-1] MUST be capable of measuring orientation changes up to 1000 degrees
per second.

Watch device implementations:

e [7.4.3/W-0-1] MUST support Bluetooth.

e [7.6 .1/W-0-1] MUST have at least 1 GB of non-volatile storage available for application
private data (a.k.a. "/data" partition).

android

Page 22 of 136


https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto

e [7.6.1/W-0-2] MUST have at least 416 MB memory available to the kernel and userspace.
e [7.8.1/W-0-1] MUST include a microphone.
e [ 7.8 .2/W] MAY have audio output.

2.4.2. Multimedia

No additional requirements.

2.4.3. Software
Watch device implementations:

e [ 3 /W-0-1] MUST declare the feature android.hardware.type.watch .
e [ 3 /W-0-2] MUST support uiMode =Ul_MODE_TYPE_WATCH .

e [3.2.3.1 /W-0-1] MUST preload one or more applications or service components with an
intent handler, for all the public intent filter patterns defined by the following application
intents listed here .

Watch device implementations:

e [ 3.8 .4/W-SR] Are STRONGLY RECOMMENDED to implement an assistant on the device to
handle the Assist action .

Watch device implementations that declare the android.hardware.audio.output feature flag:

e [3.10 /W-1-1] MUST support third-party accessibility services.

e [3.10 /W-SR] Are STRONGLY RECOMMENDED to preload accessibility services on the
device comparable with or exceeding functionality of the Switch Access and TalkBack (for
languages supported by the preinstalled Text-to-speech engine) accessibility services as
provided in the talkback open source project .

If Watch device implementations report the feature android.hardware.audio.output, they:

e [3.11 /W-SR] Are STRONGLY RECOMMENDED to include a TTS engine supporting the
languages available on the device.

e [3.11 /W-0-1] MUST support installation of third-party TTS engines.

2.4.4. Performance and Power

If Watch device implementations include features to improve device power management that are
included in AOSP or extend the features that are included in AOSP, they:

e [8.3 /W-SR] Are STRONGLY RECOMMENDED to provide user affordance to display all
apps that are exempted from App Standby and Doze power-saving modes.

e [8.3 /W-SR] Are STRONGLY RECOMMENDED to provide user affordance to enable and
disable the battery saver feature.

Watch device implementations:

[ 8.4 /W-0-1] MUST provide a per-component power profile that defines the current
consumption value for each hardware component and the approximate battery drain
caused by the components over time as documented in the Android Open Source Project
site.

e [8.4 /W-0-2] MUST report all power consumption values in milliampere hours (mAh).

e [8.4 /W-0-3] MUST report CPU power consumption per each process's UID. The Android
Open Source Project meets the requirement through the uid_cputime kernel module
implementation.

e [ 8.4 /W-0-4] MUST make this power usage available via the adb shell dumpsys batterystats
shell command to the app developer.

e [8.4 /W] SHOULD be attributed to the hardware component itself if unable to attribute

hardware component power usage to an application.

2.4.5. Security Model

Clnd I'Oid Page 23 of 136


http://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_WATCH
https://developer.android.com/about/versions/11/reference/common-intents-30
http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST
https://github.com/google/talkback
http://source.android.com/devices/tech/power/values.html
http://source.android.com/devices/tech/power/batterystats.html

If Watch device implementations include multiple users and do not declare the
android.hardware.telephony feature flag, they:

e [9.5 /W-1-1] MUST support restricted profiles, a feature that allows device owners to
manage additional users and their capabilities on the device. With restricted profiles,
device owners can quickly set up separate environments for additional users to work in,
with the ability to manage finer-grained restrictions in the apps that are available in those
environments.

If Watch device implementations include multiple users and declare the android.hardware.telephony
feature flag, they:

e [9.5/W-2-1] MUST NOT support restricted profiles but MUST align with the AOSP
implementation of controls to enable /disable other users from accessing the voice calls
and SMS.

2.5. Automotive Requirements

Android Automotive implementation refers to a vehicle head unit running Android as an operating
system for part or all of the system and/or infotainment functionality.

Android device implementations are classified as an Automotive if they declare the feature
android.hardware.type.automotive or meet all the following criteria.

e Are embedded as part of, or pluggable to, an automotive vehicle.
e Are using a screen in the driver's seat row as the primary display.

The additional requirements in the rest of this section are specific to Android Automotive device
implementations.

2.5.1. Hardware

Automotive device implementations:

[ 7.1 .1.1/A-0-1] MUST have a screen at least 6 inches in physical diagonal size.
[7.1.1.1/A-0-2] MUST have a screen size layout of at least 750 dp x 480 dp.

[ 7.2 .3/A-0-1] MUST provide the Home function and MAY provide Back and Recent

functions.

e [7.2 .3/A-0-2] MUST send both the normal and long press event of the Back function (
KEYCODE _BACK ) to the foreground application.

e [7.3 /A-0-1] MUST implement and report GEAR_SELECTION , NIGHT MODE ,
PERF_VEHICLE SPEED and PARKING BRAKE ON .

e [7.3 /A-0-2] The value of the NIGHT_MODE flag MUST be consistent with dashboard
day/night mode and SHOULD be based on ambient light sensor input. The underlying
ambient light sensor MAY be the same as Photometer .

e [ 7.3 /A-0-3] MUST provide sensor additional info field TYPE_SENSOR_PLACEMENT as
part of SensorAdditionalinfo for every sensor provided.

e [7.3 /A-0-1] MAY dead reckon Location by fusing GPS/GNSS with additional sensors. If
Location is dead reckoned, it is STRONGLY RECOMMENDED to implement and report the
corresponding Sensor types and/or Vehicle Property IDs used.

e [7.3 /A-0-2] The Location requested via LocationManager#requestLocationUpdates()

MUST NOT be map matched.

If Automotive device implementations include a 3-axis accelerometer, they:

N

.1/A-1-1] MUST be able to report events up to a frequency of at least 100 Hz.
.1/A-1-2] MUST comply with the Android car sensor coordinate system .

e [73
e [7.3

N

If Automotive device implementations include a 3-axis gyroscope, they:

e [7.3.4/A-2-1] MUST be able to report events up to a frequency of at least 100 Hz.
e [ 7.3 .4/A-2-2] MUST also implement the TYPE_GYROSCOPE_UNCALIBRATED sensor.
o

7.3
7.3 .4/A-2-3] MUST be capable of measuring orientation changes up to 250 degrees per
second.

e [7.3 .4/A-SR] Are STRONGLY RECOMMENDED to configure the gyroscope’s measurement

android

Page 24 of 136


http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK
https://developer.android.com/reference/android/car/VehiclePropertyIds.html#GEAR_SELECTION
https://developer.android.com/reference/android/car/VehiclePropertyIds.html#NIGHT_MODE
https://developer.android.com/reference/android/car/VehiclePropertyIds.html#PERF_VEHICLE_SPEED
https://developer.android.com/reference/android/car/VehiclePropertyIds.html#PARKING_BRAKE_ON
https://developer.android.com/reference/android/car/VehiclePropertyIds.html#NIGHT_MODE
https://developer.android.com/reference/android/hardware/SensorAdditionalInfo.html#TYPE_SENSOR_PLACEMENT
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/hardware/Sensor
https://developer.android.com/reference/android/car/VehiclePropertyIds
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/LocationManager
http://source.android.com/devices/sensors/sensor-types.html#auto_axes
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GYROSCOPE_UNCALIBRATED

range to +/-250dps in order to maximize the resolution possible

If Automotive device implementations include a GPS/GNSS receiver, but do not include cellular
network-based data connectivity, they:

e [7.3.3/A-3-1] MUST determine location the very first time the GPS/GNSS receiver is
turned on or after 4+ days within 60 seconds.

e [7.3.3/A-3-2] MUST meet the time-to-first-fix criteria as described in 7.3.3/C-1-2 and
7.3.3/C-1-6 for all other location requests (i.e requests which are not the first time ever or
after 4+ days). The requirement 7.3.3/C-1-2 is typically met in vehicles without cellular
network-based data connectivity, by using GNSS orbit predictions calculated on the
receiver, or using the last known vehicle location along with the ability to dead reckon for
at least 60 seconds with a position accuracy satisfying 7.3.3/C-1-3 , or a combination of
both.

Automotive device implementations:

e [7.4 .3/A-0-1] MUST support Bluetooth and SHOULD support Bluetooth LE.

[ 7.4 .3/A-0-2] Android Automotive implementations MUST support the following
Bluetooth profiles:

o Phone calling over Hands-Free Profile (HFP).

o Media playback over Audio Distribution Profile (A2DP).

o Media playback control over Remote Control Profile (AVRCP).
o Contact sharing using the Phone Book Access Profile (PBAP).

[ 7.4 .3/A-SR] Are STRONGLY RECOMMENDED to support Message Access Profile (MAP).

[ 7.4 .5/A] SHOULD include support for cellular network-based data connectivity.

[ 7.4 .5/A] MAY use the System API NetworkCapabilities#NET_CAPABILITY_OEM_PAID
constant for networks that should be available to system apps.

An exterior view camera is a camera that images scenes outside of the device implementation, like a
dashcam.

Automotive device implementations:

e SHOULD include one or more exterior view cameras.

If Automotive device implementations include an exterior view camera, for such a camera, they:

[ 7.5 /A-1-1] MUST NOT have exterior view cameras accessible via the Android Camera

APls, unless they comply with camera core requirements .

e [7.5 /A-SR] Are STRONGLY RECOMMENDED not to rotate or horizontally mirror the
camera preview.

e [7.5.5/A-SR] Are STRONGLY RECOMMENDED to be oriented so that the long dimension
of the camera aligns with the horizon.

e [ 7.5 /A-SR] Are STRONGLY RECOMMENDED to have a resolution of at least 1.3
megapixels.

e SHOULD have either fixed-focus or EDOF (extended depth of field) hardware.

e SHOULD support Android Synchronization Framework .

e MAY have either hardware auto-focus or software auto-focus implemented in the camera

driver.

Automotive device implementations:

e [ 7.6 .1/A-0-1] MUST have at least 4 GB of non-volatile storage available for application
private data (a.k.a. "/data" partition).

e [7.6.1/A] SHOULD format the data partition to offer improved performance and longevity
on flash storage, for example using f2fs file-system.

If Automotive device implementations provide shared external storage via a portion of the internal
non-removable storage, they:

e [7.6.1/A-SR] Are STRONGLY RECOMMENDED to reduce I/0 overhead on operations
performed on the external storage, for example by using SDCardFS .

If Automotive device implementations are 32-bit:

Clnd I'Oid Page 25 of 136


https://developer.android.com/guide/topics/media/camera
https://source.android.com/devices/graphics/sync

[ 7.6 .1/A-1-1] The memory available to the kernel and userspace MUST be at least
512MB if any of the following densities are used:

o 280dpi or lower on small/normal screens

o |ldpi or lower on extra large screens

o mdpi or lower on large screens

[ 7.6 .1/A-1-2] The memory available to the kernel and userspace MUST be at least
608MB if any of the following densities are used:

o xhdpi or higher on small/normal screens

o hdpi or higher on large screens

o mdpi or higher on extra large screens

[ 7.6 .1/A-1-3] The memory available to the kernel and userspace MUST be at least
896MB if any of the following densities are used:

o 400dpi or higher on small/normal screens

o xhdpi or higher on large screens

o tvdpi or higher on extra large screens

[ 7.6 .1/A-1-4] The memory available to the kernel and userspace MUST be at least
1344MB if any of the following densities are used:

o 560dpi or higher on small/normal screens

o 400dpi or higher on large screens

o xhdpi or higher on extra large screens

If Automotive device implementations are 64-bit:

e [7.6.1/A-2-1] The memory available to the kernel and userspace MUST be at least
816MB if any of the following densities are used:

o 280dpi or lower on small/normal screens
o |dpi or lower on extra large screens
o mdpi or lower on large screens
e [ 7.6 .1/A-2-2] The memory available to the kernel and userspace MUST be at least
944MB if any of the following densities are used:
o xhdpi or higher on small/normal screens
o hdpi or higher on large screens
o mdpi or higher on extra large screens
e [ 7.6 .1/A-2-3] The memory available to the kernel and userspace MUST be at least
1280MB if any of the following densities are used:
o 400dpi or higher on small/normal screens
o xhdpi or higher on large screens
o tvdpi or higher on extra large screens
e [ 7.6 .1/A-2-4] The memory available to the kernel and userspace MUST be at least
1824MB if any of the following densities are used:
o 560dpi or higher on small/normal screens
o 400dpi or higher on large screens
o xhdpi or higher on extra large screens

Note that the "memory available to the kernel and userspace" above refers to the memory space
provided in addition to any memory already dedicated to hardware components such as radio, video,
and so on that are not under the kernel’s control on device implementations.

Automotive device implementations:

e [7.7 .1/A] SHOULD include a USB port supporting peripheral mode.

Automotive device implementations:

e [ 7.8 .1/A-0-1] MUST include a microphone.

Automotive device implementations:

e [7.8.2/A-0-1] MUST have an audio output and declare android.hardware.audio.output .

2.5.2. Multimedia

Clnd I'Oid Page 26 of 136



Automotive device implementations MUST support the following audio encoding and decoding
formats and make them available to third-party applications:

e [5.1 /A-0-1] MPEG-4 AAC Profile (AAC LC)
e [5.1 /A-0-2] MPEG-4 HE AAC Profile (AAC+)
e [5.1/A-0-3] AAC ELD (enhanced low delay AAC)

Automotive device implementations MUST support the following video encoding formats and make
them available to third-party applications:

(5

.2 /A-0-1] H.264 AVC
2 /A-0-2] VP8

[
[

(5

Automotive device implementations MUST support the following video decoding formats and make
them available to third-party applications:

e [5.3/A-0-1] H.264 AVC
e [5.3 /A-0-2] MPEG-4 SP
e [5.3/A-0-3] VP8
e [5.3/A-0-4] VP9

Automotive device implementations are STRONGLY RECOMMENDED to support the following video
decoding:

e [5.3/A-SR] H.265 HEVC
2.5.3. Software
Automotive device implementations:

e [ 3 /A-0-1] MUST declare the feature android.hardware.type.automotive .
e [3/A-0-2] MUST support uiMode = Ul MODE_TYPE_CAR .
e [ 3 /A-0-3] MUST support all public APIs in theandroid.car.* namespace.

If Automotive device implementations provide a proprietary API using android.car.CarPropertyManager
with android.car.VehiclePropertylds , they:

e [3/A-1-1] MUST NOT attach special privileges to system application's use of these
properties, or prevent third-party applications from using these properties.
e [3/A-1-2] MUST NOT replicate a vehicle property that already exists in the SDK .

Automotive device implementations:

[ 3.2.1/A-0-1] MUST support and enforce all permissions constants as documented by
the Automotive Permission reference page .

e [3.2.3.1/A-0-1] MUST preload one or more applications or service components with an
intent handler, for all the public intent filter patterns defined by the following application
intents listed here .

e [3.4.1/A-0-1] MUST provide a complete implementation of the android.webkit. Webview
API.

e [3.8.3/A-0-1] MUST display notifications that use the Notification.CarExtender APl when
requested by third-party applications.

e [3.8.4/A-SR] Are Strongly Recommended to implement an assistant on the device to
handle the Assist action .

If Automotive device implementations include a push-to-talk button, they:

e [3.8.4/A-1-1] MUST use a short press of the push-to-talk button as the designated
interaction to launch the user-selected assist app, in other words the app that implements
VoicelnteractionService .

Automotive device implementations:

android

Page 27 of 136


http://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_CAR
https://developer.android.com/reference/android/car/package-summary
https://developer.android.com/reference/android/car/hardware/property/CarPropertyManager
https://developer.android.com/reference/android/car/VehiclePropertyIds
https://developer.android.com/reference/android/car/VehiclePropertyIds
https://developer.android.com/reference/android/car/Car
https://developer.android.com/about/versions/11/reference/common-intents-30
https://developer.android.com/reference/android/app/Notification.CarExtender.html
http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST
https://developer.android.com/reference/android/service/voice/VoiceInteractionService

e [3.8.3.1 /A-0-1] MUST correctly render resources as described in the Notifications on
Automotive OS SDK documentation.

e [3.8.3.1 /A-0-2] MUST display PLAY and MUTE for notification actions in the place of
those provided through Notification.Builder.addAction()

e [3.8.3.1/A] SHOULD restrict the use of rich management tasks such as per-notification-
channel controls. MAY use Ul affordance per application to reduce controls.

Automotive device implementations:

e [3.14 /A-0-1] MUST include a Ul framework to support third-party apps using the media
APlIs as described in section 3.14 .

e [3.14 /A-0-2] MUST allow the user to safely interact with Media Applications while
driving.

e [3.14 /A-0-3] MUST support the CAR_INTENT ACTION_MEDIA TEMPLATE implicit
Intent action with the CAR_EXTRA MEDIA PACKAGE extra.

e [3.14 /A-0-4] MUST provide an affordance to navigate into a Media Application’s
preference activity , but MUST only enable it when Car UX Restrictions are not in effect.

e [3.14 /A-0-5] MUST display error messages set by Media Applications, and MUST support
the optional extras ERROR_RESOLUTION_ACTION_LABEL and
ERROR_RESOLUTION_ACTION INTENT .

e [3.14 /A-0-6] MUST support an in-app search affordance for apps that support searching.

e [3.14 /A-0-7] MUST respect CONTENT STYLE BROWSABLE HINT and
CONTENT _STYLE PLAYABLE HINT definitions when displaying the MediaBrowser
hierarchy.

