Compatibility Definition

androi

Android 12

Last updated: October 4, 2021
Copyright © 2021, Google LLC All rights reserved.

Table of Contents

1. Introduction
1.1 Document Structure

1.1.1. Requirements by Device Type
1.1.2. Requirement ID
1.1.3. Requirement ID in Section 2

2. Device Types
2.1 Device Configurations

2.2.

23.

2.4.

2.5.

Handheld Requirements
2.2.1. Hardware

2.2.2. Multimedia

2.2.3. Software

2.2.4. Performance and Power
2.2.5. Security Model

2.2.6. Developer Tools and Options
Compatibility

2.2.7. Handheld Media Performance Class
2.2.7.1. Media

2.2.7.2. Camera

2.2.7.3. Hardware

2.2.7.4. Performance
Television Requirements
2.3.1. Hardware

2.3.2. Multimedia

2.3.3. Software

2.3.4. Performance and Power
2.3.5. Security Model

2.3.6. Developer Tools and Options
Compatibility

Watch Requirements

2.4.1. Hardware

2.4.2. Multimedia

2.4.3. Software

2.4.4. Performance and Power
2.4.5. Security Model
Automotive Requirements
2.5.1. Hardware

android

2.6.

3.2.

3.3.

3.4.

3.5.

3.6

2.5.2. Multimedia

2.5.3. Software

2.5.4. Performance and Power
2.5.5. Security Model

2.5.6. Developer Tools and Options
Compatibility

Tablet Requirements
2.6.1. Hardware

2.6.2. Security Model
2.6.2. Software

. Software
3.1.

Managed API Compatibility
3.1.1. Android Extensions
3.1.2. Android Library

Soft APl Compatibility
3.2.1. Permissions

3.2.2. Build Parameters

3.2.3. Intent Compatibility
3.2.3.1. Common Application Intents
3.2.3.2. Intent Resolution
3.2.3.3. Intent Namespaces
3.2.3.4. Broadcast Intents
3.2.3.5. Conditional Application Intents

3.2.4. Activities on secondary/multiple
displays

Native API Compatibility

3.3.1. Application Binary Interfaces

3.3.2. 32-bit ARM Native Code Compatibility
Web Compatibility

3.4.1. WebView Compatibility

3.4.2. Browser Compatibility

API Behavioral Compatibility

3.5.1. Application Restriction

3.5.2. Application Hibernation

. APl Namespaces
3.7.

Runtime Compatibility

Page 2 of 142

3.8. User Interface Compatibility

3.8.1. Launcher (Home Screen)

3.8.2. Widgets

3.8.3. Notifications
3.8.3.1. Presentation of Notifications
3.8.3.2. Notification Listener Service
3.8.3.3. DND (Do not Disturb)

3.8.4. Assist API's

3.8.5. Alerts and Toasts

3.8.6. Themes

3.8.7. Live Wallpapers

3.8.8. Activity Switching

3.8.9. Input Management

3.8.10. Lock Screen Media Control

3.8.11. Screen savers (previously Dreams)

3.8.12. Location
3.8.13. Unicode and Font
3.8.14. Multi-windows
3.8.15. Display Cutout
3.8.16. Device Controls
3.9. Device Administration
3.9.1 Device Provisioning
3.9.1.1 Device owner provisioning
3.9.1.2 Managed profile provisioning
3.9.2 Managed Profile Support
3.9.3 Managed User Support
3.10. Accessibility
3.11. Text-to-Speech
3.12. TV Input Framework
3.13. Quick Settings
3.14. Media Ul
3.15. Instant Apps
3.16. Companion Device Pairing
3.17. Heavyweight Apps

android

3.18. Contacts

4. Application Packaging Compatibility

5. Multimedia Compatibility

5.1.

5.2.

5.3.

5.4.

Media Codecs

5.1.1. Audio Encoding
5.1.2. Audio Decoding
5.1.3. Audio Codecs Details
5.1.4. Image Encoding
5.1.5. Image Decoding
5.1.6. Image Codecs Details
5.1.7. Video Codecs

5.1.8. Video Codecs List
5.1.9. Media Codec Security
5.1.10. Media Codec Characterization
Video Encoding

5.2.1. H.263

5.2.2. H.264

5.2.3. VP8

5.2.4.VP9

5.2.5. H.265

Video Decoding

5.3.1. MPEG-2

5.3.2. H.263

5.3.3. MPEG-4

5.3.4. H.264

5.3.5. H.265 (HEVC)

5.3.6. VP8

5.3.7. VP9

5.3.8. Dolby Vision

5.3.9. AV1

Audio Recording

5.4.1. Raw Audio Capture and Microphone
Information

5.4.2. Capture for Voice Recognition
5.4.3. Capture for Rerouting of Playback

Page 3 of 142

5.4.4. Acoustic Echo Canceler
5.4.5. Concurrent Capture
5.4.6. Microphone Gain Levels

5.5. Audio Playback
5.5.1. Raw Audio Playback
5.5.2. Audio Effects
5.5.3. Audio Output Volume
5.5.4. Audio Offload

5.6. Audio Latency

5.7. Network Protocols

5.8. Secure Media

5.9. Musical Instrument Digital Interface
(MIDI)

5.10. Professional Audio
5.11. Capture for Unprocessed

6. Developer Tools and Options
Compatibility

6.1. Developer Tools

6.2. Developer Options

7. Hardware Compatibility
7.1. Display and Graphics
7.1.1. Screen Configuration
7.1.1.1. Screen Size and Shape
7.1.1.2. Screen Aspect Ratio
7.1.1.3. Screen Density
7.1.2. Display Metrics
7.1.3. Screen Orientation
7.1.4. 2D and 3D Graphics Acceleration
7.1.4.1 OpenGL ES
7.1.4.2 Vulkan
7.1.4.3 RenderScript
7.1.4.4 2D Graphics Acceleration
7.1.4.5 Wide-gamut Displays
7.1.5. Legacy Application Compatibility Mode
7.1.6. Screen Technology
7.1.7. Secondary Displays

android

7.2.

7.3.

7.4.

Input Devices

7.2.1. Keyboard

7.2.2. Non-touch Navigation

7.2.3. Navigation Keys

7.2.4. Touchscreen Input

7.2.5. Fake Touch Input

7.2.6. Game Controller Support
7.2.6.1. Button Mappings

7.2.7. Remote Control

Sensors

7.3.1. Accelerometer

7.3.2. Magnetometer

7.3.3.GPS

7.3.4. Gyroscope

7.3.5. Barometer

7.3.6. Thermometer

7.3.7. Photometer

7.3.8. Proximity Sensor

7.3.9. High Fidelity Sensors

7.3.10. Biometric Sensors

7.3.12. Pose Sensor

7.3.13. Hinge Angle Sensor

Data Connectivity

7.4.1. Telephony
7.4.1.1. Number Blocking Compatibility
7.4.1.2. Telecom API

7.4.2. |EEE 802.11 (Wi-Fi)
7.4.2.1. Wi-Fi Direct
7.4.2.2. Wi-Fi Tunneled Direct Link Setup
7.4.2.3. Wi-Fi Aware
7.4.2.4. Wi-Fi Passpoint
7.4.2.5. Wi-Fi Location (Wi-Fi Round Trip
Time - RTT)
7.4.2.6. Wi-Fi Keepalive Offload

7.4.2.7. Wi-Fi Easy Connect (Device
Provisioning Protocol)

Page 4 of 142

7.4.2.7. Enterprise Wi-Fi Server Certificate
Validation

7.4.3. Bluetooth
7.4.4. Near-Field Communications
7.4.5. Networking protocols and APIs
7.4.5.1. Minimum Network Capability
7.4.5.2. IPv6
7.4.5.3. Captive Portals
7.4.6. Sync Settings
7.4.7. Data Saver
7.4.8. Secure Elements
7.5. Cameras
7.5.1. Rear-Facing Camera
7.5.2. Front-Facing Camera
7.5.3. External Camera
7.5.4. Camera API Behavior
7.5.5. Camera Orientation
7.6. Memory and Storage
7.6.1. Minimum Memory and Storage
7.6.2. Application Shared Storage
7.6.3. Adoptable Storage
7.7.USB
7.7.1. USB peripheral mode
7.7.2. USB host mode
7.8. Audio
7.8.1. Microphone
7.8.2. Audio Output
7.8.2.1. Analog Audio Ports
7.8.2.2. Digital Audio Ports
7.8.3. Near-Ultrasound
7.8.4. Signal Integrity
7.9. Virtual Reality
7.9.1. Virtual Reality Mode

7.9.2. Virtual Reality Mode - High
Performance

7.10. Haptics

android

8. Performance and Power

8.1.
8.2.
8.3.
8.4.
8.5.