If Automotive device implementations include a default launcher app, they:

e [3.14 /A-1-1] MUST include media services and open them with the
CAR_INTENT_ACTION_MEDIA_TEMPLATE intent.

Automotive device implementations:

e [ 3.8 /A] MAY restrict the application requests to enter a full screen mode as described in
immersive documentation .
e [3.8 /A] MAY keep the status bar and the navigation bar visible at all times.

e [ 3.8 /A] MAY restrict the application requests to change the colors behind the system Ul
elements, to ensure those elements are clearly visible at all times.

2.5.4. Performance and Power
Automotive device implementations:

e [8.2 /A-0-1] MUST report the number of bytes read and written to non-volatile storage per
each process's UID so the stats are available to developers through System API
android.car.storagemonitoring.CarStorageMonitoringManager . The Android Open Source
Project meets the requirement through the uid_sys_stats kernel module.

e [8.3 /A-1-3] MUST support Garage Mode .

e [8.3 /A] SHOULD be in Garage Mode for at least 15 minutes after every drive unless:

o The battery is drained.
o No idle jobs are scheduled.
o The driver exits Garage Mode.

e [8.4 /A-0-1] MUST provide a per-component power profile that defines the current
consumption value for each hardware component and the approximate battery drain
caused by the components over time as documented in the Android Open Source Project
site.

e [ 8.4 /A-0-2] MUST report all power consumption values in milliampere hours (mAh).

e [8.4 /A-0-3] MUST report CPU power consumption per each process's UID. The Android
Open Source Project meets the requirement through the uid_cputime kernel module
implementation.

e [8.4 /A] SHOULD be attributed to the hardware component itself if unable to attribute
hardware component power usage to an application.

e [ 8.4 /A-0-4] MUST make this power usage available via the adb shell dumpsys batterystats
shell command to the app developer.

Clnd I'Oid Page 28 of 136


https://developer.android.com/training/cars/notifications
https://developer.android.com/reference/android/app/Notification.Builder#addAction%2528android.app.Notification.Action%2529
https://developer.android.com/reference/android/car/Car#CAR_INTENT_ACTION_MEDIA_TEMPLATE
https://developer.android.com/reference/android/car/Car#CAR_EXTRA_MEDIA_PACKAGE
https://developer.android.com/reference/android/content/Intent.html#ACTION_APPLICATION_PREFERENCES
https://developer.android.com/reference/android/support/v4/media/session/PlaybackStateCompat.html#getErrorMessage%2528%2529
https://developer.android.com/training/cars/media#require-sign-in
https://developer.android.com/training/cars/media#require-sign-in
https://developer.android.com/training/cars/media#default-content-style
https://developer.android.com/training/cars/media#default-content-style
https://developer.android.com/reference/android/media/browse/MediaBrowser.html
https://developer.android.com/reference/android/car/Car#CAR_INTENT_ACTION_MEDIA_TEMPLATE
https://developer.android.com/training/system-ui/immersive
https://source.android.com/devices/automotive/power/garage_mode
http://source.android.com/devices/tech/power/values.html
http://source.android.com/devices/tech/power/batterystats.html

2.5.5. Security Model
If Automotive device implementations support multiple users, they:

e [9.5/A-1-1] MUST NOT allow users to interact with nor switch into the Headless System
User , except for device provisioning .

e [9.5/A-1-2] MUST switch into a Secondary User before BOOT _COMPLETED .

e [9.5 /A-1-3] MUST support the ability to create aGuest User even when the maximum
number of Users on a device has been reached.

Automotive device implementations:

e [9.11 /A-0-1] MUST back up the keystore implementation with an isolated execution
environment.

e [9.11 /A-0-2] MUST have implementations of RSA, AES, ECDSA and HMAC cryptographic
algorithms and MD5, SHA1, and SHA-2 family hash functions to properly support the
Android Keystore system's supported algorithms in an area that is securely isolated from
the code running on the kernel and above. Secure isolation MUST block all potential
mechanisms by which kernel or userspace code might access the internal state of the
isolated environment, including DMA. The upstream Android Open Source Project (AOSP)
meets this requirement by using the Trusty implementation, but another ARM TrustZone-
based solution or a third-party reviewed secure implementation of a proper hypervisor-
based isolation are alternative options.

e [9.11 /A-0-3] MUST perform the lock screen authentication in the isolated execution
environment and only when successful, allow the authentication-bound keys to be used.
Lock screen credentials MUST be stored in a way that allows only the isolated execution
environment to perform lock screen authentication. The upstream Android Open Source
Project provides the Gatekeeper Hardware Abstraction Layer (HAL) and Trusty, which can
be used to satisfy this requirement.

e [9.11 /A-0-4] MUST support key attestation where the attestation signing key is protected
by secure hardware and signing is performed in secure hardware. The attestation signing
keys MUST be shared across large enough number of devices to prevent the keys from
being used as device identifiers. One way of meeting this requirement is to share the
same attestation key unless at least 100,000 units of a given SKU are produced. If more
than 100,000 units of an SKU are produced, a different key MAY be used for each 100,000
units.

Note that if a device implementation is already launched on an earlier Android version, such a device
is exempted from the requirement to have a keystore backed by an isolated execution environment
and support the key attestation, unless it declares the android.hardware.fingerprint feature which
requires a keystore backed by an isolated execution environment.

Automotive device implementations:

e [9.14 /A-0-1] MUST gatekeep messages from Android framework vehicle subsystems,
e.g., whitelisting permitted message types and message sources.

e [9.14 /A-0-2] MUST watchdog against denial of service attacks from the Android
framework or third-party apps. This guards against malicious software flooding the
vehicle network with traffic, which may lead to malfunctioning vehicle subsystems.

2.5.6. Developer Tools and Options Compatibility
Automotive device implementations:

o Perfetto

o [ 6.1 /A-0-1] MUST expose a /system/bin/perfetto binary to the shell user which
cmdline complies with the perfetto documentation .

o [ 6.1 /A-0-2] The perfetto binary MUST accept as input a protobuf config that
complies with the schema defined in the perfetto documentation .

o [ 6.1 /A-0-3] The perfetto binary MUST write as output a protobuf trace that
complies with the schema defined in the perfetto documentation .

o [ 6.1 /A-0-4] MUST provide, through the perfetto binary, at least the data
sources described in the perfetto documentation .

2.6. Tablet Requirements

Clnd I'Oid Page 29 of 136


https://source.android.com/devices/tech/admin/multi-user#user_types
https://source.android.com/devices/tech/admin/provision
https://source.android.com/devices/tech/admin/multi-user#user_types
https://developer.android.com/reference/android/content/Intent.html#ACTION_BOOT_COMPLETED
https://source.android.com/devices/tech/admin/multi-user#user_types
https://source.android.com/security/trusty/
http://source.android.com/devices/tech/security/authentication/gatekeeper.html
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto

An Android Tablet device refers to an Android device implementation that typically meets all the
following criteria:

e Used by holding in both hands.
e Does not have a clamshell or convertible configuration.

e Physical keyboard implementations used with the device connect by means of a standard
connection (e.g. USB, Bluetooth).

e Has a power source that provides mobility, such as a battery.
e Has a physical diagonal screen size in the range of 7 to 18 inches.

Tablet device implementations have similar requirements to handheld device implementations. The
exceptions are indicated by an * in that section and noted for reference in this section.

2.6.1. Hardware

Screen Size

e [7.1.1.1/Tab-0-1] MUST have a screen in the range of 7 to 18 inches.

Gyroscope
If Tablet device implementations include a 3-axis gyroscope, they:

e [7.3 .4/Tab-1-1] MUST be capable of measuring orientation changes up to 1000 degrees
per second.

Minimum Memory and Storage (Section 7.6.1)

The screen densities listed for small/normal screens in the handheld requirements are not applicable
to tablets.

USB peripheral mode (Section 7.7.1)
If tablet device implementations include a USB port supporting peripheral mode, they:

e [7.7.1 /Tab] MAY implement the Android Open Accessory (AOA) API.

Virtual Reality Mode (Section 7.9.1)
Virtual Reality High Performance (Section 7.9.2)
Virtual reality requirements are not applicable to tablets.

2.6.2. Security Model

Keys and Credentials (Section 9.11)
Refer to Section [9.11].

If Tablet device implementations include multiple users and do not declare the
android.hardware.telephony feature flag, they:

e [9.5/T-1-1] MUST support restricted profiles, a feature that allows device owners to
manage additional users and their capabilities on the device. With restricted profiles,
device owners can quickly set up separate environments for additional users to work in,
with the ability to manage finer-grained restrictions in the apps that are available in those
environments.

If Tablet device implementations include multiple users and declare the android.hardware.telephony
feature flag, they:

e [9.5/T-2-1] MUST NOT support restricted profiles but MUST align with the AOSP
implementation of controls to enable /disable other users from accessing the voice calls
and SMS.

2.6.2. Software

e [3.2.3.1 /Tab-0-1] MUST preload one or more applications or service components with an
intent handler, for all the public intent filter patterns defined by the following application
intents listed here .

android

Page 30 of 136


https://developer.android.com/about/versions/11/reference/common-intents-30

3. Software

3.1. Managed API Compatibility

The managed Dalvik bytecode execution environment is the primary vehicle for Android applications.
The Android application programming interface (API) is the set of Android platform interfaces
exposed to applications running in the managed runtime environment.

Device implementations:

e [C-0-1] MUST provide complete implementations, including all documented behaviors, of
any documented API exposed by the Android SDK or any API decorated with the
“@SystemApi” marker in the upstream Android source code.

e [C-0-2] MUST support/preserve all classes, methods, and associated elements marked by
the TestApi annotation (@TestApi).

e [C-0-3] MUST NOT omit any managed APlIs, alter API interfaces or signatures, deviate
from the documented behavior, or include no-ops, except where specifically allowed by
this Compatibility Definition.

e [C-0-4] MUST still keep the APIs present and behave in a reasonable way, even when
some hardware features for which Android includes APIs are omitted. See section 7 for
specific requirements for this scenario.

e [C-0-5] MUST NOT allow third-party apps to use non-SDK interfaces, which are defined as
methods and fields in the Java language packages that are in the boot classpath in AOSP,
and that do not form part of the public SDK. This includes APIs decorated with the @hide
annotation but not with a @SystemAPI, as described in the SDK documents and private
and package-private class members.

e [C-0-6] MUST ship with each and every non-SDK interface on the same restricted lists as
provided via the greylist, greylist-max-o , greylist-max-p , and blacklist flags in
prebuilts/runtime/appcompat/hiddenapi-flags.csv path for the appropriate API level branch in
the AOSP.

e [C-0-7] MUST support the signed config dynamic update mechanism to remove non-SDK
interfaces from a restricted list by embedding signed configuration in any APK, using the
existing public keys present in AOSP.

However they:

o MAY, if a hidden APl is absent or implemented differently on the device
implementation, move the hidden API into the blacklist or omit it from all
restricted lists (i.e. light-grey, dark-grey, black).

o MAY, if a hidden API does not already exist in the AOSP, add the hidden API to
any of the restricted lists (i.e. light-grey, dark-grey, black).

3.1.1. Android Extensions

Android supports extending the managed API surface of a particular API level by updating the
extension version for that API level. The android.os.ext.SdkExtensions.getExtensionVersion(int apiLevel)
API returns the extension version of the provided apiLevel, if there are extensions for that API level.

Android device implementations:

e [C-0-1] MUST preload the AOSP implementation of both the shared library ExtShared and
services ExtServices with versions greater than or equal to the minimum versions allowed
per each API level. For example, Android 7.0 device implementations, running API level 24
MUST include at least version 1.

e [C-0-2] MUST only return valid extension version number that have been defined by the
AOSP.

e [C-0-3] MUST support all the APIs defined by the extension versions returned by
android.os.ext.SdkExtensions.getExtensionVersion(int apiLevel) in the same manner as other
managed APIs are supported, following the requirements in section 3.1 .

3.1.2. Android Library

Due to Apache HTTP client deprecation , device implementations:

e [C-0-1] MUST NOT place the org.apache.http.legacy library in the bootclasspath.

android

Page 31 of 136


http://developer.android.com/reference/packages.html
https://developer.android.com/distribute/best-practices/develop/restrictions-non-sdk-interfaces
https://source.android.com/devices/tech/dalvik/signed-config
https://developer.android.com/preview/behavior-changes#apache-p

e [C-0-2] MUST add the org.apache.http.legacy library to the application classpath only when
the app satisfies one of the following conditions:
o Targets API level 28 or lower.
o Declares in its manifest that it needs the library by setting the android:name
attribute of <uses-library> to org.apache.http.legacy .

The AOSP implementation meets these requirements.

3.2. Soft API Compatibility

In addition to the managed APIs from section 3.1, Android also includes a significant runtime-only
“soft” API, in the form of such things as intents, permissions, and similar aspects of Android
applications that cannot be enforced at application compile time.

3.2.1. Permissions

e [C-0-1] Device implementers MUST support and enforce all permission constants as
documented by the Permission reference page . Note that section 9 lists additional
requirements related to the Android security model.

3.2.2. Build Parameters

The Android APIs include a number of constants on the android.os.Build class that are intended to
describe the current device.

e [C-0-1] To provide consistent, meaningful values across device implementations, the table
below includes additional restrictions on the formats of these values to which device
implementations MUST conform.

Parameter Details
The version of the currently-executing Android system, in human-
VERSION.RELEASE readable format. This field MUST have one of the string values
defined in 11 .

The version of the currently-executing Android system, in a format
VERSION.SDK accessible to third-party application code. For Android 11, this field
MUST have the integer value 11_INT.

The version of the currently-executing Android system, in a format
VERSION.SDK_INT accessible to third-party application code. For Android 11, this field
MUST have the integer value 11_INT.

A value chosen by the device implementer designating the specific
build of the currently-executing Android system, in human-readable
format. This value MUST NOT be reused for different builds made
VERSION.INCREMENTAL available to end users. A typical use of this field is to indicate which
build number or source-control change identifier was used to
generate the build. The value of this field MUST be encodable as
printable 7-bit ASCII and match the regular expression “*[* :\/~]+$".

A value chosen by the device implementer identifying the specific
internal hardware used by the device, in human-readable format. A
BOARD possible use of this field is to indicate the specific revision of the
board powering the device. The value of this field MUST be encodable
as 7-bit ASCII and match the regular expression “*[a-zA-Z0-9_-]+$".

A value reflecting the brand name associated with the device as
known to the end users. MUST be in human-readable format and
SHOULD represent the manufacturer of the device or the company

BRAND brand under which the device is marketed. The value of this field
MUST be encodable as 7-bit ASCII and match the regular expression
“Ma-zA-Z0-9_-]+$".

SUPPORTED_ABIS The name of the instruction set (CPU type + ABI convention) of native

code. See section 3.3. Native API Compatibility .

The name of the instruction set (CPU type + ABI convention) of native

SUPPORTED_32_BIT_ABIS code. See section 3.3. Native APl Compatibility .

Clnd I'Oid Page 32 of 136


http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/os/Build.html
http://source.android.com/compatibility/11/versions.html

SUPPORTED_64_BIT_ABIS

The name of the second instruction set (CPU type + ABI convention)
of native code. See section 3.3. Native APl Compatibility .

CPU_ABI

The name of the instruction set (CPU type + ABI convention) of native
code. See section 3.3. Native AP| Compatibility .

CPU_ABI2

The name of the second instruction set (CPU type + ABI convention)
of native code. See section 3.3. Native API Compatibility .

DEVICE

A value chosen by the device implementer containing the
development name or code name identifying the configuration of the
hardware features and industrial design of the device. The value of
this field MUST be encodable as 7-bit ASCII and match the regular
expression “A[a-zA-Z0-9_-]+$". This device name MUST NOT change
during the lifetime of the product.

FINGERPRINT

A string that uniquely identifies this build. It SHOULD be reasonably
human-readable. It MUST follow this template:

$(BRAND)/$(PRODUCT)/
$(DEVICE):$(VERSION.RELEASE)/$(ID)/$(VERSION.INCREMENTAL):$(TYPE)/$(TAGS)

For example:

acme/myproduct/

mydevice:11/LMYXX/3359:userdebug/test-keys

The fingerprint MUST NOT include whitespace characters. The value
of this field MUST be encodable as 7-bit ASCII.

HARDWARE

The name of the hardware (from the kernel command line or /proc). It
SHOULD be reasonably human-readable. The value of this field MUST
be encodable as 7-bit ASCII and match the regular expression “*[a-zA-
Z0-9_-]+$".

HOST

A string that uniquely identifies the host the build was built on, in
human-readable format. There are no requirements on the specific
format of this field, except that it MUST NOT be null or the empty
string (").

An identifier chosen by the device implementer to refer to a specific
release, in human-readable format. This field can be the same as
android.os.Build.VERSION.INCREMENTAL, but SHOULD be a value
sufficiently meaningful for end users to distinguish between software
builds. The value of this field MUST be encodable as 7-bit ASCIl and
match the regular expression “*a-zA-Z0-9._-]+$".

MANUFACTURER

The trade name of the Original Equipment Manufacturer (OEM) of the
product. There are no requirements on the specific format of this
field, except that it MUST NOT be null or the empty string (""). This
field MUST NOT change during the lifetime of the product.

MODEL

A value chosen by the device implementer containing the name of the
device as known to the end user. This SHOULD be the same name
under which the device is marketed and sold to end users. There are
no requirements on the specific format of this field, except that it
MUST NOT be null or the empty string ("'). This field MUST NOT
change during the lifetime of the product.

PRODUCT

A value chosen by the device implementer containing the
development name or code name of the specific product (SKU) that
MUST be unique within the same brand. MUST be human-readable,
but is not necessarily intended for view by end users. The value of
this field MUST be encodable as 7-bit ASCII and match the regular
expression “A[a-zA-Z0-9_-]+$". This product name MUST NOT change
during the lifetime of the product.

SERIAL

MUST return "UNKNOWN".

TAGS

A comma-separated list of tags chosen by the device implementer
that further distinguishes the build. The tags MUST be encodable as
7-bit ASCII and match the regular expression “*[a-zA-Z0-9._-]+" and
MUST have one of the values corresponding to the three typical
Android platform signing configurations: release-keys, dev-keys, and
test-keys.

android

Page 33 of 136



TIME

A value representing the timestamp of when the build occurred.

A value chosen by the device implementer specifying the runtime
configuration of the build. This field MUST have one of the values

TYPE corresponding to the three typical Android runtime configurations:
user, userdebug, or eng.
A name or user ID of the user (or automated user) that generated the
USER build. There are no requirements on the specific format of this field,

except that it MUST NOT be null or the empty string (™).

VERSION.SECURITY_PATCH

A value indicating the security patch level of a build. It MUST signify
that the build is not in any way vulnerable to any of the issues
described up through the designated Android Public Security Bulletin.
It MUST be in the format [YYYY-MM-DD], matching a defined string
documented in the Android Public Security Bulletin or in the Android
Security Advisory , for example "2015-11-01".

VERSION.BASE_OS

A value representing the FINGERPRINT parameter of the build that is
otherwise identical to this build except for the patches provided in the
Android Public Security Bulletin. It MUST report the correct value and
if such a build does not exist, report an empty string ("").

A value chosen by the device implementer identifying the specific
internal bootloader version used in the device, in human-readable

BOOTLOADER format. The value of this field MUST be encodable as 7-bit ASCII and
match the regular expression “*a-zA-Z0-9._-]+$".
MUST (be or return) a value chosen by the device implementer
identifying the specific internal radio/modem version used in the
device, in human-readable format. If a device does not have any
getRadioVersion() internal radio/modem it MUST return NULL. The value of this field
MUST be encodable as 7-bit ASCII and match the regular expression
“Na-zA-Z0-9._-]+$".
MUST (be or return) a hardware serial number, which MUST be
etSerial() available and unique across devices with the same MODEL and

MANUFACTURER. The value of this field MUST be encodable as 7-bit
ASCII and match the regular expression “*[a-zA-Z0-9._-]+$".

3.2.3. Intent Compatibility

3.2.3.1. Common Application Intents

Android intents allow application components to request functionality from other Android
components. The Android upstream project includes a list of applications which implement several
intent patterns to perform common actions.

Device implementations:

e [C-SR] Are STRONGLY RECOMMENDED to preload one or more applications or service
components with an intent handler, for all the public intent filter patterns defined by the
following application intents listed here and provide fulfillment i.e meet with the
developer expectation for these common application intents as described in the SDK.

Please refer to Section 2 for mandatory application intents for each device type.

3.2.3.2. Intent Resolution

e [C-0-1] As Android is an extensible platform, device implementations MUST allow each
intent pattern referenced in section 3.2.3.1, except for Settings, to be overridden by third-
party applications. The upstream Android open source implementation allows this by

default.

e [C-0-2] Device implementers MUST NOT attach special privileges to system applications'
use of these intent patterns, or prevent third-party applications from binding to and
assuming control of these patterns. This prohibition specifically includes but is not
limited to disabling the “Chooser” user interface that allows the user to select between
multiple applications that all handle the same intent pattern.

e [C-0-3] Device implementations MUST provide a user interface for users to modify the

android

Page 34 of 136


http://source.android.com/security/bulletin
http://source.android.com/security/advisory
https://developer.android.com/reference/android/os/Build.html#BOOTLOADER
https://developer.android.com/reference/android/os/Build.html#getRadioVersion()
https://developer.android.com/reference/android/os/Build.html#getSerial()
https://developer.android.com/about/versions/11/reference/common-intents-30

default activity for intents.

e However, device implementations MAY provide default activities for specific URI patterns
(e.g. http://play.google.com) when the default activity provides a more specific attribute
for the data URI. For example, an intent filter pattern specifying the data URI
“http://www.android.com” is more specific than the browser's core intent pattern for
“http://".

Android also includes a mechanism for third-party apps to declare an authoritative default app linking
behavior for certain types of web URI intents. When such authoritative declarations are defined in an
app's intent filter patterns, device implementations:

e [C-0-4] MUST attempt to validate any intent filters by performing the validation steps
defined in the Digital Asset Links specification as implemented by the Package Manager
in the upstream Android Open Source Project.

¢ [C-0-5] MUST attempt validation of the intent filters during the installation of the
application and set all successfully validated URI intent filters as default app handlers for
their URIs.

e MAY set specific URI intent filters as default app handlers for their URIs, if they are
successfully verified but other candidate URI filters fail verification. If a device
implementation does this, it MUST provide the user appropriate per-URI pattern overrides
in the settings menu.

e MUST provide the user with per-app App Links controls in Settings as follows:

o [C-0-6] The user MUST be able to override holistically the default app links
behavior for an app to be: always open, always ask, or never open, which must
apply to all candidate URI intent filters equally.

o [C-0-7] The user MUST be able to see a list of the candidate URI intent filters.

o The device implementation MAY provide the user with the ability to override
specific candidate URI intent filters that were successfully verified, on a per-
intent filter basis.

o [C-0-8] The device implementation MUST provide users with the ability to view
and override specific candidate URI intent filters if the device implementation
lets some candidate URI intent filters succeed verification while some others
can fail.

3.2.3.3. Intent Namespaces

[C-0-1] Device implementations MUST NOT include any Android component that honors
any new intent or broadcast intent patterns using an ACTION, CATEGORY, or other key
string in the android. or com.android. namespace.

[C-0-2] Device implementers MUST NOT include any Android components that honor any
new intent or broadcast intent patterns using an ACTION, CATEGORY, or other key string
in a package space belonging to another organization.

[C-0-3] Device implementers MUST NOT alter or extend any of the intent patterns listed in
section 3.2.3.1.

Device implementations MAY include intent patterns using namespaces clearly and
obviously associated with their own organization. This prohibition is analogous to that
specified for Java language classes in section 3.6 .

3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain intents to notify them of changes in
the hardware or software environment.

Device implementations:

e [C-0-1] MUST broadcast the public broadcast intents listed here in response to
appropriate system events as described in the SDK documentation. Note that this
requirement is not conflicting with section 3.5 as the limitation for background
applications are also described in the SDK documentation. Also certain broadcast intents
are conditional upon hardware support, if the device supports the necessary hardware
they MUST broadcast the intents and provide the behavior inline with SDK documentation.

3.2.3.5. Conditional Application Intents

Android includes settings that provide users an easy way to select their default applications, for

Clnd I'Oid Page 35 of 136


https://developer.android.com/training/app-links
https://developers.google.com/digital-asset-links
https://developer.android.com/about/versions/11/reference/broadcast-intents-30

example for Home screen or SMS.

Where it makes sense, device implementations MUST provide a similar settings menu and be
compatible with the intent filter pattern and APl methods described in the SDK documentation as
below.

If device implementations report android.software.home_screen , they:

e [C-1-1] MUST honor the android.settings. HOME_SETTINGS intent to show a default app
settings menu for Home Screen.

If device implementations report android.hardware.telephony , they:

e [C-2-1] MUST provide a settings menu that will call the
android.provider. Telephony. ACTION_CHANGE DEFAULT intent to show a dialog to change
the default SMS application.

e [C-2-2] MUST honor the android.telecom.action. CHANGE_DEFAULT_DIALER intent to show
a dialog to allow the user to change the default Phone application.
o MUST use the user-selected default Phone app's Ul for incoming and outgoing
calls except for emergency calls, which would use the preinstalled Phone app.

e [C-2-3] MUST honor the android.telecom.action.CHANGE_PHONE_ACCOUNTS intent to
provide user affordance to configure the ConnectionServices associated with the
PhoneAccounts , as well as a default PhoneAccount that the telecommunications service
provider will use to place outgoing calls. The AOSP implementation meets this
requirement by including a "Calling Accounts option" menu within the "Calls" settings
menu.

e [C-2-4] MUST allow android.telecom.CallRedirectionService for an app that holds the
android.app.role. CALL,_REDIRECTION role.

e [C-2-5] MUST provide the user affordance to choose an app that holds the
android.app.role. CALL,._REDIRECTION role.

e [C-2-6] MUST honor the android.intent.action.SENDTO and android.intent.action.VIEW
intents and provide an activity to send/display SMS messages.

e [C-SR] Are Strongly Recommended to honor android.intent.action. ANSWER,
android.intent.action.CALL , android.intent.action.CALL_BUTTON,
android.intent.action.VIEW & android.intent.action.DIAL intents with a preloaded dialer
application which can handle these intents and provide fulfillment as described in the
SDK.

If device implementations report android.hardware.nfc.hce , they:

e [C-3-1] MUST honor the android.settings.NFC_PAYMENT_SETTINGS intent to show a
default app settings menu for Contactless payment.

e [C-3-2] MUST honor android.nfc.cardemulation.action.ACTION_CHANGE_DEFAULT intent
to show an activity which opens a dialog to ask the user to change the default card
emulation service for a certain category as described in the SDK.

If device implementations report android.hardware.nfc , they:

e [C-4-1] MUST honor these intents android.nfc.action.NDEF_DISCOVERED ,
android.nfc.action.TAG_DISCOVERED & android.nfc.action.TECH_DISCOVERED , to show
an activity which fulfils developer expectations for these intents as described in the SDK.

If device implementations support the VoicelnteractionService and have more than one application
using this APl installed at a time, they:

e [C-4-1] MUST honor the android.settings. ACTION_VOICE _INPUT_SETTINGS intent to show
a default app settings menu for voice input and assist.

If device implementations report android.hardware.bluetooth , they:

e [C-5-1] MUST honor the ‘android.bluetooth.adapter.action.REQUEST_ENABLE' intent and
show a system activity to allow the user to turn on Bluetooth.

e [C-5-2] MUST honor the ‘android.bluetooth.adapter.action.REQUEST_DISCOVERABLE’
intent and show a system activity that requests discoverable mode.

If device implementations support the DND feature, they:

android

Page 36 of 136


http://developer.android.com/reference/android/provider/Settings.html#ACTION_HOME_SETTINGS
http://developer.android.com/reference/android/provider/Telephony.Sms.Intents.html#ACTION_CHANGE_DEFAULT
https://developer.android.com/reference/android/telecom/TelecomManager.html#ACTION_CHANGE_DEFAULT_DIALER
https://developer.android.com/reference/android/telecom/TelecomManager.html#ACTION_CHANGE_PHONE_ACCOUNTS
https://developer.android.com/reference/android/telecom/ConnectionService.html
https://developer.android.com/reference/android/telecom/PhoneAccount.html
https://developer.android.com/reference/android/telecom/CallRedirectionService
https://developer.android.com/reference/android/app/role/RoleManager#ROLE_CALL_REDIRECTION
https://developer.android.com/reference/android/app/role/RoleManager#ROLE_CALL_REDIRECTION
https://developer.android.com/reference/android/content/Intent#ACTION_SENDTO
https://developer.android.com/reference/android/content/Intent#ACTION_VIEW
https://developer.android.com/reference/android/content/Intent#ACTION_ANSWER
https://developer.android.com/reference/android/content/Intent#ACTION_CALL
https://developer.android.com/reference/android/content/Intent#ACTION_CALL_BUTTON
https://developer.android.com/reference/android/content/Intent#ACTION_VIEW
https://developer.android.com/reference/android/content/Intent#ACTION_DIAL
http://developer.android.com/reference/android/provider/Settings.html#ACTION_NFC_PAYMENT_SETTINGS
https://developer.android.com/reference/android/nfc/cardemulation/CardEmulation#ACTION_CHANGE_DEFAULT
https://developer.android.com/reference/android/nfc/NfcAdapter#ACTION_NDEF_DISCOVERED
https://developer.android.com/reference/android/nfc/NfcAdapter#ACTION_TAG_DISCOVERED
https://developer.android.com/reference/android/nfc/NfcAdapter#ACTION_TECH_DISCOVERED
https://developer.android.com/reference/android/provider/Settings.html#ACTION_VOICE_INPUT_SETTINGS
https://developer.android.com/reference/kotlin/android/bluetooth/BluetoothAdapter#action_request_enable
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter#ACTION_REQUEST_DISCOVERABLE

e [C-6-1] MUST implement an activity that would respond to the intent
ACTION_NOTIFICATION_POLICY ACCESS SETTINGS, which for implementations with
UI_MODE_TYPE_NORMAL it MUST be an activity where the user can grant or deny the app
access to DND policy configurations.

If device implementations allow users to use third-party input methods on the device, they:

e [C-7-1] MUST provide a user-accessible mechanism to add and configure third-party input
methods in response to the android.settings. INPUT_METHOD_SETTINGS intent.

If device implementations support third-party accessibility services, they:

e [C-8-1] MUST honor the android.settings. ACCESSIBILITY_SETTINGS intent to provide a
user-accessible mechanism to enable and disable the third-party accessibility services
alongside the preloaded accessibility services.

If device implementations include support for Wi-Fi Easy Connect and expose the functionality to
third-party apps, they:

e [C-9-1] MUST implement the Settings#ACTION_PROCESS_WIFI_EASY_CONNECT_URI
Intent APIs as described in the SDK documentation.

If device implementations provide the data saver mode, they: * [C-10-1] MUST provide a user
interface in the settings, that handles the

Settings. ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS SETTINGS intent, allowing users
to add applications to or remove applications from the allow list.

If device implementations do not provide the data saver mode, they:

e [C-11-1] MUST have an activity that handles the

Settings. ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS SETTINGS intent but
MAY implement it as a no-op.

If device implementations declare the support for camera via android.hardware.camera.any they:

e [C-12-1] MUST honor the android.media.action.STILL_IMAGE_CAMERA and
android.media.action.STILL_ IMAGE_CAMERA_SECURE intent and launch the camera in
still image mode as described in the SDK.

e [C-12-2] MUST honor the android.media.action. VIDEO_CAMERA intent to launch the
camera in video mode as described in the SDK.

e [C-12-3] MUST honor only allow preinstalled Android applications to handle the following
intents MediaStore. ACTION_IMAGE_CAPTURE,

MediaStore. ACTION_IMAGE_CAPTURE_SECURE, and
MediaStore. ACTION_VIDEO_CAPTURE as described in the SDK document .

If device implementations report android.software.device admin , they:

e [C-13-1] MUST honor the intent android.app.action. ADD_DEVICE _ADMIN to invoke a Ul to
bring the user through adding the device administrator to the system (or allowing them to
reject it).

e [C-13-2] MUST honor the intents android.app.action.ADMIN_POLICY_COMPLIANCE ,
android.app.action.GET_PROVISIONING_MODE,
android.app.action.PROVISIONING_SUCCESSFUL ,
android.app.action.PROVISION_MANAGED_DEVICE ,
android.app.action.PROVISION_MANAGED_PROFILE ,
android.app.action.SET_NEW_PARENT_PROFILE_PASSWORD,
android.app.action.SET_NEW_PASSWORD & android.app.action.START_ENCRYPTION
and have an activity to provide fulfillment for these intents as described in SDK here .

If device implementations declare the android.software.autofill feature flag, they:

e [C-14-1] MUST fully implement the AutofillService and AutofillManager APIs and honor the
android.settings.REQUEST_SET_AUTOFILL_SERVICE intent to show a default app settings
menu to enable and disable autofill and change the default autofill service for the user.