User Experience Consistency
File I/0 Access Performance
Power-Saving Modes

Power Consumption Accounting
Consistent Performance

9. Security Model Compatibility

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.
9.8.

9.9.

Permissions

UID and Process Isolation
Filesystem Permissions
Alternate Execution Environments
Multi-User Support

Premium SMS Warning
Security Features

Privacy

9.8.1. Usage History

9.8.2. Recording

9.8.3. Connectivity

9.8.4. Network Traffic

9.8.5. Device Identifiers

9.8.6. Content Capture and App Search
9.8.7. Clipboard Access

9.8.8. Location

9.8.9. Installed apps

9.8.10. Connectivity Bug Report
9.8.11. Data blobs sharing
9.8.12. Music Recognition
9.8.13. SensorPrivacyManager
Data Storage Encryption
9.9.1. Direct Boot

9.9.2. Encryption requirements
9.9.3. Encryption Methods
9.9.4. Resume on Reboot

9.10. Device Integrity

Page 5 of 142

9.11. Keys and Credentials

9.11.1. Secure Lock Screen and
Authentication

9.11.2. StrongBox
9.11.3. Identity Credential
9.12. Data Deletion
9.13. Safe Boot Mode
9.14. Automotive Vehicle System Isolation
9.15. Subscription Plans
9.16. Application Data Migration

10. Software Compatibility Testing
10.1. Compatibility Test Suite
10.2. CTS Verifier

11. Updatable Software
12. Document Changelog
13. Contact Us

android

Page 6 of 142

1. Introduction

This document enumerates the requirements that must be met in order for devices to be compatible
with Android 12.

The use of “MUST”, “MUST NOT”, “REQUIRED”, “SHALL", “SHALL NOT", “SHOULD", “SHOULD NOT",
“RECOMMENDED”, “MAY”, and “OPTIONAL" is per the IETF standard defined in RFC2119 .

As used in this document, a “device implementer” or “implementer” is a person or organization
developing a hardware/software solution running Android 12. A “device implementation” or
“implementation” is the hardware/software solution so developed.

To be considered compatible with Android 12, device implementations MUST meet the requirements
presented in this Compatibility Definition, including any documents incorporated via reference.

Where this definition or the software tests described in section 10 is silent, ambiguous, or
incomplete, it is the responsibility of the device implementer to ensure compatibility with existing
implementations.

For this reason, the Android Open Source Project is both the reference and preferred implementation
of Android. Device implementers are STRONGLY RECOMMENDED to base their implementations to
the greatest extent possible on the “upstream” source code available from the Android Open Source
Project. While some components can hypothetically be replaced with alternate implementations, it is
STRONGLY RECOMMENDED to not follow this practice, as passing the software tests will become
substantially more difficult. It is the implementer’s responsibility to ensure full behavioral
compatibility with the standard Android implementation, including and beyond the Compatibility Test
Suite. Finally, note that certain component substitutions and modifications are explicitly forbidden by
this document.

Many of the resources linked to in this document are derived directly or indirectly from the Android
SDK and will be functionally identical to the information in that SDK’s documentation. In any cases
where this Compatibility Definition or the Compatibility Test Suite disagrees with the SDK
documentation, the SDK documentation is considered authoritative. Any technical details provided in
the linked resources throughout this document are considered by inclusion to be part of this
Compatibility Definition.

1.1 Document Structure
1.1.1. Requirements by Device Type

Section 2 contains all of the requirements that apply to a specific device type. Each subsection of
Section 2 is dedicated to a specific device type.

All the other requirements, that universally apply to any Android device implementations, are listed in
the sections after Section 2 . These requirements are referenced as "Core Requirements" in this
document.

1.1.2. Requirement ID

Requirement ID is assigned for MUST requirements.

e The ID is assigned for MUST requirements only.
e STRONGLY RECOMMENDED requirements are marked as [SR] but ID is not assigned.
e The ID consists of : Device Type ID - Condition ID - Requirement ID (e.g. C-0-1).

Each ID is defined as below:

e Device Type ID (see more in 2. Device Types)

o C: Core (Requirements that are applied to all Android device implementations)

o H: Android Handheld device

o T: Android Television device

o A: Android Automotive implementation

o W: Android Watch implementation

o Tab: Android Tablet implementation

e Condition ID

o When the requirement is unconditional, this ID is set as 0.

o When the requirement is conditional, 1 is assigned for the 1st condition and
the number increments by 1 within the same section and the same device
type.

e Requirement ID

o This ID starts from 1 and increments by 1 within the same section and the

same condition.

android

Page 7 of 142

http://www.ietf.org/rfc/rfc2119.txt
http://source.android.com/

1.1.3. Requirement ID in Section 2

The Requirement IDs in Section 2 have two parts. The first corresponds to a section ID as described
above. The second part identifies the form factor and the form-factor specific requirement.

section ID that is followed by the Requirement ID described above.

e The ID in Section 2 consists of : Section ID / Device Type ID - Condition ID - Requirement
ID (e.g. 7.4.3/A-0-1).

2. Device Types

The Android Open Source Project provides a software stack that can be used for a variety of device
types and form factors. To support security on devices, the software stack, including any
replacement OS or an alternate kernel implementation, is expected to execute in a secure
environment as described in section 9 and elsewhere within this CDD. There are a few device types
that have a relatively better established application distribution ecosystem.

This section describes those device types, and additional requirements and recommendations
applicable for each device type.

All Android device implementations that do not fit into any of the described device types MUST still
meet all requirements in the other sections of this Compatibility Definition.

2.1 Device Configurations

For the major differences in hardware configuration by device type, see the device-specific
requirements that follow in this section.

2.2. Handheld Requirements

An Android Handheld device refers to an Android device implementation that is typically used by
holding it in the hand, such as an mp3 player, phone, or tablet.

Android device implementations are classified as a Handheld if they meet all the following criteria:

e Have a power source that provides mobility, such as a battery.

e Have a physical diagonal screen size in the range of 3.3 inches (or 2.5 inches for devices
which launched on an API level earlier than Android 11) to 8 inches.

The additional requirements in the rest of this section are specific to Android Handheld device
implementations.

. Note: Requirements that do not apply to Android Tablet devices are marked with an *.
2.2.1. Hardware

Handheld device implementations:

e [7.1.1.1/H-0-1] MUST have at least one Android-compatible display that meets all
requirements described on this document.

e [7.1.1.3/H-SR] Are STRONGLY RECOMMENDED to provide users an affordance to
change the display size (screen density).

e [7.1.1.1/H-0-2] MUST support GPU composition of graphic buffers at least as large as
the highest resolution of any built-in display.

If Handheld device implementations support software screen rotation, they:

e [7.1.1.1/H-1-1]* MUST make the logical screen that is made available for third party
applications be at least 2 inches on the short edge(s) and 2.7 inches on the long edge(s).
Devices which launched on an API level earlier than that of this document are exempted
from this requirement.

If Handheld device implementations do not support software screen rotation, they:

e [7.1.1.1/H-2-1]* MUST make the logical screen that is made available for third party
applications be at least 2.7 inches on the short edge(s). Devices which launched on an
API level earlier than that of this document are exempted from this requirement.

If Handheld device implementations claim support for high dynamic range displays through
Configuration.isScreenHdr() , they:

Clnd I'Oid Page 8 of 142

https://developer.android.com/reference/android/content/res/Configuration.html#isScreenHdr%2528%2529

e [7.1.4.5/H-1-1] MUST advertise support for the EGL_EXT gl colorspace bt2020 pq,
EGL_EXT surface SMPTE2086_metadata , EGL_EXT surface CTA861 3 metadata,
VK _EXT swapchain_colorspace , and VK_EXT hdr metadata extensions.

Handheld device implementations:

e [7.1.4.6/H-0-1] MUST report whether the device supports the GPU profiling capability via
a system property graphics.gpu.profiler.support .

If Handheld device implementations declare support via a system property graphics.gpu.profiler.support

, they:

e [7.1.4.6/H-1-1] MUST report as output a protobuf trace that complies with the schema
for GPU counters and GPU renderstages defined in the Perfetto documentation .

e [7.1.4.6/H-1-2] MUST report conformant values for the device’s GPU counters following
the gpu counter trace packet proto .

e [7.1.4.6/H-1-3] MUST report conformant values for the device’s GPU RenderStages
following the render stage trace packet proto.

e [7.1.4.6/H-1-4] MUST report a GPU Frequency tracepoint as specified by the format:
power/gpu_frequency .

Handheld device implementations:

e [7.1.5/H-0-1] MUST include support for legacy application compatibility mode as
implemented by the upstream Android open source code. That is, device implementations
MUST NOT alter the triggers or thresholds at which compatibility mode is activated, and
MUST NOT alter the behavior of the compatibility mode itself.

[7.2 .1/H-0-1] MUST include support for third-party Input Method Editor (IME)
applications.

[7.2 .3/H-0-3] MUST provide the Home function on all the Android-compatible displays
that provide the home screen.

[7.2 .3/H-0-4] MUST provide the Back function on all the Android-compatible displays and
the Recents function on at least one of the Android-compatible displays.

[7.2 .3/H-0-2] MUST send both the normal and long press event of the Back function (
KEYCODE BACK) to the foreground application. These events MUST NOT be consumed
by the system and CAN be triggered by outside of the Android device (e.g. external
hardware keyboard connected to the Android device).

[7.2 .4/H-0-1] MUST support touchscreen input.

[7.2 .4/H-SR] Are STRONGLY RECOMMENDED to launch the user-selected assist app, in
other words the app that implements VoicelnteractionService, or an activity handling the
ACTION_ASSIST on long-press of KEYCODE _MEDIA PLAY_PAUSE or

KEYCODE HEADSETHOOK if the foreground activity does not handle those long-press
events.

e [7.3.1/H-SR] Are STRONGLY RECOMMENDED to include a 3-axis accelerometer.

If Handheld device implementations include a 3-axis accelerometer, they:

e [7.3.1/H-1-1] MUST be able to report events up to a frequency of at least 100 Hz.

If Handheld device implementations include a GPS/GNSS receiver and report the capability to
applications through the android.hardware.location.gps feature flag, they:

e [7.3.3/H-2-1] MUST report GNSS measurements, as soon as they are found, even if a
location calculated from GPS/GNSS is not yet reported.

e [7.3 .3/H-2-2] MUST report GNSS pseudoranges and pseudorange rates, that, in open-sky
conditions after determining the location, while stationary or moving with less than 0.2
meter per second squared of acceleration, are sufficient to calculate position within 20
meters, and speed within 0.2 meters per second, at least 95% of the time.

If Handheld device implementations include a 3-axis gyroscope, they:

e [7.3.4/H-3-1] MUST be able to report events up to a frequency of at least 100 Hz.

e [7.3 .4/H-3-2] MUST be capable of measuring orientation changes up to 1000 degrees
per second.

Handheld device implementations that can make a voice call and indicate any value other than
PHONE _TYPE NONE in getPhoneType :

e [7.3 .8/H] SHOULD include a proximity sensor.

android

Page 9 of 142

https://developer.android.com/studio/command-line/perfetto
https://android.googlesource.com/platform/external/perfetto/+/refs/heads/master/protos/perfetto/trace/gpu/gpu_counter_event.proto
https://android.googlesource.com/platform/external/perfetto/+/refs/heads/master/protos/perfetto/trace/gpu/gpu_render_stage_event.proto
https://android.googlesource.com/platform/external/perfetto/+/refs/heads/master/protos/perfetto/trace/ftrace/power.proto
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK
https://developer.android.com/reference/android/content/Intent#ACTION_ASSIST
https://developer.android.com/reference/android/view/KeyEvent#KEYCODE_MEDIA_PLAY_PAUSE
https://developer.android.com/reference/android/view/KeyEvent#KEYCODE_HEADSETHOOK

Handheld device implementations:

7.3 .11/H-SR] Are RECOMMENDED to support pose sensor with 6 degrees of freedom.
7.4 .3/H] SHOULD include support for Bluetooth and Bluetooth LE.

o[

e [7.4

If Handheld device implementations include a metered connection, they:
e [7.4 .7/H-1-1] MUST provide the data saver mode.

If Handheld device implementations include a logical camera device that lists capabilities using
CameraMetadata. REQUEST AVAILABLE CAPABILITIES LOGICAL MULTI CAMERA , they:

e [7.5.4/H-1-1] MUST have normal field of view (FOV) by default and it MUST be between
50 and 90 degrees.

Handheld device implementations:

e [7.6 .1/H-0-1] MUST have at least 4 GB of non-volatile storage available for application
private data (a.k.a. "/data" partition).

e [7.6 .1/H-0-2] MUST return “true” for ActivityManager.isLowRamDevice() when there is less
than 1GB of memory available to the kernel and userspace.

If Handheld device implementations declare support of only a 32-bit ABI:

e [7.6 .1/H-1-1] The memory available to the kernel and userspace MUST be at least
416MB if the default display uses framebuffer resolutions up to qHD (e.g. FWVGA).

e [7.6.1/H-2-1] The memory available to the kernel and userspace MUST be at least
592MB if the default display uses framebuffer resolutions up to HD+ (e.g. HD, WSVGA).

e [7.6 .1/H-3-1] The memory available to the kernel and userspace MUST be at least
896MB if the default display uses framebuffer resolutions up to FHD (e.g. WSXGA+).

e [7.6.1/H-4-1] The memory available to the kernel and userspace MUST be at least
1344MB if the default display uses framebuffer resolutions up to QHD (e.g. QWXGA).

If Handheld device implementations declare support of 32-bit and 64-bit ABls:

e [7.6 .1/H-5-1] The memory available to the kernel and userspace MUST be at least
816MB if the default display uses framebuffer resolutions up to qHD (e.g. FWVGA).

e [7.6.1/H-6-1] The memory available to the kernel and userspace MUST be at least
944MB if the default display uses framebuffer resolutions up to HD+ (e.g. HD, WSVGA).

e [7.6 .1/H-7-1] The memory available to the kernel and userspace MUST be at least
1280MB if the default display uses framebuffer resolutions up to FHD (e.g. WSXGA+).

e [7.6.1/H-8-1] The memory available to the kernel and userspace MUST be at least
1824MB if the default display uses framebuffer resolutions up to QHD (e.g. QWXGA).

Note that the "memory available to the kernel and userspace" above refers to the memory space
provided in addition to any memory already dedicated to hardware components such as radio, video,
and so on that are not under the kernel’s control on device implementations.

If Handheld device implementations include less than or equal to 1GB of memory available to the
kernel and userspace, they:

e [7.6 .1/H-9-1] MUST declare the feature flag android.hardware.ram.low .
e [7.6 .1/H-9-2] MUST have at least 1.1 GB of non-volatile storage for application private
data (a.k.a. "/data" partition).

If Handheld device implementations include more than 1GB of memory available to the kernel and
userspace, they:

e [7.6.1/H-10-1] MUST have at least 4GB of non-volatile storage available for application
private data (a.k.a. "/data" partition).
e SHOULD declare the feature flag android.hardware.ram.normal .