If device implementations include a pre-installed app or wish to allow third-party apps to access the
usage statistics, they:

android

Page 37 of 136


https://developer.android.com/reference/android/provider/Settings#ACTION_NOTIFICATION_POLICY_ACCESS_SETTINGS
https://developer.android.com/reference/android/provider/Settings#ACTION_INPUT_METHOD_SETTINGS
https://developer.android.com/reference/android/provider/Settings#ACTION_ACCESSIBILITY_SETTINGS
https://developer.android.com/reference/android/provider/Settings.html#ACTION_PROCESS_WIFI_EASY_CONNECT_URI
https://developer.android.com/reference/android/provider/Settings.html#ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS_SETTINGS
https://developer.android.com/reference/android/provider/Settings#ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS_SETTINGS
https://developer.android.com/reference/android/provider/MediaStore#INTENT_ACTION_STILL_IMAGE_CAMERA
https://developer.android.com/reference/android/provider/MediaStore#INTENT_ACTION_STILL_IMAGE_CAMERA_SECURE
https://developer.android.com/reference/android/provider/MediaStore#INTENT_ACTION_VIDEO_CAMERA
https://developer.android.com/reference/android/provider/MediaStore.html#ACTION_IMAGE_CAPTURE
https://developer.android.com/reference/android/provider/MediaStore.html#ACTION_IMAGE_CAPTURE_SECURE
https://developer.android.com/reference/android/provider/MediaStore.html#ACTION_VIDEO_CAPTURE
https://developer.android.com/preview/behavior-changes-11?hl=zh-tw#media-capture
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#ACTION_ADD_DEVICE_ADMIN
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#ACTION_ADMIN_POLICY_COMPLIANCE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#ACTION_GET_PROVISIONING_MODE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#ACTION_PROVISIONING_SUCCESSFUL
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#ACTION_PROVISION_MANAGED_DEVICE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#ACTION_PROVISION_MANAGED_PROFILE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#ACTION_SET_NEW_PARENT_PROFILE_PASSWORD
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#ACTION_SET_NEW_PASSWORD
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#ACTION_START_ENCRYPTION
https://developer.android.com/reference/android/app/admin/DevicePolicyManager
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_AUTOFILL
https://developer.android.com/reference/android/service/autofill/AutofillService.html
https://developer.android.com/reference/android/view/autofill/AutofillManager.html
https://developer.android.com/reference/android/provider/Settings.html#ACTION_REQUEST_SET_AUTOFILL_SERVICE

e [C-SR] are STRONGLY RECOMMENDED provide user-accessible mechanism to grant or
revoke access to the usage stats in response to the
android.settings.ACTION_USAGE_ACCESS_SETTINGS intent for apps that declare the
android.permission.PACKAGE_USAGE_STATS permission.

If device implementations intend to disallow any apps, including pre-installed apps, from accessing
the usage statistics, they:

e [C-15-1] MUST still have an activity that handles the
android.settings.ACTION_USAGE_ACCESS_SETTINGS intent pattern but MUST implement
it as a no-op, that is to have an equivalent behavior as when the user is declined for
access.

If device implementations report the feature android.hardware.audio.output , they:

e [C-SR] Are Strongly Recommended to honor android.intent.action. TTS_SERVICE,
android.speech.tts.engine.INSTALL_TTS_DATA &
android.speech.tts.engine. GET_SAMPLE_TEXT intents have an activity to provide
fulfillment for these intents as described in SDK here .

Android includes support for interactive screensavers, previously referred to as Dreams. Screen
Savers allow users to interact with applications when a device connected to a power source is idle or
docked in a desk dock. Device Implementations:

e SHOULD include support for screen savers and provide a settings option for users to
configure screen savers in response to the android.settings. DREAM_SETTINGS intent.

3.2.4. Activities on secondary/multiple displays

If device implementations allow launching normal Android Activities on more than one display, they:

e [C-1-1] MUST set the android.software.activities_on_secondary_displays feature flag.

[C-1-2] MUST guarantee APl compatibility similar to an activity running on the primary

display.

e [C-1-3] MUST land the new activity on the same display as the activity that launched it,

when the new activity is launched without specifying a target display via the

ActivityOptions.setLaunchDisplayld() API.

e [C-1-4] MUST destroy all activities, when a display with the Display. FLAG _PRIVATE flag is
removed.

e [C-1-5] MUST securely hide content on all screens when the device is locked with a secure
lock screen, unless the app opts in to show on top of lock screen using
Activity#setShowWhenLocked() API.

e SHOULD have android.content.res.Configuration which corresponds to that display in order to
be displayed, operate correctly, and maintain compatibility if an activity is launched on
secondary display.

If device implementations allow launching normal Android Activities on secondary displays and a
secondary display has the android.view.Display.FLAG_PRIVATE flag:

e [C-3-1] Only the owner of that display, system, and activities that are already on that
display MUST be able to launch to it. Everyone can launch to a display that has
android.view.Display.FLAG_PUBLIC flag.

3.3. Native API Compatibility
Native code compatibility is challenging. For this reason, device implementers are:

e [SR] STRONGLY RECOMMENDED to use the implementations of the libraries listed below
from the upstream Android Open Source Project.

3.3.1. Application Binary Interfaces

Managed Dalvik bytecode can call into native code provided in the application .apk file as an ELF .so
file compiled for the appropriate device hardware architecture. As native code is highly dependent on
the underlying processor technology, Android defines a number of Application Binary Interfaces
(ABIs) in the Android NDK.

Clnd I'Oid Page 38 of 136


https://developer.android.com/reference/android/provider/Settings.html#ACTION&lowbar;USAGE&lowbar;ACCESS&lowbar;SETTINGS
https://developer.android.com/reference/android/provider/Settings.html#ACTION&lowbar;USAGE&lowbar;ACCESS&lowbar;SETTINGS
https://developer.android.com/reference/android/speech/tts/TextToSpeech.Engine
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/ActivityOptions.html#setLaunchDisplayId%2528int%2529
http://developer.android.com/reference/android/view/Display.html#FLAG_PRIVATE
https://developer.android.com/reference/android/app/Activity#setShowWhenLocked%2528boolean%2529
https://developer.android.com/reference/android/content/res/Configuration.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/view/Display.html#FLAG_PRIVATE
https://developer.android.com/reference/android/view/Display.html#FLAG_PUBLIC

Device implementations:

[C-0-1] MUST be compatible with one or more defined Android NDK ABls .

[C-0-2] MUST include support for code running in the managed environment to call into
native code, using the standard Java Native Interface (JNI) semantics.

[C-0-3] MUST be source-compatible (i.e. header-compatible) and binary-compatible (for
the ABI) with each required library in the list below.

[C-0-5] MUST accurately report the native Application Binary Interface (ABI) supported by
the device, via the android.os.Build. SUPPORTED ABIS,

android.os.Build. SUPPORTED 32 BIT ABIS, and

android.os.Build. SUPPORTED 64 BIT ABIS parameters, each a comma separated list of
ABIs ordered from the most to the least preferred one.

[C-0-6] MUST report, via the above parameters, a subset of the following list of ABIs and
MUST NOT report any ABI not on the list.

o armeabi (no longer supported as a target by the NDK)

o armeabi-v7a

o arm64-v8a

o x86

o x86-64
[C-0-7] MUST make all the following libraries, providing native APIs, available to apps that
include native code:

o libaaudio.so (AAudio native audio support)

o libamidi.so (native MIDI support, if feature android.software.midi is claimed as
described in Section 5.9)

o libandroid.so (native Android activity support)

o libc (C library)

o libcamera2ndk.so

o libdl (dynamic linker)

o libEGL.so (native OpenGL surface management)
o libGLESv1_CM.so (OpenGL ES 1.x)

o libGLESvV2.s0 (OpenGL ES 2.0)

o libGLESv3.so (OpenGL ES 3.x)

o libicui18n.so

o libicuuc.so

o libjnigraphics.so

o liblog (Android logging)

o libmediandk.so (native media APIs support)

o libm (math library)

o libneuralnetworks.so (Neural Networks API)

o libOpenMAXAL.so (OpenMAX AL 1.0.1 support)
o libOpenSLES.so (OpenSL ES 1.0.1 audio support)
o libRS.so

o libstdc++ (Minimal support for C++)

o libvulkan.so (Vulkan)

o libz (Zlib compression)

o JNI interface

[C-0-8] MUST NOT add or remove the public functions for the native libraries listed above.

[C-0-9] MUST list additional non-AOSP libraries exposed directly to third-party apps in
/vendor/etc/public.libraries.txt .

[C-0-10] MUST NOT expose any other native libraries, implemented and provided in AOSP
as system libraries, to third-party apps targeting API level 24 or higher as they are
reserved.

[C-0-11] MUST export all the OpenGL ES 3.1 and Android Extension Pack function
symbols, as defined in the NDK, through the libGLESv3.so library. Note that while all the
symbols MUST be present, section 7.1.4.1 describes in more detail the requirements for
when the full implementation of each corresponding functions are expected.

[C-0-12] MUST export function symbols for the core Vulkan 1.0 function symbols, as well
as the VK_KHR surface , VK_KHR android surface , VK_KHR_swapchain,

VK _KHR_ maintenancel , and VK_KHR get physical device properties2 extensions through
the libvulkan.so library. Note that while all the symbols MUST be present, section 7.1.4.2
describes in more detail the requirements for when the full implementation of each

android

Page 39 of 136


https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis#v7a
https://developer.android.com/ndk/guides/abis#arm64-v8a
https://developer.android.com/ndk/guides/abis#x86
https://developer.android.com/ndk/guides/abis#86-64
http://developer.android.com/guide/topics/graphics/opengl.html#aep

corresponding functions are expected.
e SHOULD be built using the source code and header files available in the upstream Android

Open Source Project
Note that future releases of Android may introduce support for additional ABls.

3.3.2. 32-bit ARM Native Code Compatibility

If device implementations report the support of the armeabi ABI, they:

e [C-3-1] MUST also support armeabi-v7a and report its support, as armeabi is only for
backwards compatibility with older apps.

If device implementations report the support of the armeabi-v7a ABI, for apps using this ABI, they:

e [C-2-1] MUST include the following lines in /proc/cpuinfo , and SHOULD NOT alter the
values on the same device, even when they are read by other ABIs.

o Features: , followed by a list of any optional ARMv7 CPU features supported by
the device.

o CPU architecture: , followed by an integer describing the device's highest
supported ARM architecture (e.g., "8" for ARMv8 devices).

e [C-2-2] MUST always keep the following operations available, even in the case where the
ABI is implemented on an ARMv8 architecture, either through native CPU support or
through software emulation:

o SWP and SWPB instructions.
o SETEND instruction.
o CP15ISB, CP15DSB, and CP15DMB barrier operations.

e [C-2-3] MUST include support for the Advanced SIMD (a.k.a. NEON) extension.

3.4. Web Compatibility
3.4.1. WebView Compatibility

If device implementations provide a complete implementation of the android.webkit. Webview API,
they:

e [C-1-1] MUST report android.software.webview .

e [C-1-2] MUST use the Chromium Project build from the upstream Android Open Source
Project on the Android 11 branch for the implementation of the android.webkit. WebView
API.

e [C-1-3] The user agent string reported by the WebView MUST be in this format:

Mozilla/5.0 (Linux; Android $(VERSION); [$(MODEL)] [Build/$(BUILD)]; wv)
AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 $(CHROMIUM_VER) Mobile
Safari/537.36
o The value of the $(VERSION) string MUST be the same as the value for
android.os.Build.VERSION.RELEASE.
o The $(MODEL) string MAY be empty, but if it is not empty it MUST have the
same value as android.os.Build. MODEL.
o "Build/$(BUILD)" MAY be omitted, but if it is present the $(BUILD) string MUST
be the same as the value for android.os.Build.ID.
o The value of the $(CHROMIUM_VER) string MUST be the version of Chromium
in the upstream Android Open Source Project.
o Device implementations MAY omit Mobile in the user agent string.

e The WebView component SHOULD include support for as many HTML5 features as
possible and if it supports the feature SHOULD conform to the HTML5 specification .

e [C-1-3] MUST render the provided content or remote URL content in a process that is
distinct from the application that instantiates the WebView. Specifically the separate
renderer process MUST hold lower privilege, run as a separate user ID, have no access to
the app's data directory, have no direct network access, and only have access to the
minimum-required system services over Binder. The AOSP implementation of WebView
meets this requirement.

android

Page 40 of 136


http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/Beijfcja.html
http://www.chromium.org/
http://developer.android.com/reference/android/webkit/WebView.html
http://html.spec.whatwg.org/multipage/

Note that if device implementations are 32-bit or declare the feature flag android.hardware.ram.low ,
they are exempted from C-1-3.

3.4.2. Browser Compatibility

If device implementations include a standalone Browser application for general web browsing, they:

e [C-1-1] MUST support each of these APIs associated with HTMLS5:
o application cache/offline operation
o <video> tag
o geolocation
e [C-1-2] MUST support the HTML5/W3C webstorage APl and SHOULD support the
HTML5/W3C IndexedDB API . Note that as the web development standards bodies are
transitioning to favor IndexedDB over webstorage, IndexedDB is expected to become a
required component in a future version of Android.
e MAY ship a custom user agent string in the standalone Browser application.
e SHOULD implement support for as much of HTMLS as possible on the standalone
Browser application (whether based on the upstream WebKit Browser application or a
third-party replacement).

However, If device implementations do not include a standalone Browser application, they:

e [C-2-1] MUST still support the public intent patterns as described insection 3.2.3.1 .

3.5. API Behavioral Compatibility
Device implementations:

e [C-0-9] MUST ensure that APl behavioral compatibility is applied for all installed apps
unless they are restricted as described in Section 3.5.1 .

e [C-0-10] MUST NOT implement the whitelisting approach that ensures API behavioral
compatibility only for apps that are selected by device implementers.

The behaviors of each of the API types (managed, soft, native, and web) must be consistent with the
preferred implementation of the upstream Android Open Source Project . Some specific areas of
compatibility are:

e [C-0-1] Devices MUST NOT change the behavior or semantics of a standard intent.

e [C-0-2] Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of
system component (such as Service, Activity, ContentProvider, etc.).

e [C-0-3] Devices MUST NOT change the semantics of a standard permission.

o Devices MUST NOT alter the limitations enforced on background applications. More
specifically, for background apps:

o [C-0-4] they MUST stop executing callbacks that are registered by the app to
receive outputs from the GnssMeasurement and GnssNavigationMessage .

o [C-0-5] they MUST rate-limit the frequency of updates that are provided to the
app through the LocationManager API class or the WifiManager.startScan()
method.

o [C-0-6] if the app is targeting API level 25 or higher, they MUST NOT allow to
register broadcast receivers for the implicit broadcasts of standard Android
intents in the app's manifest, unless the broadcast intent requires a "signature"
or "signatureOrSystem" protectionLevel permission or are on the exemption list .

o [C-0-7]if the app is targeting API level 25 or higher, they MUST stop the app's
background services, just as if the app had called the services' stopSelf()
method, unless the app is placed on a temporary whitelist to handle a task
that's visible to the user.

o [C-0-8] if the app is targeting API level 25 or higher, they MUST release the
wakelocks the app holds.

e [C-0-9] Devices MUST return the following security providers as the first seven array
values from the Security.getProviders() method, in the given order and with the given names
(as returned by Provider.getName() ) and classes, unless the app has modified the list via
insertProviderAt() or removeProvider() . Devices MAY return additional providers after the
specified list of providers below.

1. AndroidNSSP - android.security.net.config.NetworkSecurityConfigProvider

android

Page 41 of 136


http://www.w3.org/html/wg/drafts/html/master/browsers.html#offline
http://www.w3.org/html/wg/drafts/html/master/semantics.html#video
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/IndexedDB/
http://html.spec.whatwg.org/multipage/
http://source.android.com/
https://developer.android.com/reference/android/location/GnssMeasurement.html
https://developer.android.com/reference/android/location/GnssNavigationMessage.html
https://developer.android.com/reference/android/location/LocationManager.html
https://developer.android.com/reference/android/net/wifi/WifiManager.html#startScan%2528%2529
https://developer.android.com/guide/topics/manifest/permission-element.html#plevel
https://developer.android.com/preview/features/background-broadcasts.html
https://developer.android.com/reference/android/app/Service.html#stopSelf%2528%2529
https://developer.android.com/reference/java/security/Security.html#getProviders%2528%2529
https://developer.android.com/reference/java/security/Provider.html#getName%2528%2529
https://developer.android.com/reference/java/security/Security.html#insertProviderAt%2528java.security.Provider,%252520int%2529
https://developer.android.com/reference/java/security/Security.html#removeProvider%2528java.lang.String%2529

2. AndroidOpenSSL - com.android.org.conscrypt.OpenSSLProvider
. CertPathProvider - sun.security.provider.CertPathProvider
4. AndroidKeyStoreBCWorkaround -
android.security.keystore. AndroidKeyStoreBCWorkaroundProvider

w

5. BC - com.android.org.bouncycastle.jce.provider.BouncyCastleProvider
6. HarmonyJSSE - com.android.org.conscrypt.JSSEProvider
7. AndroidKeyStore - android.security.keystore. AndroidKeyStoreProvider

The above list is not comprehensive. The Compatibility Test Suite (CTS) tests significant portions of
the platform for behavioral compatibility, but not all. It is the responsibility of the implementer to
ensure behavioral compatibility with the Android Open Source Project. For this reason, device
implementers SHOULD use the source code available via the Android Open Source Project where
possible, rather than re-implement significant parts of the system.

3.5.1. Application Restriction

If device implementations implement a proprietary mechanism to restrict apps and that mechanism
is more restrictive than the Rare App Standby Bucket , they:

[C-1-1] MUST provide user affordance where the user can see the list of restricted apps.

[C-1-2] MUST provide user affordance to turn on / off the restrictions on each app.

[C-1-3] MUST not automatically apply restrictions without evidence of poor system health

behavior, but MAY apply the restrictions on apps upon detection of poor system health

behavior like stuck wakelocks, long running services, and other criteria. The criteria MAY

be determined by device implementers but MUST be related to the app’s impact on the

system health. Other criteria that are not purely related to the system health, such as the

app’s lack of popularity in the market, MUST NOT be used as criteria.

e [C-1-4] MUST not automatically apply app restrictions for apps when a user has turned off
app restrictions manually, and MAY suggest the user to apply app restrictions.

e [C-1-5] MUST inform users if app restrictions are applied to an app automatically. Such
information MUST be provided within 24 hours of when the restrictions are applied.

e [C-1-6] MUST return true for ActivityManager.isBackgroundRestricted() when the restricted
app calls this API.

e [C-1-7] MUST NOT restrict the top foreground app that is explicitly used by the user.

e [C-1-8] MUST suspend restrictions on an app that becomes the top foreground application

when the user explicitly starts to use the app that used to be restricted.

3.6. APl Namespaces

Android follows the package and class namespace conventions defined by the Java programming
language. To ensure compatibility with third-party applications, device implementers MUST NOT
make any prohibited modifications (see below) to these package namespaces:

e java.*

e javax.*

e sun.*

e android.*

e androidx.*

e com.android.*

That is, they:

e [C-0-1] MUST NOT maodify the publicly exposed APIs on the Android platform by changing
any method or class signatures, or by removing classes or class fields.

e [C-0-2] MUST NOT add any publicly exposed elements (such as classes or interfaces, or
fields or methods to existing classes or interfaces) or Test or System APIs to the APIs in
the above namespaces. A “publicly exposed element” is any construct that is not
decorated with the “@hide” marker as used in the upstream Android source code.

Device implementers MAY modify the underlying implementation of the APIs, but such modifications:

e [C-0-3] MUST NOT impact the stated behavior and Java-language signature of any
publicly exposed APIs.

e [C-0-4] MUST NOT be advertised or otherwise exposed to developers.

Gnd rOid Page 42 of 136


https://developer.android.com/topic/performance/power/power-details
https://developer.android.com/reference/android/app/ActivityManager.html#isBackgroundRestricted%2528%2529

However, device implementers MAY add custom APIs outside the standard Android namespace, but

the custom APIs:

e [C-0-5] MUST NOT be in a namespace owned by or referring to another organization. For
instance, device implementers MUST NOT add APIs to the com.google.* or similar
namespace: only Google may do so. Similarly, Google MUST NOT add APIs to other
companies' namespaces.

e [C-0-6] MUST be packaged in an Android shared library so that only apps that explicitly

use them (via the <uses-library> mechanism) are affected by the increased memory usage

of such APIs.

If a device implementer proposes to improve one of the package namespaces above (such as by
adding useful new functionality to an existing API, or adding a new API), the implementer SHOULD
visit source.android.com and begin the process for contributing changes and code, according to the

information on that site.

Note that the restrictions above correspond to standard conventions for naming APlIs in the Java
programming language; this section simply aims to reinforce those conventions and make them

binding through inclusion in this Compatibility Definition.

3.7. Runtime Compatibility

Device implementations:

e [C-0-1] MUST support the full Dalvik Executable (DEX) format and Dalvik bytecode
specification and semantics .

e [C-0-2] MUST configure Dalvik runtimes to allocate memory in accordance with the

upstream Android platform, and as specified by the following table. (See section 7.1.1 for
screen size and screen density definitions.)

e SHOULD use Android RunTime (ART), the reference upstream implementation of the
Dalvik Executable Format, and the reference implementation’s package management

system.

e SHOULD run fuzz tests under various modes of execution and target architectures to
assure the stability of the runtime. Refer to JFuzz and DexFuzz in the Android Open
Source Project website.

Note that memory values specified below are considered minimum values and device

implementations MAY allocate more memory per application.

Screen Layout

Screen Density

Minimum Application Memory

120 dpi (Idpi)

140 dpi (140dpi)

160 dpi (mdpi)

Android Watch

180 dpi (180dpi) s2MB
200 dpi (200dpi)

213 dpi (tvdpi)

220 dpi (220dpi)

240 dpi (hdpi) 36MB
280 dpi (280dpi)

320 dpi (xhdpi) 48MB
360 dpi (360dpi)

400 dpi (400dpi) 56MB
420 dpi (420dpi) 64MB
480 dpi (xxhdpi) 88MB
560 dpi (560dpi) 112MB
640 dpi (xxxhdpi) 154MB

120 dpi (Idpi)

android

Page 43 of 136


http://source.android.com/
https://android.googlesource.com/platform/dalvik/
https://android.googlesource.com/platform/art/+/master/tools/dexfuzz/
https://android.googlesource.com/platform/art/+/master/tools/dexfuzz/

140 dpi (140dpi)

160 dpi (mdpi)

32MB

180 dpi (180dpi)

200 dpi (200dpi)

213 dpi (tvdpi)

48MB

220 dpi (220dpi)

small/normal 240 dpi (hdpi)
280 dpi (280dpi)
320 dpi (xhdpi)
360 dpi (360dpi) SOMB
400 dpi (400dpi) 96MB
420 dpi (420dpi) 112MB
480 dpi (xxhdpi) 128MB
560 dpi (560dpi) 192MB
640 dpi (xxxhdpi) 256MB
120 dpi (Idpi) 32MB
140 dpi (140dpi)
160 dpi (mdpi) A8MB
180 dpi (180dpi)
200 dpi (200dpi)
213 dpi (tvdpi) 80MB
220 dpi (220dpi)

large 240 dpi (hdpi)
280 dpi (280dpi) 96MB
320 dpi (xhdpi) 128MB
360 dpi (360dpi) 160MB
400 dpi (400dpi) 192MB
420 dpi (420dpi) 228MB
480 dpi (xxhdpi) 256MB
560 dpi (560dpi) 384MB
640 dpi (xxxhdpi) 512MB
120 dpi (Idpi) 48MB
140 dpi (140dpi)
160 dpi (mdpi) SOMB
180 dpi (180dpi)
200 dpi (200dpi)
213 dpi (tvdpi) 96MB
220 dpi (220dpi)
240 dpi (hdpi)

xlarge 280 dpi (280dpi) 144MB
320 dpi (xhdpi) 192MB
360 dpi (360dpi) 240MB
400 dpi (400dpi) 288MB
420 dpi (420dpi) 336MB
480 dpi (xxhdpi) 384MB

android

Page 44 of 136



560 dpi (560dpi) 576MB
640 dpi (xxxhdpi) 768MB

3.8. User Interface Compatibility
3.8.1. Launcher (Home Screen)

Android includes a launcher application (home screen) and support for third-party applications to
replace the device launcher (home screen).

If device implementations allow third-party applications to replace the device home screen, they:

e [C-1-1] MUST declare the platform feature android.software.home_screen .

e [C-1-2] MUST return the AdaptivelconDrawable object when the third-party application use
<adaptive-icon> tag to provide their icon, and the PackageManager methods to retrieve icons
are called.

If device implementations include a default launcher that supports in-app pinning of shortcuts, they:

e [C-2-1] MUST report true for ShortcutManager.isRequestPinShortcutSupported() .

e [C-2-2] MUST have user affordance asking the user before adding a shortcut requested by
apps via the ShortcutManager.requestPinShortcut() APl method.

e [C-2-3] MUST support pinned shortcuts and dynamic and static shortcuts as documented
on the App Shortcuts page .

Conversely, if device implementations do not support in-app pinning of shortcuts, they:
e [C-3-1] MUST report false for ShortcutManager.isRequestPinShortcutSupported() .

If device implementations implement a default launcher that provides quick access to the additional
shortcuts provided by third-party apps through the ShortcutManager API, they:

e [C-4-1] MUST support all documented shortcut features (e.g. static and dynamic
shortcuts, pinning shortcuts) and fully implement the APIs of the ShortcutManager API
class.

If device implementations include a default launcher app that shows badges for the app icons, they:

e [C-5-1] MUST respect the NotificationChannel.setShowBadge() APl method. In other words,
show a visual affordance associated with the app icon if the value is set as true , and do
not show any app icon badging scheme when all of the app's notification channels have
set the value as false .

e MAY override the app icon badges with their proprietary badging scheme when third-party
applications indicate support of the proprietary badging scheme through the use of
proprietary APIs, but SHOULD use the resources and values provided through the
notification badges APIs described in the SDK, such as the Notification.Builder.setNumber()
and the Notification.Builder.setBadgelconType() API.

3.8.2. Widgets

Android supports third-party app widgets by defining a component type and corresponding API and
lifecycle that allows applications to expose an “AppWidget” to the end user.

If device implementations support third-party app widgets, they:

[C-1-1] MUST declare support for platform feature android.software.app_widgets .
[C-1-2] MUST include built-in support for AppWidgets and expose user interface
affordances to add, configure, view, and remove AppWidgets directly within the Launcher.

[C-1-3] MUST be capable of rendering widgets that are 4 x 4 in the standard grid size. See
the App Widget DesignGuidelines in the Android SDK documentation for details.

MAY support application widgets on the lock screen.

If device implementations support third-party app widgets and in-app pinning of shortcuts, they:

e [C-2-1] MUST report true for AppWidgetManager.html.isRequestPinAppWidgetSupported() .
e [C-2-2] MUST have user affordance asking the user before adding a shortcut requested by

Clnd I'Oid Page 45 of 136


https://developer.android.com/reference/android/graphics/drawable/AdaptiveIconDrawable.html
https://developer.android.com/reference/android/content/pm/PackageManager.html
https://developer.android.com/reference/android/content/pm/ShortcutManager.html#isRequestPinShortcutSupported%2528%2529
https://developer.android.com/reference/android/content/pm/ShortcutManager.html#requestPinShortcut%2528android.content.pm.ShortcutInfo,%20android.content.IntentSender%2529
https://developer.android.com/guide/topics/ui/shortcuts.html
https://developer.android.com/reference/android/content/pm/ShortcutManager.html#isRequestPinShortcutSupported%2528%2529
https://developer.android.com/reference/android/content/pm/ShortcutManager.html
https://developer.android.com/reference/android/content/pm/ShortcutManager.html
https://developer.android.com/reference/android/app/NotificationChannel.html#setShowBadge%2528boolean%2529
https://developer.android.com/preview/features/notification-badges.html
http://developer.android.com/reference/android/app/Notification.Builder.html#setNumber%2528int%2529
http://developer.android.com/reference/android/app/Notification.Builder.html#setBadgeIconType%2528int%2529
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
https://developer.android.com/reference/android/appwidget/AppWidgetManager.html#isRequestPinAppWidgetSupported%2528%2529

apps via the AppWidgetManager.requestPinAppWidget() APl method.

3.8.3. Notifications

Android includes Notification and NotificationManager APIs that allow third-party app developers to
notify users of notable events and attract users' attention using the hardware components (e.g.
sound, vibration and light) and software features (e.g. notification shade, system bar) of the device.

3.8.3.1. Presentation of Notifications

If device implementations allow third-party apps to notify users of notable events, they:

e [C-1-1] MUST support notifications that use hardware features, as described in the SDK
documentation, and to the extent possible with the device implementation hardware. For
instance, if a device implementation includes a vibrator, it MUST correctly implement the
vibration APIs. If a device implementation lacks hardware, the corresponding APIs MUST
be implemented as no-ops. This behavior is further detailed in section 7 .

e [C-1-2] MUST correctly render all resources (icons, animation files, etc.) provided for in
the APIs, or in the Status/System Bar icon style guide , although they MAY provide an
alternative user experience for notifications than that provided by the reference Android
Open Source implementation.

e [C-1-3] MUST honor and implement properly the behaviors described forthe APIs to
update, remove and group notifications.

e [C-1-4] MUST provide the full behavior of the NotificationChannel APl documented in the
SDK.

e [C-1-5] MUST provide a user affordance to block and modify a certain third-party app's
notification per each channel and app package level.

e [C-1-6] MUST also provide a user affordance to display deleted notification channels.

e [C-1-7] MUST correctly render all resources (images, stickers, icons, etc.) provided
through Notification.MessagingStyle alongside the notification text without additional
user interaction. For example, MUST show all resources including icons provided through
android.app.Person in a group conversation that is set through setGroupConversation .

e [C-SR] Are STRONGLY RECOMMENDED to automatically surface a user affordance to
block a certain third-party app's notification per each channel and app package level after
the user dismisses that notification multiple times.

e SHOULD support rich notifications.

e SHOULD present some higher priority notifications as heads-up notifications.

e SHOULD have a user affordance to snooze naotifications.

e MAY only manage the visibility and timing of when third-party apps can notify users of
notable events to mitigate safety issues such as driver distraction.

Android 11 introduces support for conversation notifications, which are notifications that use
MessagingStyle and provides a published People Shortcut ID.

Device implementations:

e [C-SR] Are STRONGLY RECOMMENDED to group and display conversation notifications
ahead of non conversation notifications with the exception of ongoing foreground service
notifications and importance:high notifications.

If device implementations support conversation notifications and the app provides the required data for
bubbles , they:

e [C-SR] Are STRONGLY RECOMMENDED to display this conversation as a bubble. The

AOSP implementation meets these requirements with the default System Ul, Settings, and
Launcher.

If device implementations support rich notifications, they:

e [C-2-1] MUST use the exact resources as provided through the Notification.Style API class
and its subclasses for the presented resource elements.

e SHOULD present each and every resource element (e.g. icon, title and summary text)
defined in the Notification.Style API class and its subclasses.

If device implementations support heads-up notifications: they:

Clnd I'Oid Page 46 of 136


https://developer.android.com/reference/android/appwidget/AppWidgetManager.html#requestPinAppWidget%2528android.content.ComponentName,android.os.Bundle,%20android.app.PendingIntent%2529
https://developer.android.com/reference/android/app/Notification.html
https://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://developer.android.com/guide/topics/resources/available-resources.html
http://developer.android.com/design/style/iconography.html
https://developer.android.com/guide/topics/ui/notifiers/notifications.html#Managing
https://developer.android.com/reference/android/app/NotificationChannel.html
https://developer.android.com/reference/android/app/Notification.MessagingStyle
https://developer.android.com/reference/android/app/Person
https://developer.android.com/reference/android/app/Notification.MessagingStyle.html?hl=es-AR#setGroupConversation%2528boolean%2529
https://developer.android.com/reference/android/app/Notification.MessagingStyle.html
https://developer.android.com/reference/android/app/Person
https://developer.android.com/preview/features/conversations#api-notifications
https://developer.android.com/reference/android/app/NotificationManager#IMPORTANCE_HIGH
https://developer.android.com/preview/features/conversations#api-notifications
https://developer.android.com/guide/topics/ui/bubbles
https://developer.android.com/reference/android/app/Notification.Style.html
https://developer.android.com/reference/android/app/Notification.Style.html

e [C-3-1] MUST use the heads-up notification view and resources as described in the
Notification.Builder API class when heads-up notifications are presented.

e [C-3-2] MUST display the actions provided through Notification.Builder.addAction() together
with the notification content without additional user interaction as described in the SDK .

3.8.3.2. Notification Listener Service

Android includes the NotificationListenerService APIs that allow apps (once explicitly enabled by the
user) to receive a copy of all notifications as they are posted or updated.

Device implementations:

e [C-0-1] MUST correctly and promptly update notifications in their entirety to all such
installed and user-enabled listener services, including any and all metadata attached to
the Notification object.

e [C-0-2] MUST respect the snoozeNotification() API call, and dismiss the notification and
make a callback after the snooze duration that is set in the API call.

If device implementations have a user affordance to snooze notifications, they:

e [C-1-1] MUST reflect the snoozed notification status properly through the standard APIs
such as NotificationListenerService.getSnoozedNotifications() .

e [C-1-2] MUST make this user affordance available to snooze notifications from each
installed third-party app's, unless they are from persistent/foreground services.

3.8.3.3. DND (Do not Disturb)

If device implementations support the DND feature, they:

e [C-1-1] MUST, for when the device implementation has provided a means for the user to
grant or deny third-party apps to access the DND policy configuration, display Automatic
DND rules created by applications alongside the user-created and pre-defined rules.

e [C-1-3] MUST honor the suppressedVisualEffects values passed along the
NotificationManager.Policy and if an app has set any of the
SUPPRESSED_EFFECT_SCREEN_OFF or SUPPRESSED_EFFECT_SCREEN_ON flags, it
SHOULD indicate to the user that the visual effects are suppressed in the DND settings
menu.

3.8.4. Search

Android includes APIs that allow developers to incorporate search into their applications and expose
their application’s data into the global system search. Generally speaking, this functionality consists
of a single, system-wide user interface that allows users to enter queries, displays suggestions as
users type, and displays results. The Android APIs allow developers to reuse this interface to provide
search within their own apps and allow developers to supply results to the common global search
user interface.

e Android device implementations SHOULD include global search, a single, shared, system-
wide search user interface capable of real-time suggestions in response to user input.