If Handheld device implementations include greater than or equal to 2GB and less than 4GB of
memory available to the kernel and userspace, they: * [7.6.1/H-SR] Are STRONGLY RECOMMENDED
to support only 32-bit userspace (both apps and system code)

If Handheld device implementations include less than 2GB of memory available to the kernel and
userspace, they: * [7.6.1/H-1-1] MUST support only 32-bit ABIs.

android

Page 10 of 142

https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_RAM_LOW
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_RAM_NORMAL

Handheld device implementations:

7.6
7.

—_——

6 .2/H-0-1] MUST NOT provide an application shared storage smaller than 1 GiB.
7 .1/H] SHOULD include a USB port supporting peripheral mode.

If handheld device implementations include a USB port supporting peripheral mode, they:

e [7.7 .1/H-1-1] MUST implement the Android Open Accessory (AOA) API.

If Handheld device implementations include a USB port supporting host mode, they:

o [7.7 .2/H-1-1] MUST implement the USB audio class as documented in the Android SDK

documentation.

Handheld device implementations:

e [7.8 .1/H-0-1] MUST include a microphone.
e [78

.2/H-0-1] MUST have an audio output and declare android.hardware.audio.output .

If Handheld device implementations are capable of meeting all the performance requirements for

supporting VR mode and include support for it, they:

e [7.9.1/H-1-1] MUST declare the android.hardware.vr.high_performance feature flag.

e [7.9 .1/H-1-2] MUST include an application implementing
android.service.vr.VrListenerService that can be enabled by VR applications via

android.app.Activity#setVrModeEnabled .

If Handheld device implementations include one or more USB-C port(s) in host mode and implement
(USB audio class), in addition to requirements in section 7.7.2 , they:

e [7.8.2.2/H-1-1] MUST provide the following software mapping of HID codes:

Function Mappings Context Behavior
Input : Short press
Output : Play or pause
Input : Long press
Media Output : Launch voice command
playback | Sends :
android.speech.action. VOICE_SEARCH_HANDS FREE if
the device is locked or its screen is off. Sends
HID usage page : 0x0C android.speech.RecognizerIntent. ACTION_WEB_SEARCH
HID usage : 0xOCD otherwise
A Kernel key : KEY PLAYPAUSE
Android key : Input : Short press
KEYCODE _MEDIA PLAY PAUSE | Incoming | Output : Accept call
call Input : Long press
Output : Reject call
Input : Short press
Ongoing |Output: End call
call Input : Long press
Output : Mute or unmute microphone
HID usage page : 0x0C Media
B HID usage : 0xOE9 playback, | Input : Short or long press
Kernel key : KEY_VOLUMEUP Ongoing | Output : Increases the system or headset volume
Android key : VOLUME UP call
HID usage page : 0x0C Media
HID usage : 0xOEA .
} playback, | Input : Short or long press
¢ Kernel key : Ongoing | Output : Decreases the system or headset volume
KEY VOLUMEDOWN cal? g Output: y
Android key : VOLUME_DOWN
HID usage page : 0x0C All. Can
HID usage : 0xOCF be
D Kernel key : triggered | Input : Short or long press
KEY_VOICECOMMAND in any Output : Launch voice command
Android key : instance.
KEYCODE VOICE ASSIST

android

Page 11 of 142

http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO

e [7.8.2.2/H-1-2] MUST trigger ACTION_HEADSET_PLUG upon a plug insert, but only after

the USB audio interfaces and endpoints have been properly enumerated in order to
identify the type of terminal connected.

When the USB audio terminal types 0x0302 is detected, they:

e [7.8.2.2/H-2-1] MUST broadcast Intent ACTION_HEADSET_PLUG with "microphone”
extra setto 0.

When the USB audio terminal types 0x0402 is detected, they:

e [7.8.2.2/H-3-1] MUST broadcast Intent ACTION_HEADSET_PLUG with "microphone”
extra setto 1.

When API AudioManager.getDevices() is called while the USB peripheral is connected they:

e [7.8.2.2/H-4-1] MUST list a device of type AudioDevicelnfo. TYPE_USB_HEADSET and

role isSink() if the USB audio terminal type field is 0x0302.

[7.8 .2.2/H-4-2] MUST list a device of type AudioDevicelnfo.TYPE_USB_HEADSET and
role isSink() if the USB audio terminal type field is 0x0402.

[7.8 .2.2/H-4-3] MUST list a device of type AudioDevicelnfo.TYPE_USB_HEADSET and
role isSource() if the USB audio terminal type field is 0x0402.

[7.8 .2.2/H-4-4] MUST list a device of type AudioDevicelnfo.TYPE_USB_DEVICE and role
isSink() if the USB audio terminal type field is 0x603.

[7.8 .2.2/H-4-5] MUST list a device of type AudioDevicelnfo.TYPE_USB_DEVICE and role
isSource() if the USB audio terminal type field is 0x604.

[7.8 .2.2/H-4-6] MUST list a device of type AudioDevicelnfo.TYPE_USB_DEVICE and role
isSink() if the USB audio terminal type field is 0x400.

[7.8 .2.2/H-4-7] MUST list a device of type AudioDevicelnfo.TYPE_USB_DEVICE and role
isSource() if the USB audio terminal type field is 0x400.

[7.8 .2.2/H-SR] Are STRONGLY RECOMMENDED upon connection of a USB-C audio
peripheral, to perform enumeration of USB descriptors, identify terminal types and
broadcast Intent ACTION_HEADSET_PLUG in less than 1000 milliseconds.

If Handheld device implementations declare android.hardware.audio.output and
android.hardware.microphone , they:

[5.6(#5_6_audio-latency)/H-1-1] MUST have a Mean Continuous Round-Trip latency of
800 milliseconds or less over 5 measurements, with a Mean Absolute Deviation less than
100 ms, over at least one supported path.

If Handheld device implementations include at least one haptic actuator, they:

[7.10 /H]* SHOULD NOT use an eccentric rotating mass (ERM) haptic actuator (vibrator).
[/H]* SHOULD position the placement of the actuator near the location where the
device is typically held or touched by hands.

[7.10 /H]* SHOULD implement all public constants for clear haptics in
android.view.HapticFeedbackConstants namely (CLOCK_TICK, CONTEXT_CLICK,
KEYBOARD_PRESS, KEYBOARD_RELEASE, KEYBOARD_TAP, LONG_PRESS,
TEXT_HANDLE_MOVE, VIRTUAL_KEY, VIRTUAL_KEY_RELEASE, CONFIRM, REJECT,
GESTURE_START and GESTURE_END).

[7.10 /H]* SHOULD implement all public constants for clear haptics in
android.os.VibrationEffect namely (EFFECT_TICK, EFFECT_CLICK, EFFECT_HEAVY_CLICK
and EFFECT_DOUBLE_CLICK) and all public constants for rich haptics in
android.os.VibrationEffect.Composition namely (PRIMITIVE_CLICK and PRIMITIVE_TICK).
[7.10 /H]* SHOULD use these linked haptic constants mappings .

[7.10 /H]* SHOULD follow quality assessment for [createOneShot()]

7.10

(https://developer.android.com/reference/android/os/VibrationEffect#createOneShot(long,%20int))

and [createWaveform()]

(https://developer.android.com/reference/android/os/VibrationEffect#createWaveform(long[], %20int))

API's.

[7.10 /H]* SHOULD verify the capabilities for amplitude scalability by running
[android.os.Vibrator.hasAmplitudeControl()]
(https://developer.android.com/reference/android/os/Vibrator#hasAmplitudeControl()).