If device implementations implement the global search interface, they:

e [C-1-1] MUST implement the APIs that allow third-party applications to add suggestions to
the search box when it is run in global search mode.

If no third-party applications are installed that make use of the global search:

e The default behavior SHOULD be to display web search engine results and suggestions.

Android also includes the Assist APIs to allow applications to elect how much information of the
current context is shared with the assistant on the device.

If device implementations support the Assist action, they:

e [C-2-1] MUST indicate clearly to the end user when the context is shared, by either:
o Each time the assist app accesses the context, displaying a white light around
the edges of the screen that meet or exceed the duration and brightness of the

Gnd rOid Page 47 of 136


https://developer.android.com/reference/android/app/Notification.Builder.html
https://developer.android.com/reference/android/app/Notification.Builder#addAction%2528android.app.Notification.Action%2529
https://developer.android.com/guide/topics/ui/notifiers/notifications.html#Heads-up
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html#snoozeNotification%2528java.lang.String,%20long%2529
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html#getSnoozedNotifications%2528%2529
https://developer.android.com/reference/android/app/NotificationManager.html#addAutomaticZenRule%2528android.app.AutomaticZenRule%2529
https://developer.android.com/reference/android/app/NotificationManager.Policy.html#suppressedVisualEffects
https://developer.android.com/reference/android/app/NotificationManager.Policy.html#NotificationManager.Policy%2528int,%20int,%20int,%20int%2529
http://developer.android.com/reference/android/app/SearchManager.html
https://developer.android.com/reference/android/app/assist/package-summary.html

Android Open Source Project implementation.

o For the preinstalled assist app, providing a user affordance less than two
navigations away from the default voice input and assistant app settings menu
, and only sharing the context when the assist app is explicitly invoked by the
user through a hotword or assist navigation key input.

e [C-2-2] The designated interaction to launch the assist app as described in section 7.2.3
MUST launch the user-selected assist app, in other words the app that implements
VoicelnteractionService , or an activity handling the ACTION ASSIST intent.

3.8.5. Alerts and Toasts

Applications can use the Toast API to display short non-modal strings to the end user that disappear
after a brief period of time, and use the TYPE_APPLICATION OVERLAY window type API to display
alert windows as an overlay over other apps.

If device implementations include a screen or video output, they:

e [C-1-1] MUST provide a user affordance to block an app from displaying alert windows
that use the TYPE_APPLICATION _OVERLAY . The AOSP implementation meets this
requirement by having controls in the notification shade.

e [C-1-2] MUST honor the Toast API and display Toasts from applications to end users in
some highly visible manner.

3.8.6. Themes

Android provides “themes” as a mechanism for applications to apply styles across an entire Activity
or application.

Android includes a “Holo” and "Material" theme family as a set of defined styles for application
developers to use if they want to match the Holo theme look and feel as defined by the Android SDK.

If device implementations include a screen or video output, they:

e [C-1-1] MUST NOT alter any of the Holo theme attributes exposed to applications.

e [C-1-2] MUST support the “Material” theme family and MUST NOT alter any of theMaterial
theme attributes or their assets exposed to applications.

e [C-1-3] MUST either set the "sans-serif" font family to Roboto version 2.x for the
languages that Roboto supports, or provide a user affordance to change the font used for
the "sans-serif" font family to Roboto version 2.x for the languages that Roboto supports.

Android also includes a “Device Default” theme family as a set of defined styles for application
developers to use if they want to match the look and feel of the device theme as defined by the
device implementer.

* Device implementations MAY modify the Device Default theme attributes exposed to
applications.

Android supports a variant theme with translucent system bars, which allows application developers
to fill the area behind the status and navigation bar with their app content. To enable a consistent
developer experience in this configuration, it is important the status bar icon style is maintained
across different device implementations.

If device implementations include a system status bar, they:

e [C-2-1] MUST use white for system status icons (such as signal strength and battery
level) and notifications issued by the system, unless the icon is indicating a problematic
status or an app requests a light status bar using the
SYSTEM_UI_FLAG_LIGHT_STATUS_BAR flag.

e [C-2-2] Android device implementations MUST change the color of the system status
icons to black (for details, refer to R.style ) when an app requests a light status bar.

3.8.7. Live Wallpapers

Android defines a component type and corresponding API and lifecycle that allows applications to
expose one or more “Live Wallpapers” to the end user. Live wallpapers are animations, patterns, or
similar images with limited input capabilities that display as a wallpaper, behind other applications.

Hardware is considered capable of reliably running live wallpapers if it can run all live wallpapers,
with no limitations on functionality, at a reasonable frame rate with no adverse effects on other

android

Page 48 of 136


http://developer.android.com/reference/android/widget/Toast.html
http://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#TYPE_APPLICATION_OVERLAY
http://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#TYPE_APPLICATION_OVERLAY
http://developer.android.com/guide/topics/ui/themes.html
http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/R.style.html#Theme_Material
https://github.com/google/roboto
https://github.com/google/roboto
http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/service/wallpaper/WallpaperService.html

applications. If limitations in the hardware cause wallpapers and/or applications to crash,
malfunction, consume excessive CPU or battery power, or run at unacceptably low frame rates, the
hardware is considered incapable of running live wallpaper. As an example, some live wallpapers
may use an OpenGL 2.0 or 3.x context to render their content. Live wallpaper will not run reliably on
hardware that does not support multiple OpenGL contexts because the live wallpaper use of an
OpenGL context may conflict with other applications that also use an OpenGL context.

e Device implementations capable of running live wallpapers reliably as described above
SHOULD implement live wallpapers.

If device implementations implement live wallpapers, they:

e [C-1-1] MUST report the platform feature flag android.software.live_wallpaper.

3.8.8. Activity Switching

The upstream Android source code includes the overview screen, a system-level user interface for
task switching and displaying recently accessed activities and tasks using a thumbnail image of the
application’s graphical state at the moment the user last left the application.

Device implementations including the recents function navigation key as detailed in section 7.2.3
MAY alter the interface.

If device implementations including the recents function navigation key as detailed in section 7.2.3
alter the interface, they:

e [C-1-1] MUST support at least up to 7 displayed activities.

e SHOULD at least display the title of 4 activities at a time.

e [C-1-2] MUST implement the screen pinning behavior and provide the user with a settings
menu to toggle the feature.

e SHOULD display highlight color, icon, screen title in recents.

e SHOULD display a closing affordance ("x") but MAY delay this until user interacts with
screens.

e SHOULD implement a shortcut to switch easily to the previous activity.

e SHOULD trigger the fast-switch action between the two most recently used apps, when
the recents function key is tapped twice.

e SHOULD trigger the split-screen multiwindow-mode, if supported, when the recents
functions key is long pressed.

e MAY display affiliated recents as a group that moves together.

e [SR] Are STRONGLY RECOMMENDED to use the upstream Android user interface (or a
similar thumbnail-based interface) for the overview screen.

3.8.9. Input Management

Android includes support for Input Management and support for third-party input method editors.
If device implementations allow users to use third-party input methods on the device, they:

e [C-1-1] MUST declare the platform feature android.software.input_methods and support
IME APIs as defined in the Android SDK documentation.

3.8.10. Lock Screen Media Control
The Remote Control Client API is deprecated from Android 5.0 in favor of the Media Notification

Template that allows media applications to integrate with playback controls that are displayed on the
lock screen.

3.8.11. Screen savers (previously Dreams)
See section 3.2.3.5 for settings intent to congfigure screen savers.
3.8.12. Location

If device implementations include a hardware sensor (e.g. GPS) that is capable of providing the
location coordinates, they

e [C-1-2] MUST display the current status of location in the Location menu within Settings.

android

Page 49 of 136


https://developer.android.com/guide/components/activities/recents.html
http://developer.android.com/about/versions/android-5.0.html#ScreenPinning
http://developer.android.com/guide/topics/text/creating-input-method.html
http://developer.android.com/reference/android/app/Notification.MediaStyle.html
https://developer.android.com/reference/android/location/LocationManager.html#isLocationEnabled%2528%2529

e [C-1-3] MUST NOT display location modes in the Location menu within Settings.

3.8.13. Unicode and Font

Android includes support for the emoji characters defined in Unicode 10.0 .
If device implementations include a screen or video output, they:

e [C-1-1] MUST be capable of rendering these emoji characters in color glyph.
e [C-1-2] MUST include support for:

o Roboto 2 font with different weights—sans-serif-thin, sans-serif-light, sans-
serif-medium, sans-serif-black, sans-serif-condensed, sans-serif-condensed-
light for the languages available on the device.

o Full Unicode 7.0 coverage of Latin, Greek, and Cyrillic, including the Latin
Extended A, B, C, and D ranges, and all glyphs in the currency symbols block of
Unicode 7.0.

e SHOULD support the skin tone and diverse family emojis as specified in the Unicode
Technical Report #51 .

If device implementations include an IME, they:

e SHOULD provide an input method to the user for these emoji characters.

Android includes support to render Myanmar fonts. Myanmar has several non-Unicode compliant
fonts, commonly known as “Zawgyi,” for rendering Myanmar languages.

If device implementations include support for Burmese, they:

* [C-2-1] MUST render text with Unicode compliant font as default;
non-Unicode compliant font MUST NOT be set as default font unless the user
chooses it in the language picker.

* [C-2-2] MUST support a Unicode font and a non-Unicode compliant font if a
non-Unicode compliant font is supported on the device. Non-Unicode
compliant font MUST NOT remove or overwrite the Unicode font.

* [C-2-3] MUST render text with non-Unicode compliant font ONLY IF a
language code with [script code Qaag](
http://unicode.org/reports/tr35/#unicode_script_subtag_validity) is
specified (e.g. my-Qaag). No other ISO language or region codes (whether
assigned, unassigned, or reserved) can be used to refer to non-Unicode
compliant font for Myanmar. App developers and web page authors can
specify my-Qaag as the designated language code as they would for any
other language.

3.8.14. Multi-windows

If device implementations have the capability to display multiple activities at the same time, they:

e [C-1-1] MUST implement such multi-window mode(s) in accordance with the application
behaviors and APIs described in the Android SDK multi-window mode support
documentation and meet the following requirements:

e [C-1-2] MUST honor android:resizeableActivity that is set by an app in the
AndroidManifest.xml file as described in this SDK .

e [C-1-3] MUST NOT offer split-screen or freeform mode if the screen height is less than
440 dp and the screen width is less than 440 dp.

e [C-1-4] An activity MUST NOT be resized to a size smaller than 220dp in multi-window
modes other than Picture-in-Picture.

e Device implementations with screen size xlarge SHOULD support freeform mode.

If device implementations support multi-window mode(s), and the split screen mode, they:

e [C-2-1] MUST preload aresizeable launcher as the default.

e [C-2-2] MUST crop the docked activity of a split-screen multi-window but SHOULD show
some content of it, if the Launcher app is the focused window.

e [C-2-3] MUST honor the declared AndroidManifestLayout minWidth and
AndroidManifestLayout minHeight values of the third-party launcher application and not
override these values in the course of showing some content of the docked activity.

Clnd I'Oid Page 50 of 136


https://developer.android.com/reference/android/provider/Settings.Secure.html#LOCATION_MODE
http://www.unicode.org/versions/Unicode10.0.0/
http://unicode.org/reports/tr51
https://developer.android.com/guide/topics/ui/multi-window.html
https://developer.android.com/reference/android/R.attr.html#resizeableActivity
https://developer.android.com/guide/topics/manifest/application-element#resizeableActivity
https://developer.android.com/guide/topics/ui/multi-window.html#configuring
https://developer.android.com/reference/android/R.styleable.html#AndroidManifestLayout_minWidth
https://developer.android.com/reference/android/R.styleable.html#AndroidManifestLayout_minHeight

If device implementations support multi-window mode(s) and Picture-in-Picture multi-window mode,
they:

e [C-3-1] MUST launch activities in picture-in-picture multi-window mode when the app is: *
Targeting API level 26 or higher and declares android:supportsPicturelnPicture * Targeting
API level 25 or lower and declares both android:resizeableActivity and
android:supportsPicturelnPicture .

e [C-3-2] MUST expose the actions in their SystemUI as specified by the current PIP activity
through the setActions() API.

e [C-3-3] MUST support aspect ratios greater than or equal to 1:2.39 and less than or equal
to 2.39:1, as specified by the PIP activity through the setAspectRatio() API.

e [C-3-4] MUST use KeyEvent. KEYCODE_WINDOW to control the PIP window; if PIP mode
is not implemented, the key MUST be available to the foreground activity.

e [C-3-5] MUST provide a user affordance to block an app from displaying in PIP mode; the
AOSP implementation meets this requirement by having controls in the notification
shade.

e [C-3-6] MUST allocate the following minimum width and height for the PIP window when
an application does not declare any value for AndroidManifestLayout minWidth and
AndroidManifestLayout minHeight :

o Devices with the Configuration.uiMode that is set other than
Ul MODE_TYPE _TELEVISION MUST allocate a minimum width and height of
108 dp.

o Devices with the Configuration.uiMode that is set to
Ul MODE _TYPE TELEVISION MUST allocate a minimum width of 240 dp and
a minimum height of 135 dp.

3.8.15. Display Cutout

Android supports a Display Cutout as described in the SDK document. The DisplayCutout APl defines
an area on the edge of the display that may not be functional for an application due to a display
cutout or curved display on the edge(s).

If device implementations include display cutout(s), they:

e [C-1-5] MUST NOT have cutout(s) if the device's aspect ratio is 1.0(1:1).
e [C-1-2] MUST NOT have more than one cutout per edge.

e [C-1-3] MUST honor the display cutout flags set by the app through the
WindowManager.LayoutParams APl as described in the SDK.
e [C-1-4] MUST report correct values for all cutout metrics defined in the DisplayCutout API.

3.8.16. Device Controls

Android includes ControlsProviderService and Control APIs to allow third-party applications to publish
device controls for quick status and action for users.

See Section 2_2_3 for device-specific requirements.

3.9. Device Administration

Android includes features that allow security-aware applications to perform device administration
functions at the system level, such as enforcing password policies or performing remote wipe,
through the Android Device Administration API .

If device implementations implement the full range of device administration policies defined in the
Android SDK documentation, they:

e [C-1-1] MUST declare android.software.device admin .

e [C-1-2] MUST support device owner provisioning as described in section 3.9.1 and section
3.9.1.1.

3.9.1 Device Provisioning

3.9.1.1 Device owner provisioning

If device implementations declare android.software.device admin , they:

android

Page 51 of 136


https://developer.android.com/reference/android/R.attr.html#supportsPictureInPicture
https://developer.android.com/reference/android/R.attr.html#resizeableActivity
https://developer.android.com/reference/android/R.attr.html#supportsPictureInPicture
https://developer.android.com/reference/android/app/PictureInPictureParams.Builder.html#setActions%2528java.util.List%253Candroid.app.RemoteAction%253E%2529
https://developer.android.com/reference/android/app/PictureInPictureParams.Builder.html#setAspectRatio%2528android.util.Rational%2529
https://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_WINDOW
https://developer.android.com/reference/android/R.styleable.html#AndroidManifestLayout_minWidth
https://developer.android.com/reference/android/R.styleable.html#AndroidManifestLayout_minHeight
https://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_TELEVISION
https://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_TELEVISION
https://developer.android.com/reference/android/view/DisplayCutout
https://developer.android.com/reference/android/view/WindowManager.LayoutParams
https://developer.android.com/reference/android/view/DisplayCutout
https://developer.android.com/reference/android/service/controls/ControlsProviderService
https://developer.android.com/reference/android/service/controls/Control
http://developer.android.com/guide/topics/admin/device-admin.html
http://developer.android.com/guide/topics/admin/device-admin.html

e [C-1-1] MUST support enrolling a Device Policy Client (DPC) as aDevice Owner app as
described below:
o When the device implementation has no user data yet, it:
= [C-1-3] MUST report true for

DevicePolicyManager.isProvisioningAllowed(ACTION_PROVISION MANAGED_DEVICE)

= [C-1-4] MUST enroll the DPC application as the Device Owner app in
response to the intent action
android.app.action.PROVISION MANAGED DEVICE .

= [C-1-5] MUST enroll the DPC application as the Device Owner app if
the device declares Near-Field Communications (NFC) support via
the feature flag android.hardware.nfc and receives an NFC message
containing a record with MIME type
MIME TYPE PROVISIONING NFC.

o When the device implementation has user data, it:
= [C-1-6] MUST report false for the

DevicePolicyManager.isProvisioningAllowed(ACTION _PROVISION MANAGED_DEVICE)

= [C-1-7] MUST not enroll any DPC application as the Device Owner
App any more.

e [C-1-2] MUST require some affirmative action before or during the provisioning process to
consent to the app being set as Device Owner. Consent can be via user action or by some
programmatic means but appropriate disclosure notice (as referenced in AOSP) MUST be
shown before device owner provisioning is initiated. Also, the programmatic device owner
consent mechanism used (by enterprises) for device owner provisioning MUST NOT
interfere with the Out-Of-Box Experience for non-enterprise use.

e [C-1-3] MUST NOT hard code the consent or prevent the use of other device owner apps.

If device implementations declare android.software.device admin , but also include a proprietary Device
Owner management solution and provide a mechanism to promote an application configured in their

solution as a "Device Owner equivalent” to the standard "Device Owner" as recognized by the
standard Android DevicePolicyManager APIs, they:

e [C-2-1] MUST have a process in place to verify that the specific app being promoted
belongs to a legitimate enterprise device management solution and it has been already
configured in the proprietary solution to have the rights equivalent as a "Device Owner".

e [C-2-2] MUST show the same AOSP Device Owner consent disclosure as the flow initiated
by android.app.action.PROVISION_ MANAGED_DEVICE prior to enrolling the DPC
application as "Device Owner".

e MAY have user data on the device prior to enrolling the DPC application as "Device
Owner".

3.9.1.2 Managed profile provisioning
If device implementations declare android.software.managed_users , they:

e [C-1-1] MUST implement the APIs allowing a Device Policy Controller (DPC) application to
become the owner of a new Managed Profile .

e [C-1-2] The managed profile provisioning process (the flow initiated by
android.app.action.PROVISION_MANAGED_PROFILE ) users experience MUST align with
the AOSP implementation.

e [C-1-3] MUST provide the following user affordances within the Settings to indicate to the
user when a particular system function has been disabled by the Device Policy Controller
(DPC):

o A consistent icon or other user affordance (for example the upstream AOSP
info icon) to represent when a particular setting is restricted by a Device
Admin.

o A short explanation message, as provided by the Device Admin via the
setShortSupportMessage .

o The DPC application’s icon.

3.9.2 Managed Profile Support

If device implementations declare android.software.managed users , they:

android

Page 52 of 136


http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isDeviceOwnerApp%2528java.lang.String%2529
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isProvisioningAllowed(java.lang.String)
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_DEVICE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#MIME_TYPE_PROVISIONING_NFC
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isProvisioningAllowed(java.lang.String)
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_DEVICE
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_PROFILE
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isProfileOwnerApp%2528java.lang.String%2529
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_PROFILE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setShortSupportMessage%2528android.content.ComponentName,%20java.lang.CharSequence%2529

[C-1-1] MUST support managed profiles via the android.app.admin.DevicePolicyManager

APIs.

e [C-1-2] MUST allow one and only one managed profile to be created .

e [C-1-3] MUST use an icon badge (similar to the AOSP upstream work badge) to represent
the managed applications and widgets and other badged Ul elements like Recents &
Notifications.

e [C-1-4] MUST display a notification icon (similar to the AOSP upstream work badge) to
indicate when user is within a managed profile application.

e [C-1-5] MUST display a toast indicating that the user is in the managed profile if and when
the device wakes up (ACTION_USER_PRESENT) and the foreground application is within
the managed profile.

e [C-1-6] Where a managed profile exists, MUST show a visual affordance in the Intent
'Chooser' to allow the user to forward the intent from the managed profile to the primary
user or vice versa, if enabled by the Device Policy Controller.

e [C-1-7] Where a managed profile exists, MUST expose the following user affordances for

both the primary user and the managed profile:

o Separate accounting for battery, location, mobile data and storage usage for
the primary user and managed profile.

o Independent management of VPN Applications installed within the primary
user or managed profile.

o Independent management of applications installed within the primary user or
managed profile.

o Independent management of accounts within the primary user or managed
profile.

e [C-1-8] MUST ensure the preinstalled dialer, contacts and messaging applications can
search for and look up caller information from the managed profile (if one exists)
alongside those from the primary profile, if the Device Policy Controller permits it.

e [C-1-9] MUST ensure that it satisfies all the security requirements applicable for a device
with multiple users enabled (see section 9.5 ), even though the managed profile is not
counted as another user in addition to the primary user.

If device implementations declare android.software.managed_users and
android.software.secure lock screen , they:

e [C-2-1] MUST support the ability to specify a separate lock screen meeting the following
requirements to grant access to apps running in a managed profile only.

o Device implementations MUST honor the
DevicePolicyManager. ACTION_SET NEW_PASSWORD intent and show an
interface to configure a separate lock screen credential for the managed
profile.

o The lock screen credentials of the managed profile MUST use the same
credential storage and management mechanisms as the parent profile, as
documented on the Android Open Source Project Site.

o The DPC password policies MUST apply to only the managed profile's lock
screen credentials unless called upon the DevicePolicyManager instance
returned by getParentProfilelnstance .

e When contacts from the managed profile are displayed in the preinstalled call log, in-call
Ul, in-progress and missed-call notifications, contacts and messaging apps they SHOULD
be badged with the same badge used to indicate managed profile applications.

3.9.3 Managed User Support

If device implementations declare android.software.managed_users , they:

e [C-1-1] MUST provide a user affordance to logout from the current user and switch back
to the primary user in multiple-user session when isLogoutEnabled returns true . The user
affordance MUST be accessible from the lockscreen without unlocking the device.

3.10. Accessibility

Android provides an accessibility layer that helps users with disabilities to navigate their devices
more easily. In addition, Android provides platform APIs that enable accessibility service
implementations to receive callbacks for user and system events and generate alternate feedback
mechanisms, such as text-to-speech, haptic feedback, and trackball/d-pad navigation.

Clnd I'Oid Page 53 of 136


http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_PROFILE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_SET_NEW_PASSWORD
http://source.android.com/security/authentication/index.html
https://developer.android.com/guide/topics/admin/device-admin.html#pwd
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#getParentProfileInstance%2528android.content.ComponentName%2529
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isLogoutEnabled%2528%2529

If device implementations support third-party accessibility services, they:

e [C-1-1] MUST provide an implementation of the Android accessibility framework as
described in the accessibility APIs SDK documentation.

e [C-1-2] MUST generate accessibility events and deliver the appropriate AccessibilityEvent
to all registered AccessibilityService implementations as documented in the SDK.

e [C-1-4] MUST add a button in the system's navigation bar allowing the user to control the
accessibility service when the enabled accessibility services declare the
AccessibilityServicelnfo.FLAG _REQUEST ACCESSIBILITY_BUTTON . Note that for device
implementations with no system navigation bar, this requirement is not applicable, but
device implementations SHOULD provide a user affordance to control these accessibility
services.

If device implementations include preinstalled accessibility services, they:

e [C-2-1] MUST implement these preinstalled accessibility services as Direct Boot Aware
apps when the data storage is encrypted with File Based Encryption (FBE).

e SHOULD provide a mechanism in the out-of-box setup flow for users to enable relevant
accessibility services, as well as options to adjust the font size, display size and
magnification gestures.

3.11. Text-to-Speech

Android includes APIs that allow applications to make use of text-to-speech (TTS) services and
allows service providers to provide implementations of TTS services.

If device implementations reporting the feature android.hardware.audio.output, they:

e [C-1-1] MUST support the Android TTS framework APIs.

If device implementations support installation of third-party TTS engines, they:

e [C-2-1] MUST provide user affordance to allow the user to select a TTS engine for use at
system level.

3.12. TV Input Framework

The Android Television Input Framework (TIF) simplifies the delivery of live content to Android
Television devices. TIF provides a standard API to create input modules that control Android
Television devices.

If device implementations support TIF, they:

e [C-1-1] MUST declare the platform feature android.software.live tv .

e [C-1-2] MUST support all TIF APIs such that an application which uses these APIs and the
third-party TIF-based inputs service can be installed and used on the device.

3.13. Quick Settings

Android provides a Quick Settings Ul component that allows quick access to frequently used or
urgently needed actions.

If device implementations include a Quick Settings Ul component and support third-party Quick
Settings, they:

e [C-1-1] MUST allow the user to add or remove the tiles provided through the quicksettings
APIs from a third-party app.

e [C-1-2] MUST NOT automatically add a tile from a third-party app directly to the Quick
Settings.

e [C-1-3] MUST display all the user-added tiles from third-party apps alongside the system-
provided quick setting tiles.

3.14. Media Ul

If device implementations include non-voice-activated applications (the Apps) that interact with third-
party applications through MediaBrowser or MediaSession , the Apps:

android

Page 54 of 136


http://developer.android.com/reference/android/view/accessibility/package-summary.html
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo.html#FLAG%255FREQUEST%255FACCESSIBILITY%255FBUTTON
https://developer.android.com/reference/android/content/pm/ComponentInfo.html#directBootAware
http://developer.android.com/reference/android/speech/tts/package-summary.html
http://source.android.com/devices/tv/index.html
https://source.android.com/devices/tv/index.html#third-party_input_example
https://developer.android.com/reference/android/service/quicksettings/package-summary.html
http://developer.android.com/reference/android/media/browse/MediaBrowser.html
http://developer.android.com/reference/android/media/session/MediaSession.html

[C-1-2] MUST clearly display icons obtained via getlconBitmap() or getlconUri() and titles
obtained via getTitle() as described in MediaDescription . May shorten titles to comply with
safety regulations (e.g. driver distraction).

e [C-1-3] MUST show the third-party application icon whenever displaying content provided
by this third-party application.

e [C-1-4] MUST allow the user to interact with the entire MediaBrowser hierarchy. MAY
restrict the access to part of the hierarchy to comply with safety regulations (e.g. driver
distraction), but MUST NOT give preferential treatment based on content or content
provider.

e [C-1-5] MUST consider double tap of KEYCODE _HEADSETHOOK or
KEYCODE_MEDIA_PLAY_PAUSE as KEYCODE_MEDIA_NEXT for
MediaSession.Callback#onMediaButtonEvent .

3.15. Instant Apps
Device implementations MUST satisfy the following requirements:

e [C-0-1] Instant Apps MUST only be granted permissions that have the
android:protectionLevel set to "instant" .
e [C-0-2] Instant Apps MUST NOT interact with installed apps viaimplicit intents unless one
of the following is true:
o The component's intent pattern filter is exposed and has
CATEGORY_BROWSABLE
o The action is one of ACTION_SEND, ACTION_SENDTO,
ACTION_SEND_MULTIPLE
o The target is explicitly exposed with android:visibleTolnstantApps
e [C-0-3] Instant Apps MUST NOT interact explicitly with installed apps unless the
component is exposed via android:visibleTolnstantApps.
e [C-0-4] Installed Apps MUST NOT see details about Instant Apps on the device unless the
Instant App explicitly connects to the installed application.

If device implementations support instant apps, then they:

e [C-1-1] MUST provide the following user affordances for interacting with Instant Apps.
The AOSP meets the requirements with the default System Ul, Settings, and Launcher.

e [C-1-2] MUST provide a user affordance to view and delete Instant Apps locally cached for
each individual app package.

e [C-1-3] MUST provide a persistent user notification that can be collapsed while an Instant
App is running in the foreground. This user notification MUST include that Instant Apps
do not require installation and provide a user affordance that directs the user to the
application info screen in Settings. For Instant Apps launched via web intents, as defined
by using an intent with action set to Intent. ACTION_VIEW and with a scheme of "http" or
"https", an additional user affordance SHOULD allow the user not to launch the Instant
App and launch the associated link with the configured web browser, if a browser is
available on the device.

e [C-1-4] MUST allow running Instant Apps to be accessed from the Recents function if the
Recents function is available on the device.

e [C-1-5] MUST preload one or more applications or service components with an intent
handler for the intents listed in the SDK here and make the intents visible for Instant
Apps.

3.16. Companion Device Pairing

Android includes support for companion device pairing to more effectively manage association with
companion devices and provides the CompanionDeviceManager API for apps to access this feature.

If device implementations support the companion device pairing feature, they:

e [C-1-1] MUST declare the feature flagFEATURE_COMPANION _DEVICE SETUP .
e [C-1-2] MUST ensure the APIs in the android.companion package is fully implemented.

e [C-1-3] MUST provide user affordances for the user to select/confirm a companion device
is present and operational.

3.17. Heavyweight Apps

Clnd I'Oid Page 55 of 136


http://developer.android.com/reference/android/media/MediaDescription.html
http://developer.android.com/reference/android/media/browse/MediaBrowser.html
https://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_HEADSETHOOK
https://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_MEDIA_PLAY_PAUSE
https://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_MEDIA_NEXT
https://developer.android.com/reference/android/media/session/MediaSession.Callback.html#onMediaButtonEvent%2528android.content.Intent%2529
https://developer.android.com/reference/android/R.attr#protectionLevel
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/R.attr.html#visibleToInstantApps
https://developer.android.com/reference/android/companion/CompanionDeviceManager.html
https://developer.android.com/reference/android/content/pm/PackageManager.html?#FEATURE_COMPANION_DEVICE_SETUP
https://developer.android.com/reference/android/companion/package-summary.html

If device implementations declare the feature FEATURE_CANT_SAVE STATE, then they:

e [C-1-1] MUST have only one installed app that specifies cantSaveState running in the
system at a time. If the user leaves such an app without explicitly exiting it (for example
by pressing home while leaving an active activity the system, instead of pressing back
with no remaining active activities in the system), then device implementations MUST
prioritize that app in RAM as they do for other things that are expected to remain running,
such as foreground services. While such an app is in the background, the system can still
apply power management features to it, such as limiting CPU and network access.

e [C-1-2] MUST provide a Ul affordance to chose the app that won't participate in the normal
state save/restore mechanism once the user launches a second app declared with
cantSaveState attribute.

e [C-1-3] MUST NOT apply other changes in policy to apps that specify cantSaveState , such
as changing CPU performance or changing scheduling prioritization.

If device implementations don't declare the feature FEATURE _CANT SAVE STATE, then they:

e [C-1-1] MUST ignore the cantSaveState attribute set by apps and MUST NOT change the
app behavior based on that attribute.

3.18. Contacts

Android includes Contacts Provider APIs to allow applications to manage contact information stored
on the device. Contact data that is entered directly into the device is typically synchronized with a
web service, but the data MAY also only reside locally on the device. Contacts that are only stored on
the device are referred to as local contacts.

RawContacts are "associated with" or "stored in" an Account when the ACCOUNT NAME , and
ACCOUNT _TYPE, columns for the raw contacts match the corresponding Account.name and
Account.type fields of the account.

Default local account : an account for raw contacts that are only stored on the device and not
associated with an Account in the AccountManager , which are created with null values for the
ACCOUNT _NAME , and ACCOUNT_TYPE, columns.

Custom local account : an account for raw contacts that are only stored on the device and not
associated with an Account in the AccountManager, which are created with at least one non-null value
for the ACCOUNT _NAME , and ACCOUNT_TYPE, columns.

Device implementations:

e [C-SR] Are STRONGLY RECOMMENDED to not create custom local accounts .

If device implementations use a custom local account :

e [C-1-1] The ACCOUNT _NAME , of the custom local account MUST be returned by
ContactsContract. RawContacts.getLocalAccountName

e [C-1-2] The ACCOUNT TYPE, of the custom local account MUST be returned by
ContactsContract.RawContacts.getl .ocalAccountType

e [C-1-3] Raw contacts that are inserted by third party applications with the default local
account (i.e. by setting null values for ACCOUNT NAME and ACCOUNT_TYPE ) MUST be
inserted to the custom local account .

e [C-1-4] Raw contacts inserted into the custom local account MUST not be removed when
accounts are added or removed.

e [C-1-5] Delete operations performed against the custom local account MUST result in raw
contacts being purged immediately (as if the CALLER IS SYNCADAPTER param was set
to true), even if the CALLER\ IS\ SYNCADAPTER param was set to false or not specified.

4. Application Packaging Compatibility
Devices implementations:

e [C-0-1] MUST be capable of installing and running Android “.apk” files as generated by the
“aapt” tool included in the official Android SDK .

e As the above requirement may be challenging, device implementations are
RECOMMENDED to use the AOSP reference implementation's package management
system.