A linear resonant actuator (LRA) is a single-mass spring system which has a dominant resonant
frequency where the mass translates in the direction of desired motion.

android

Page 12 of 142

https://developer.android.com/reference/android/content/Intent#ACTION_HEADSET_PLUG
https://developer.android.com/reference/android/media/AudioDeviceInfo#TYPE_USB_HEADSET
https://developer.android.com/reference/android/media/AudioDeviceInfo#TYPE_USB_DEVICE
https://source.android.com/devices/input/haptics
https://developer.android.com/reference/android/view/HapticFeedbackConstants#constants
https://source.android.com/devices/input/haptics
https://developer.android.com/reference/android/os/VibrationEffect
https://source.android.com/devices/input/haptics
https://developer.android.com/reference/android/os/VibrationEffect.Composition
https://source.android.com/devices/input/haptics
https://source.android.com/devices/input/haptics

If Handheld device implementations include at least one linear resonant actuator, they:

e [7.10 /H]* SHOULD move the haptic actuator in the X-axis of portrait orientation.

If Handheld device implementations have a haptic actuator which is X-axis linear resonant actuator
(LRA), they:

e [7.10 /H]* SHOULD have the resonant frequency of the X-axis LRA be under 200 Hz.

If handheld device implementations follow haptic constants mapping, they:

e [7.10/H]* SHOULD verify the implementation status by running
[android.os.Vibrator.areAllEffectsSupported()]
(https://developer.android.com/reference/android/os/Vibrator#areAllEffectsSupported(int...))
and android.os.Vibrator.arePrimitvesSupported() API's.

e [7.10 /H]* SHOULD perform a quality assessment for haptic constants.

e [7.10/H]* SHOULD provide fallback support to mitigate the risk of failure as described
here .

2.2.2. Multimedia

Handheld device implementations MUST support the following audio encoding and decoding formats
and make them available to third-party applications:

e [5.1 /H-0-1] AMR-NB

e [5.1/H-0-2] AMR-WB

e [5.1 /H-0-3] MPEG-4 AAC Profile (AAC LC)

e [5.1 /H-0-4] MPEG-4 HE AAC Profile (AAC+)

e [5.1 /H-0-5] AAC ELD (enhanced low delay AAC)

Handheld device implementations MUST support the following video encoding formats and make
them available to third-party applications:

e [5.2 /H-0-1] H.264 AVC
e [5.2 /H-0-2] VP8

Handheld device implementations MUST support the following video decoding formats and make
them available to third-party applications:

e [5.3/H-0-1] H.264 AVC

e [5.3 /H-0-2] H.265 HEVC
e [5.3 /H-0-3] MPEG-4 SP
e [5.3 /H-0-4] VP8
e [5.3 /H-0-5] VP9
2.2.3. Software

Handheld device implementations:

e [3.2.3.1 /H-0-1] MUST have an application that handles the ACTION._GET _CONTENT,
ACTION_OPEN_DOCUMENT , ACTION_OPEN_DOCUMENT_TREE, and
ACTION_CREATE DOCUMENT intents as described in the SDK documents, and provide
the user affordance to access the document provider data by using DocumentsProvider
API.

[3.2.3.1 /H-0-2]* MUST preload one or more applications or service components with an
intent handler, for all the public intent filter patterns defined by the following application
intents listed here .

[3.2.3.1 /H-SR] Are STRONGLY RECOMMENDED to preload an email application which
can handle ACTION_SENDTO or ACTION_SEND or ACTION_SEND_MULTIPLE intents to
send an email.

[3.4 .1/H-0-1] MUST provide a complete implementation of the android.webkit. Webview
APIL.

[3.4 .2/H-0-1] MUST include a standalone Browser application for general user web
browsing.

[3.8 .1/H-SR] Are STRONGLY RECOMMENDED to implement a default launcher that
supports in-app pinning of shortcuts, widgets and widgetFeatures .

e [3.8.1/H-SR] Are STRONGLY RECOMMENDED to implement a default launcher that

Clnd I'Oid Page 13 of 142

https://developer.android.com/reference/kotlin/android/os/Vibrator#areprimitivessupported
https://source.android.com/devices/input/haptics
https://source.android.com/devices/input/haptics/haptics-implement#implement-constants
https://developer.android.com/reference/android/content/Intent.html#ACTION_GET_CONTENT
https://developer.android.com/reference/android/content/Intent#ACTION_OPEN_DOCUMENT
https://developer.android.com/reference/android/content/Intent.html#ACTION_OPEN_DOCUMENT_TREE
https://developer.android.com/reference/android/content/Intent.html#ACTION_CREATE_DOCUMENT
https://developer.android.com/reference/android/provider/DocumentsProvider
https://developer.android.com/about/versions/11/reference/common-intents-30
https://developer.android.com/reference/android/content/Intent#ACTION_SENDTO
https://developer.android.com/reference/android/content/Intent#ACTION_SEND
https://developer.android.com/reference/android/content/Intent#ACTION_SEND_MULTIPLE
https://developer.android.com/reference/android/appwidget/AppWidgetProviderInfo.html#widgetFeatures

provides quick access to the additional shortcuts provided by third-party apps through the
ShortcutManager API.

[3.8 .1/H-SR] Are STRONGLY RECOMMENDED to include a default launcher app that
shows badges for the app icons.

[3.8 .2/H-SR] Are STRONGLY RECOMMENDED to support third-party app widgets.

[3.8 .3/H-0-1] MUST allow third-party apps to notify users of notable events through the
Notification and NotificationManager API classes.

[3.8 .3/H-0-2] MUST support rich notifications.

[3.8 .3/H-0-3] MUST support heads-up notifications.

[3.8 .3/H-0-4] MUST include a notification shade, providing the user the ability to directly
control (e.g. reply, snooze, dismiss, block) the notifications through user affordance such
as action buttons or the control panel as implemented in the AOSP.

[3.8 .3/H-0-5] MUST display the choices provided through Remotelnput.Builder setChoices()
in the notification shade.

[3.8 .3/H-SR] Are STRONGLY RECOMMENDED to display the first choice provided through
Remotelnput.Builder setChoices() in the notification shade without additional user
interaction.

[3.8 .3/H-SR] Are STRONGLY RECOMMENDED to display all the choices provided through
Remotelnput.Builder setChoices() in the notification shade when the user expands all
notifications in the notification shade.

[3.8 .3.1/H-SR] Are STRONGLY RECOMMENDED to display actions for which
Notification.Action.Builder.setContextual is set as true in-line with the replies displayed by
Notification.Remoteinput.Builder.setChoices .

[3.8 .4/H-SR] Are STRONGLY RECOMMENDED to implement an assistant on the device to
handle the Assist action .

If Handheld device implementations support Assist action, they:

e [3.8 .4/H-SR] Are STRONGLY RECOMMENDED to use long press on HOME key as the
designated interaction to launch the assist app as described in section 7.2.3 . MUST
launch the user-selected assist app, in other words the app that implements
VoicelnteractionService , or an activity handling the ACTION_ASSIST intent.

If Handheld device implementations support conversation notifications and group them into a separate

section from alerting and silent non-conversation notifications, they:

e [3.8 .4/H-1-1]* MUST display conversation notifications ahead of non conversation
notifications with the exception of ongoing foreground service notifications and
importance:high notifications.

If Android Handheld device implementations support a lock screen, they:

e [3.8.10/H-1-1] MUST display the Lock screen Notifications including the Media
Notification Template.

If Handheld device implementations support a secure lock screen, they:

e [3.9 /H-1-1] MUST implement the full range of device administration policies defined in
the Android SDK documentation.

e [3.9 /H-1-2] MUST declare the support of managed profiles via the
android.software.managed_users feature flag, except when the device is configured so that it
would report itself as a low RAM device or so that it allocates internal (non-removable)
storage as shared storage.

If Handheld device implementations include support for ControlsProviderService and Control APIs and

allow third-party applications to publish device controls , then they:

e [3.8.16/H-1-1] MUST declare the feature flag android.software.controls and set it to true .

e [3.8.16/H-1-2] MUST provide a user affordance with the ability to add, edit, select, and
operate the user’s favorite device controls from the controls registered by the third-party
applications through the ControlsProviderService and the Control APls.

[3.8 .16/H-1-3] MUST provide access to this user affordance within three interactions
from a default Launcher.

[3.8 .16/H-1-4] MUST accurately render in this user affordance the name and icon of
each third-party app that provides controls via the ControlsProviderService APl as well as
any specified fields provided by the Control APIs.

Conversely, If Handheld device implementations do not implement such controls, they:

android

Page 14 of 142

https://developer.android.com/reference/android/content/pm/ShortcutManager.html
https://developer.android.com/reference/android/app/Notification.html
https://developer.android.com/reference/android/app/NotificationManager.html
https://developer.android.com/reference/android/app/RemoteInput.Builder.html#setChoices%2528java.lang.CharSequence%5B%5D%2529
https://developer.android.com/reference/android/app/RemoteInput.Builder.html#setChoices%2528java.lang.CharSequence%5B%5D%2529
https://developer.android.com/reference/android/app/RemoteInput.Builder.html#setChoices%2528java.lang.CharSequence%5B%5D%2529
https://developer.android.com/reference/android/app/Notification.Action.Builder.html#setContextual%2528boolean%2529
https://developer.android.com/reference/android/app/RemoteInput.Builder.html#setChoices%2528java.lang.CharSequence%5B%5D%2529
http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST
https://developer.android.com/reference/android/service/voice/VoiceInteractionService
https://developer.android.com/preview/features/conversations#api-notifications
https://developer.android.com/reference/android/app/NotificationManager#IMPORTANCE_HIGH
http://developer.android.com/guide/topics/admin/device-admin.html
http://developer.android.com/reference/android/app/ActivityManager.html#isLowRamDevice%2528%2529
https://developer.android.com/reference/android/service/controls/ControlsProviderService
https://developer.android.com/reference/android/service/controls/Control
https://developer.android.com/preview/features/device-control
https://developer.android.com/reference/android/content/pm/PackageManager#FEATURE_CONTROLS
https://developer.android.com/reference/android/service/controls/ControlsProviderService
https://developer.android.com/reference/android/service/controls/Control#getDeviceType%2528%2529
https://developer.android.com/reference/android/service/controls/ControlsProviderService
https://developer.android.com/reference/android/service/controls/Control

e [3.8.16/H-2-1] MUST report null for the ControlsProviderService and the Control APIs.
e [3.8.16/H-2-2] MUST declare the feature flag android.software.controls and set it to false .

Handheld device implementations:

e [3.10 /H-0-1] MUST support third-party accessibility services.
e [3.10 /H-SR] Are STRONGLY RECOMMENDED to preload accessibility services on the
device comparable with or exceeding functionality of the Switch Access and TalkBack (for
languages supported by the preinstalled Text-to-speech engine) accessibility services as
provided in the talkback open source project .

e [3.11 /H-0-1] MUST support installation of third-party TTS engines.

e [3.11 /H-SR] Are STRONGLY RECOMMENDED to include a TTS engine supporting the
languages available on the device.

e [3.13 /H-SR] Are STRONGLY RECOMMENDED to include a Quick Settings Ul component.

If Android handheld device implementations declare FEATURE BLUETOOTH or FEATURE WIFI
support, they:

e [3.16 /H-1-1] MUST support the companion device pairing feature.

If the navigation function is provided as an on-screen, gesture-based action:

e [7.2 .3/H] The gesture recognition zone for the Home function SHOULD be no higher than
32 dp in height from the bottom of the screen.

If Handheld device implementations provide a navigation function as a gesture from anywhere on the
left and right edges of the screen:

e [7.2 .3/H-0-1] The navigation function's gesture area MUST be less than 40 dp in width on
each side. The gesture area SHOULD be 24 dp in width by default.

If Handheld device implementations support a secure lock screen and have greater than or equal to
2GB of memory available to the kernel and userspace, they:

e [3.9/H-1-2] MUST declare the support of managed profiles via the
android.software.managed_users feature flag.

2.2.4. Performance and Power

e [8.1 /H-0-1] Consistent frame latency . Inconsistent frame latency or a delay to render
frames MUST NOT happen more often than 5 frames in a second, and SHOULD be below
1 frames in a second.

e [8.1 /H-0-2] User interface latency . Device implementations MUST ensure low latency
user experience by scrolling a list of 10K list entries as defined by the Android
Compatibility Test Suite (CTS) in less than 36 secs.

e [8.1 /H-0-3] Task switching . When multiple applications have been launched, re-
launching an already-running application after it has been launched MUST take less than
1 second.

Handheld device implementations:

e [8.2 /H-0-1] MUST ensure a sequential write performance of at least 5 MB/s.
e [8.2 /H-0-2] MUST ensure a random write performance of at least 0.5 MB/s.
e [8.2 /H-0-3] MUST ensure a sequential read performance of at least 15 MB/s.
e [8.2 /H-0-4] MUST ensure a random read performance of at least 3.5 MB/s.

If Handheld device implementations include features to improve device power management that are
included in AOSP or extend the features that are included in AOSP, they:

e [8.3 /H-1-1] MUST provide user affordance to enable and disable the battery saver
feature.

e [8.3 /H-1-2] MUST provide user affordance to display all apps that are exempted from
App Standby and Doze power-saving modes.

Handheld device implementations:

e [8.4 /H-0-1] MUST provide a per-component power profile that defines the current
consumption value for each hardware component and the approximate battery drain
caused by the components over time as documented in the Android Open Source Project

android

Page 15 of 142

https://developer.android.com/reference/android/service/controls/ControlsProviderService
https://developer.android.com/reference/android/service/controls/Control
https://developer.android.com/reference/android/content/pm/PackageManager#FEATURE_CONTROLS
https://github.com/google/talkback
http://source.android.com/devices/tech/power/values.html

site.

e [8.4 /H-0-2] MUST report all power consumption values in milliampere hours (mAh).

e [8.4 /H-0-3] MUST report CPU power consumption per each process's UID. The Android
Open Source Project meets the requirement through the uid_cputime kernel module
implementation.

o [8.4 /H-0-4] MUST make this power usage available via the adb shell dumpsys batterystats
shell command to the app developer.

e [8.4 /H] SHOULD be attributed to the hardware component itself if unable to attribute
hardware component power usage to an application.

If Handheld device implementations include a screen or video output, they:

e [8.4 /H-1-1] MUST honor the android.intent.action. POWER_USAGE_SUMMARY intent and
display a settings menu that shows this power usage.

2.2.5. Security Model

Handheld device implementations:

e [9.1 /H-0-1] MUST allow third-party apps to access the usage statistics via the
android.permission. PACKAGE _USAGE_STATS permission and provide a user-accessible
mechanism to grant or revoke access to such apps in response to the

android.settings. ACTION_USAGE ACCESS SETTINGS intent.
Handheld device implementations:

e [9.11 /H-0-2] MUST back up the keystore implementation with an isolated execution
environment.

[9.11 /H-0-3] MUST have implementations of RSA, AES, ECDSA, and HMAC cryptographic
algorithms and MD5, SHA1, and SHA-2 family hash functions to properly support the
Android Keystore system's supported algorithms in an area that is securely isolated from
the code running on the kernel and above. Secure isolation MUST block all potential
mechanisms by which kernel or userspace code might access the internal state of the
isolated environment, including DMA. The upstream Android Open Source Project (AOSP)
meets this requirement by using the Trusty implementation, but another ARM TrustZone-
based solution or a third-party reviewed secure implementation of a proper hypervisor-
based isolation are alternative options.

[9.11 /H-0-4] MUST perform the lock screen authentication in the isolated execution
environment and only when successful, allow the authentication-bound keys to be used.
Lock screen credentials MUST be stored in a way that allows only the isolated execution
environment to perform lock screen authentication. The upstream Android Open Source
Project provides the Gatekeeper Hardware Abstraction Layer (HAL) and Trusty, which can
be used to satisfy this requirement.