Device implementations:

android

Page 56 of 136


https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_CANT_SAVE_STATE
https://developer.android.com/reference/android/R.attr#cantSaveState
https://developer.android.com/reference/android/R.attr#cantSaveState
https://developer.android.com/reference/android/R.attr#cantSaveState
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_CANT_SAVE_STATE
https://developer.android.com/reference/android/R.attr#cantSaveState
https://developer.android.com/guide/topics/providers/contacts-provider
https://developer.android.com/reference/android/provider/ContactsContract.RawContacts
https://developer.android.com/reference/android/accounts/Account
https://developer.android.com/reference/android/provider/ContactsContract.SyncColumns.html#ACCOUNT_NAME
https://developer.android.com/reference/android/provider/ContactsContract.SyncColumns.html#ACCOUNT_TYPE
https://developer.android.com/reference/android/accounts/Account#name
https://developer.android.com/reference/android/accounts/Account#type
https://developer.android.com/reference/android/accounts/AccountManager
https://developer.android.com/reference/android/provider/ContactsContract.SyncColumns.html#ACCOUNT_NAME
https://developer.android.com/reference/android/provider/ContactsContract.SyncColumns.html#ACCOUNT_TYPE
https://developer.android.com/reference/android/provider/ContactsContract.SyncColumns.html#ACCOUNT_NAME
https://developer.android.com/reference/android/provider/ContactsContract.SyncColumns.html#ACCOUNT_TYPE
https://developer.android.com/reference/android/provider/ContactsContract.SyncColumns.html#ACCOUNT_NAME
https://developer.android.com/reference/android/provider/ContactsContract.RawContacts.html#getLocalAccountName()
https://developer.android.com/reference/android/provider/ContactsContract.SyncColumns.html#ACCOUNT_TYPE
https://developer.android.com/reference/android/provider/ContactsContract.RawContacts.html#getLocalAccountType()
https://developer.android.com/reference/android/provider/ContactsContract.html#CALLER_IS_SYNCADAPTER
http://developer.android.com/tools/help/index.html

[C-0-2] MUST support verifying “.apk” files using the APK Signature Scheme v3, APK
Signature Scheme v2 and JAR signing .

e [C-0-3] MUST NOT extend either the .apk , Android Manifest , Dalvik bytecode, or
RenderScript bytecode formats in such a way that would prevent those files from
installing and running correctly on other compatible devices.

e [C-0-4] MUST NOT allow apps other than the current "installer of record" for the package
to silently uninstall the app without any user confirmation, as documented in the SDK for
the DELETE_PACKAGE permission. The only exceptions are the system package verifier
app handling PACKAGE_NEEDS_VERIFICATION intent and the storage manager app
handling ACTION_MANAGE_STORAGE intent.

e [C-0-5] MUST have an activity that handles the
android.settings. MANAGE UNKNOWN_APP_SOURCES intent.

e [C-0-6] MUST NOT install application packages from unknown sources, unless the app
that requests the installation meets all the following requirements:
o |t MUST declare the REQUEST INSTALL PACKAGES permission or have the
android:targetSdkVersion set at 24 or lower.
o It MUST have been granted permission by the user to install apps from
unknown sources.

e SHOULD provide a user affordance to grant/revoke the permission to install apps from
unknown sources per application, but MAY choose to implement this as a no-op and
return RESULT _CANCELED for startActivityForResult() , if the device implementation does
not want to allow users to have this choice. However, even in such cases, they SHOULD
indicate to the user why there is no such choice presented.

e [C-0-7] MUST display a warning dialog with the warning string that is provided through the
system API PackageManager.setHarmful AppWarning to the user before launching an activity
in an application that has been marked by the same system API
PackageManager.setHarmfulAppWarning as potentially harmful.

e SHOULD provide a user affordance to choose to uninstall or launch an application on the
warning dialog.

e [C-0-8] MUST implement support for Incremental File System as documented here .

e [C-0-9] MUST support verifying .apk files using the APK Signature Scheme v4 .

¢ [f device implementations are already launched on an earlier Android version and cannot
meet the requirements [C-0-8] and [C-0-9] through a system software update, they MAY
be exempted from these requirements.

5. Multimedia Compatibility
Device implementations:

e [C-0-1] MUST support the media formats, encoders, decoders, file types, and container
formats defined in section 5.1 for each and every codec declared by MediaCodecList .

e [C-0-2] MUST declare and report support of the encoders, decoders available to third-
party applications via MediaCodecList .

e [C-0-3] MUST be able to properly decode and make available to third-party apps all the
formats it can encode. This includes all bitstreams that its encoders generate and the
profiles reported in its CamcorderProfile .

Device implementations:

e SHOULD aim for minimum codec latency, in others words, they
o SHOULD NOT consume and store input buffers and return input buffers only
once processed.
o SHOULD NOT hold onto decoded buffers for longer than as specified by the
standard (e.g. SPS).
o SHOULD NOT hold onto encoded buffers longer than required by the GOP
structure.

All of the codecs listed in the section below are provided as software implementations in the
preferred Android implementation from the Android Open Source Project.

Please note that neither Google nor the Open Handset Alliance make any representation that these
codecs are free from third-party patents. Those intending to use this source code in hardware or
software products are advised that implementations of this code, including in open source software

Clnd I'Oid Page 57 of 136


https://source.android.com/security/apksigning/v3.html
https://source.android.com/security/apksigning/v2.html
https://source.android.com/security/apksigning/v2.html#v1-verification
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
https://android.googlesource.com/platform/dalvik/
https://developer.android.com/reference/android/Manifest.permission.html#DELETE_PACKAGES
https://developer.android.com/reference/android/content/Intent.html#ACTION_PACKAGE_NEEDS_VERIFICATION
https://developer.android.com/reference/android/os/storage/StorageManager.html#ACTION_MANAGE_STORAGE
http://developer.android.com/reference/android/provider/Settings.html#ACTION_MANAGE_UNKNOWN_APP_SOURCES
https://developer.android.com/reference/android/content/Intent.html#ACTION_INSTALL_PACKAGE
http://developer.android.com/reference/android/Manifest.permission.html#REQUEST_INSTALL_PACKAGES
http://developer.android.com/reference/android/app/Activity.html#startActivityForResult%2528android.content.Intent,int%2529
https://source.android.com/devices/architecture/kernel/incfs
https://source.android.com/security/apksigning/v4.html
http://developer.android.com/reference/android/media/MediaCodecList.html
http://developer.android.com/reference/android/media/CamcorderProfile.html

or shareware, may require patent licenses from the relevant patent holders.

5.1. Media Codecs
5.1.1. Audio Encoding

See more details in 5.1.3. Audio Codecs Details .

If device implementations declare android.hardware.microphone , they MUST support encoding the
following audio formats and make them available to third-party apps:

e [C-1-1] PCM/WAVE
e [C-1-2] FLAC
e [C-1-3] Opus

All audio encoders MUST support:

e [C-3-1] PCM 16-bit native byte order audio frames via the android.media.MediaCodec API.

5.1.2. Audio Decoding

See more details in 5.1.3. Audio Codecs Details .

If device implementations declare support for the android.hardware.audio.output feature, they must
support decoding the following audio formats:

[C-1-1] MPEG-4 AAC Profile (AAC LC)

[C-1-2] MPEG-4 HE AAC Profile (AAC+)

[C-1-3] MPEG-4 HE AACv2 Profile (enhanced AAC+)
[C-1-4] AAC ELD (enhanced low delay AAC)

[C-1-11] xHE-AAC (ISO/IEC 23003-3 Extended HE AAC Profile, which includes the USAC
Baseline Profile, and 1ISO/IEC 23003-4 Dynamic Range Control Profile)

[C-1-5] FLAC

[C-1-6] MP3

[C-1-7] MIDI

[C-1-8] Vorbis

[C-1-9] PCM/WAVE including high-resolution audio formats up to 24 bits, 192 kHz sample
rate, and 8 channels. Note that this requirement is for decoding only, and that a device is
permitted to downsample and downmix during the playback phase.

[C-1-10] Opus

If device implementations support the decoding of AAC input buffers of multichannel streams (i.e.
more than two channels) to PCM through the default AAC audio decoder in the
android.media.MediaCodec API, the following MUST be supported:

e [C-2-1] Decoding MUST be performed without downmixing (e.g. a 5.0 AAC stream must be
decoded to five channels of PCM, a 5.1 AAC stream must be decoded to six channels of
PCM).

¢ [C-2-2] Dynamic range metadata MUST be as defined in "Dynamic Range Control (DRC)" in
ISO/IEC 14496-3, and the android.media.MediaFormat DRC keys to configure the dynamic
range-related behaviors of the audio decoder. The AAC DRC keys were introduced in API
21, and are: KEY AAC_DRC_ATTENUATION FACTOR,

KEY AAC DRC BOOST FACTOR,KEY AAC DRC HEAVY COMPRESSION,
KEY_AAC_DRC_TARGET REFERENCE LEVEL and
KEY AAC ENCODED TARGET LEVEL .

e [SR] It is STRONGLY RECOMMENDED that requirements C-2-1 and C-2-2 above are

satisfied by all AAC audio decoders.

When decoding USAC audio, MPEG-D (ISO/IEC 23003-4):

e [C-3-1] Loudness and DRC metadata MUST be interpreted and applied according to
MPEG-D DRC Dynamic Range Control Profile Level 1.

e [C-3-2] The decoder MUST behave according to the configuration set with the following
android.media.MediaFormat keys: KEY_AAC_DRC_TARGET REFERENCE_LEVEL and
KEY_AAC_DRC_EFFECT TYPE.

Clnd I'Oid Page 58 of 136


https://developer.android.com/reference/android/media/MediaCodec.html#raw-audio-buffers

MPEG-4 AAC, HE AAC, and HE AACv2 profile decoders:

e MAY support loudness and dynamic range control using ISO/IEC 23003-4 Dynamic Range
Control Profile.

If ISO/IEC 23003-4 is supported and if both ISO/IEC 23003-4 and ISO/IEC 14496-3 metadata are
present in a decoded bitstream, then:

e |SO/IEC 23003-4 metadata SHALL take precedence.

All audio decoders MUST support outputting:

e [C-6-1] PCM 16-bit native byte order audio frames via the android.media.MediaCodec API.

5.1.3. Audio Codecs Details

Codec

File
. Types/Container
Format/Codec Details Formats to be
supported
e 3GPP (.3gp)
o MPEG-4
(.mp4, .m4a)
e ADTS raw
AAC (.aac,
ADIF not
gl:)fif:“ AAC Support for mono/stereo/5.0/5.1 content with standard sampling supported)
rates from 8 to 48 kHz. * MPEG-TS
(AAC LC) (.ts, not
seekable,
decode only)
e Matroska
(.mky,
decode only)
) e 3GPP (.3gp)
x:gclirifﬁlli Support for mono/stereo/5.0/5.1 content with standard sampling | ¢ MPEG-4
(AACH) rates from 16 to 48 kHz. (.mp4, .m4a)
MPEG-4 HE
AACY2 e 3GPP (.3gp)
Profile Support for mono/stereo/5.0/5.1 content with standard sampling | ¢ MPEG-4
(enhanced rates from 16 to 48 kHz. (.mp4, .m4a)
AACH+)
AAC ELD e 3GPP (.3gp)
(enhanced Support for mono/stereo content with standard sampling rates o MPEG-4
k)xlcgelay from 16 to 48 kHz. (.mp4, .m4a)
USAC Support for mono/stereo content with standard sampling rates MPEG-4 (.mp4,
from 7.35 to 48 kHz. .m4a)
AMR-NB 4.75 t0 12.2 kbps sampled @ 8 kHz 3GPP (.3gp)
9 rates from 6.60 kbit/s to 23.85 kbit/s sampled @ 16 kHz, as
AMR-WB defined at AMR-WB, Adaptive Multi-Rate - Wideband Speech 3GPP (.3gp)

android

Page 59 of 136


https://developer.android.com/reference/android/media/MediaCodec.html#raw-audio-buffers
https://www.loc.gov/preservation/digital/formats/fdd/fdd000255.shtml

e FLAC (.flac)

For both encoder and decoder: at least Mono and Stereo modes * MPEG-4
MUST be supported. Sample rates up to 192 kHz MUST be (:mp4, .m4a,
FLAC supported; 16-bit and 24-bit resolution MUST be supported. FLAC |  decode only)
24-bit audio data handling MUST be available with floating point | ® Matroska

audio configuration. (-mky,
decode only)

e MP3 (.mp3)
o MPEG-4
(.mp4, .m4a,
MP3 Mono/Stereo 8-320Kbps constant (CBR) or variable bitrate (VBR) decode only)
e Matroska
(.mkv,
decode only)

Type O and 1
(.mid, .xmf,
.mxmf)

MIDI Type 0 and 1. DLS Version 1 and 2. XMF and Mobile XMF. e RTTTL/RTX
Support for ringtone formats RTTTL/RTX, OTA, and iMelody (rtttl, .rtx)

iMelody
(.imy)

MIDI

Ogg (.ogg)
o MPEG-4
(.mp4, .m4a,
decode only)
Matroska
(.mkv)

o Webm
(.webm)

Vorbis

PCM codec MUST support 16-bit linear PCM and 16-bit float.
WAVE extractor must support 16-bit, 24-bit, 32-bit linear PCM and
32-bit float (rates up to limit of hardware). Sampling rates MUST
be supported from 8 kHz to 192 kHz.

PCM/WAVE WAVE (.wav)

Ogg (-0gg)

o MPEG-4
(.mp4, .m4a,

Decoding: Support for mono, stereo, 5.0 and 5.1 content with decode only)

sampling rates of 8000, 12000, 16000, 24000, and 48000 Hz. o Matroska

Encoding: Support for mono and stereo content with sampling (.mkv)

rates of 8000, 12000, 16000, 24000, and 48000 Hz. « Webm

(.webm)

Opus

5.1.4. Image Encoding

See more details in 5.1.6. Image Codecs Details .
Device implementations MUST support encoding the following image encoding:

o [C-0-1] JPEG
o [C-0-2] PNG
o [C-0-3] WebP

If device implementations support HEIC encoding via android.media.MediaCodec for media type
MIMETYPE IMAGE ANDROID_HEIC, they:

e [C-1-1] MUST provide a hardware-accelerated HEVC encoder codec that supports
BITRATE_MODE_CQ bitrate control mode, HEVCProfileMainStill profile and 512 x 512 px
frame size.

android

Page 60 of 136


https://developer.android.com/reference/android/media/MediaFormat.html#MIMETYPE_IMAGE_ANDROID_HEIC
https://developer.android.com/reference/android/media/MediaCodecInfo.EncoderCapabilities.html#BITRATE_MODE_CQ
https://developer.android.com/reference/android/media/MediaCodecInfo.CodecProfileLevel.html#HEVCProfileMainStill

5.1.5. Image Decoding

See more details in 5.1.6. Image Codecs Details .

Device implementations MUST support decoding the following image encoding:

[C-0-1] JPEG
[C-0-2] GIF
[C-0-3] PNG
[C-0-4] BMP
[C-0-5] WebP
[C-0-6] Raw

If device implementations support HEVC video decoding, they: * [C-1-1] MUST support HEIF (HEIC)

image decoding.

Image decoders that support a high bit-depth format (9+ bits per channel):

e [C-2-1] MUST support outputting an 8-bit equivalent format if requested by the
application, for example, via the ARGB_8888 config of android.graphics.Bitmap .

5.1.6. Image Codecs Details

Format/Codec Details Supported File Types/Container Formats

JPEG Base+progressive JPEG (.jpg)

GIF GIF (.gif)

PNG PNG (.png)

BMP BMP (.bmp)

WebP WebP (.webp)

Raw ARW (.arw), CR2 (.cr2), DNG (.dng), NEF (.nef), NRW (.nrw),

ORF (.orf), PEF (.pef), RAF (.raf), RW2 (.rw2), SRW (.srw)

Image, Image

HEIF collection, Image HEIF (.heif), HEIC (.heic)
sequence

Image encoder and decoders exposed through the MediaCodec API

e [C-1-1] MUST support YUV420 8:8:8 flexible color format ( COLOR_FormatYUV420Flexible

) through CodecCapabilities .

e [SR] STRONGLY RECOMMENDED to support RGB888 color format for input Surface mode.

e [C-1-3] MUST support at least one of a planar or semiplanar YUV420 8:8:8 color format:
COLOR_FormatYUV420PackedPlanar (equivalent to COLOR_FormatY UV420Planar ) or
COLOR_FormatYUV420PackedSemiPlanar (equivalent to COLOR_FormatYUV420SemiPlanar
). They are STRONGLY RECOMMENDED to support both.

5.1.7. Video Codecs

e For acceptable quality of web video streaming and video-conference services, device
implementations SHOULD use a hardware VP8 codec that meets the requirements .

If device implementations include a video decoder or encoder:

e [C-1-1] Video codecs MUST support output and input bytebuffer sizes that accommodate
the largest feasible compressed and uncompressed frame as dictated by the standard
and configuration but also not overallocate.

e [C-1-2] Video encoders and decoders MUST support YUV420 8:8:8 flexible color formats (
COLOR_FormatYUV420Flexible ) through CodecCapabilities .

e [C-1-3] Video encoders and decoders MUST support at least one of a planar or semiplanar
YUV420 8:8:8 color format: COLOR_FormatYUV420PackedPlanar (equivalent to
COLOR_FormatYUV420Planar ) or COLOR_FormatYUV420PackedSemiPlanar (equivalent to
COLOR_FormatYUV420SemiPlanar ). They are STRONGLY RECOMMENDED to support

both.

android

Page 61 of 136


https://developer.android.com/reference/android/graphics/Bitmap.Config.html#ARGB_8888
https://developer.android.com/reference/android/media/MediaCodec
https://developer.android.com/reference/android/media/MediaCodecInfo.CodecCapabilities
http://www.webmproject.org/hardware/rtc-coding-requirements/
https://developer.android.com/reference/android/media/MediaCodecInfo.CodecCapabilities

¢ [SR] Video encoders and decoders are STRONGLY RECOMMENDED to support at least
one of a hardware optimized planar or semiplanar YUV420 8:8:8 color format (YV12,
NV12, NV21 or equivalent vendor optimized format.)

e [C-1-5] Video decoders that support a high bit-depth format (9+ bits per channel) MUST
support outputting an 8-bit equivalent format if requested by the application. This MUST
be reflected by supporting an YUV420 8:8:8 color format via android.media.Media