[9.11 /H-0-5] MUST support key attestation where the attestation signing key is protected
by secure hardware and signing is performed in secure hardware. The attestation signing
keys MUST be shared across large enough number of devices to prevent the keys from
being used as device identifiers. One way of meeting this requirement is to share the
same attestation key unless at least 100,000 units of a given SKU are produced. If more
than 100,000 units of an SKU are produced, a different key MAY be used for each 100,000
units.

e [9/H-0-1] MUST declare the ‘android.hardware.security.model.compatible’ feature.

Note that if a device implementation is already launched on an earlier Android version, such a device
is exempted from the requirement to have a keystore backed by an isolated execution environment
and support the key attestation, unless it declares the android.hardware.fingerprint feature which
requires a keystore backed by an isolated execution environment.

When Handheld device implementations support a secure lock screen, they:

e [9.11 /H-1-1] MUST allow the user to choose the shortest sleep timeout, that is a
transition time from the unlocked to the locked state, as 15 seconds or less.

e [9.11 /H-1-2] MUST provide user affordance to hide notifications and disable all forms of
authentication except for the primary authentication described in 9.11.1 Secure Lock
Screen . The AOSP meets the requirement as lockdown mode.

If Handheld device implementations include multiple users and do not declare the
android.hardware.telephony feature flag, they:

e [9.5 /H-2-1] MUST support restricted profiles, a feature that allows device owners to
manage additional users and their capabilities on the device. With restricted profiles,

Clnd I'Oid Page 16 of 142

http://source.android.com/devices/tech/power/batterystats.html
http://developer.android.com/reference/android/content/Intent.html#ACTION_POWER_USAGE_SUMMARY
https://developer.android.com/reference/android/provider/Settings.html#ACTION_USAGE_ACCESS_SETTINGS
https://source.android.com/security/trusty/
http://source.android.com/devices/tech/security/authentication/gatekeeper.html

device owners can quickly set up separate environments for additional users to work in,
with the ability to manage finer-grained restrictions in the apps that are available in those
environments.

If Handheld device implementations include multiple users and declare the android.hardware.telephony
feature flag, they:

[9.5 /H-3-1] MUST NOT support restricted profiles but MUST align with the AOSP
implementation of controls to enable /disable other users from accessing the voice calls
and SMS.

Android, through the System API VoicelnteractionService supports a mechanism for secure always-
on hotword detection without mic access indication

If Handheld device implementations support the System API HotwordDetectionService or a another
mechanism for hotword detection without mic access indication, they:

[9.8/H-1-1] MUST make sure the hotword detection service can only transmit data to the
System or ContentCaptureService

[9.8/H-1-2] MUST make sure the hotword detection service can only transmit mic audio
data or data derived from it to the system server through HotwordDetectionService API, or
to ContentCaptureService through ContentCaptureManager API.

[9.8/H-1-3] MUST NOT supply mic audio that is longer than 30 seconds for an individual
hardware-triggered request to the hotword detection service.

[9.8/H-1-4] MUST NOT supply buffered mic audio older than 8 seconds for an individual
request to the hotword detection service.

[9.8/H-1-5] MUST NOT supply buffered mic audio older than 30 seconds to the voice
interaction service or similar entity.

[9.8/H-1-6] MUST NOT allow more than 100 bytes of data to be transmitted out of the
hotword detection service on each successful hotword result.

[9.8/H-1-7] MUST NOT allow more than 5 bits of data to be transmitted out of the hotword
detection service on each negative hotword result.

[9.8/H-1-8] MUST only allow transmission of data out of the hotword detection service on
a hotword validation request from the system server.

[9.8/H-1-9] MUST NOT allow a user-installable application to provide the hotword
detection service.

[9.8/H-1-10] MUST NOT surface in the Ul quantitative data about mic usage by the
hotword detection service.

[9.8/H-1-11] MUST log the number of bytes included in every transmission from the
hotword detection service to allow inspectability for security researchers.

[9.8/H-1-12] MUST support a debug mode that logs raw contents of every transmission
from the hotword detection service to allow inspectability for security researchers.
[9.8/H-1-13] MUST restart the process hosting the hotword detection service at least
once every hour or every 30 hardware-trigger events, whichever comes first.
[9.8/H-1-14] MUST display the microphone indicator, as required in [9.8/C-3-1], when a
successful hotword result is transmitted to the voice interaction service or similar entity.
[9.8/H-SR] Are STRONGLY RECOMMENDED to notify users before setting an application
as the provider of the hotword detection service.

[9.8/H-SR] Are STRONGLY RECOMMENDED to disallow the transmission of unstructured
data out of the hotword detection service.

If device implementations include an application that uses the System API HotwordDetectionService ,
or similar mechanism for hotword detection without mic usage indication, the application:

[9.8/H-2-1] MUST provide explicit notice to the user for each hotword phrase supported.
[9.8/H-2-2] MUST NOT preserve raw audio data, or data derived from it, through the
hotword detection service.

[9.8/H-2-3] MUST NOT transmit from the hotword detection service, audio data, data that
can be used to reconstruct (wholly or partially) the audio, or audio contents unrelated to
the hotword itself, except to the ContentCaptureService .

If Handheld device implementations declare android.hardware.microphone , they:

[9.8.2 /H-4-1] MUST display the microphone indicator when an app is accessing audio
data from the microphone, but not when the microphone is only accessed by
HotwordDetectionService , SOURCE_HOTWORD , ContentCaptureService or apps holding the
roles called out in section 9.1 with CDD identifier [C-4-X]. .

[9.8.2 /H-4-2] MUST display the list of Recent and Active apps using microphone as
returned from PermissionManager.getIndicatorAppOpUsageData() , along with any attribution

Clnd I'Oid Page 17 of 142

messages associated with them.

e [9.8.2 /H-4-3] MUST not hide the microphone indicator for system apps that have visible
user interfaces or direct user interaction.

e [9.8.2 /H-4-4] MUST display the list of Recent and Active apps using the microphone as
returned from PermissionManager.getIndicatorAppOpUsageData() , along with any attribution
messages associated with them.

If Handheld device implementations declare android.hardware.camera.any , they:

e [9.8.2 /H-5-1] MUST display the camera indicator when an app is accessing live camera
data, but not when the camera is only being accessed by app(s) holding the roles called
out in section 9.1 with CDD identifier [C-4-X].

e [9.8.2 /H-5-2] MUST display Recent and Active apps using camera as returned from
PermissionManager.getIndicatorAppOpUsageData() , along with any attribution messages
associated with them.

e [9.8.2 /H-5-3] MUST not hide the camera indicator for system apps that have visible user
interfaces or direct user interaction.

2.2.6. Developer Tools and Options Compatibility

Handheld device implementations (* Not applicable for Tablet):

e [6.1 /H-0-1]* MUST support the shell commandcmd testharness .

Handheld device implementations (* Not applicable for Tablet):

o Perfetto

o [6.1 /H-0-2]* MUST expose a/system/bin/perfetto binary to the shell user which
cmdline complies with the perfetto documentation .

o [6.1 /H-0-3]* The perfetto binary MUST accept as input a protobuf config that
complies with the schema defined in the perfetto documentation .

o [6.1 /H-0-4]* The perfetto binary MUST write as output a protobuf trace that
complies with the schema defined in the perfetto documentation .

o [6.1 /H-0-5]* MUST provide, through the perfetto binary, at least the data
sources described in the perfetto documentation .

o [6.1 /H-0-6]* The perfetto traced daemon MUST be enabled by default
(system property persist.traced.enable).

2.2.7. Handheld Media Performance Class
See Section 7.11 for the definition of media performance class.
2.2.7.1. Media

If Handheld device implementations return android.os.Build. VERSION_CODES.R for
android.os.Build. VERSION_CODES.MEDIA PERFORMANCE_CLASS, then they:

e [5.1/H-1-1] MUST advertise the maximum number of hardware video decoder sessions
that can be run concurrently in any codec combination via the
CodecCapabilities.getMaxSupportedInstances() and
VideoCapabilities.getSupportedPerformancePoints() methods.

[5.1/H-1-2] MUST support 6 instances of hardware video decoder sessions (AVC or
HEVC) in any codec combination running concurrently at 720p resolution@30 fps.
[5.1/H-1-3] MUST advertise the maximum number of hardware video encoder sessions
that can be run concurrently in any codec combination via the
CodecCapabilities.getMaxSupportedInstances() and
VideoCapabilities.getSupportedPerformancePoints() methods.

[5.1/H-1-4] MUST support 6 instances of hardware video encoder sessions (AVC or
HEVC) in any codec combination running concurrently at 720p resolution@30 fps.
[5.1/H-1-5] MUST advertise the maximum number of hardware video encoder and
decoder sessions that can be run concurrently in any codec combination via the
CodecCapabilities.getMaxSupportedInstances() and
VideoCapabilities.getSupportedPerformancePoints() methods.

[5.1/H-1-6] MUST support 6 instances of hardware video decoder and hardware video
encoder sessions (AVC or HEVC) in any codec combination running concurrently at
720p@30 fps resolution.

e [5.1/H-1-7] MUST have a codec initialization latency of 65 ms or less for a 1080p or

android

Page 18 of 142

https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto
https://developer.android.com/studio/command-line/perfetto

smaller video encoding session for all hardware video encoders when under load. Load
here is defined as a concurrent 1080p to 720p video-only transcoding session using
hardware video codecs together with the 1080p audio-video recording initialization.
[5.1/H-1-8] MUST have a codec initialization latency of 50 ms or less for a 128 kbps or
lower bitrate audio encoding session for all audio encoders when under load.Load here is
defined as a concurrent 1080p to 720p video-only transcoding session using hardware
video codecs together with the 1080p audio-video recording initialization.

[5.3/H-1-1] MUST NOT drop more than 1 frame in 10 seconds (i.e less than 0.333 percent
frame drop) for a 1080p 30 fps video session under load. Load is defined as a concurrent
1080p to 720p video-only transcoding session using hardware video codecs, as well as a
128 kbps AAC audio playback.

[5.3/H-1-2] MUST NOT drop more than 1 frame in 10 seconds during a video resolution
change in a 30 fps video session under load. Load is defined as a concurrent 1080p to
720p video-only transcoding session using hardware video codecs, as well as a 128Kbps
AAC audio playback.

[5.6/H-1-1] MUST have a tap-to-tone latency of less than 100 milliseconds using the
OboeTester tap-to-tone test or CTS Verifier tap-to-tone test.

If Handheld device implementations return android.os.Build. VERSION _CODES.S for
android.os.Build. VERSION_CODES.MEDIA PERFORMANCE_CLASS, then they:

[5.1/H-1-1] MUST advertise the maximum number of hardware video decoder sessions
that can be run concurrently in any codec combination via the
CodecCapabilities.getMaxSupportedInstances() and
VideoCapabilities.getSupportedPerformancePoints() methods.

[5.1/H-1-2] MUST support 6 instances of hardware video decoder sessions (AVC, HEVC,
VP9 or later) in any codec combination running concurrently at 720p resolution@30 fps.
Only 2 instances are required if VP9 codec is present.

[5.1/H-1-3] MUST advertise the maximum number of hardware video encoder sessions
that can be run concurrently in any codec combination via the
CodecCapabilities.getMaxSupportedInstances() and
VideoCapabilities.getSupportedPerformancePoints() methods.

[5.1/H-1-4] MUST support 6 instances of hardware video encoder sessions (AVC, HEVC,
VP9 or later) in any codec combination running concurrently at 720p resolution@30fps. Only
2 instances are required if VP9 codec is present.

[5.1/H-1-5] MUST advertise the maximum number of hardware video encoder and
decoder sessions that can be run concurrently in any codec combination via the
CodecCapabilities.getMaxSupportedInstances() and
VideoCapabilities.getSupportedPerformancePoints() methods.

[5.1/H-1-6] MUST support 6 instances of hardware video decoder and hardware video
encoder sessions (AVC, HEVC, VP9 or later) in any codec combination running concurrently
at 720p@30fps resolution. Only 2 instances are required if VP9 codec is present.
[5.1/H-1-7] MUST have a codec initialization latency of 50 ms or less for a 1080p or
smaller video encoding session for all hardware video encoders when under load. Load
here is defined as a concurrent 1080p to 720p video-only transcoding session using
hardware video codecs together with the 1080p audio-video recording initialization.
[5.1/H-1-8] MUST have a codec initialization latency of 40 ms or less for a 128 kbps or
lower bitrate audio encoding session for all audio encoders when under load. Load here is
defined as a concurrent 1080p to 720p video-only transcoding session using hardware
video codecs together with the 1080p audio-video recording initialization.

[5.3/H-1-1] MUST NOT drop more than 2 frames in 10 seconds (i.e less than 0.333
percent frame drop) for a 1080p 60 fps video session under load. Load is defined as a
concurrent 1080p to 720p video-only transcoding session using hardware video codecs,
as well as a 128 kbps AAC audio playback.

[5.3/H-1-2] MUST NOT drop more than 2 frames in 10 seconds during a video resolution
change in a 60 fps video session under load. Load is defined as a concurrent 1080p to
720p video-only transcoding session using hardware video codecs, as well as a 128 kbps
AAC audio playback.

[5.6/H-1-1] MUST have a tap-to-tone latency of less than 100 milliseconds using the
OboeTester tap-to-tone test or CTS Verifier tap-to-tone test.

2.2.7.2. Camera

If Handheld device implementations return android.os.Build. VERSION_CODES.R for
android.os.Build. VERSION CODES.MEDIA PERFORMANCE_CLASS, then they:

[7.5/H-1-1] MUST have a primary rear facing camera with a resolution of at least 12
megapixels supporting video capture at 4k@30fps. The primary rear-facing camera is the

android

Page 19 of 142

rear-facing camera with the lowest camera ID.
[7.5/H-1-2] MUST have a primary front facing camera with a resolution of at least 4

megapixels supporting video capture at 1080p@30fps. The primary front-facing camera

is the front-facing camera with the lowest camera ID.

[7.5/H-1-3] MUST support android.info.supportedHardwareLevel property as FULL or
better for back primary and LIMITED or better for front primary camera.

[7.5/H-1-4] MUST support
CameraMetadata.SENSOR_INFO_TIMESTAMP_SOURCE_REALTIME for both primary
cameras.

both primary cameras.

[7.5/H-1-6] MUST have camera?2 startup latency (open camera to first preview frame) <
600ms as measured by the CTS camera PerformanceTest under ITS lighting conditions
(3000K) for both primary cameras.

If Handheld device implementations return android.os.Build. VERSION _CODES.S for
android.os.Build. VERSION_CODES.MEDIA PERFORMANCE_CLASS, then they:

e [7.5/H-1-1] MUST have a primary rear facing camera with a resolution of at least 12

megapixels supporting video capture at 4k@30fps. The primary rear-facing camera is the

rear-facing camera with the lowest camera ID.
[7.5/H-1-2] MUST have a primary front facing camera with a resolution of at least 5

megapixels and support video capture at 1080p@30fps. The primary front-facing camera

is the front-facing camera with the lowest camera ID.

for both primary cameras.

[7.5/H-1-4] MUST support

CameraMetadata.SENSOR_INFO TIMESTAMP_SOURCE REALTIME for both primary
cameras.

both primary cameras.
[7.5/H-1-6] MUST have camera2 startup latency (open camera to first preview frame) <

500 ms as measured by the CTS camera PerformanceTest under ITS lighting conditions

(3000K) for both primary cameras.
[7.5/H-1-7] For apps targeting API level 31 or higher, the camera device MUST NOT
support JPEG capture resolutions smaller than 1080p for both primary cameras.

and android.graphics.ImageFormat. RAW_SENSOR for the primary back camera.
2.2.7.3. Hardware

If Handheld device implementations return android.os.Build. VERSION_CODES.R for
android.os.Build. VERSION CODES.MEDIA PERFORMANCE_CLASS, then they:

e [7.1.1.1/H-1-1] MUST have screen resolution of at least 1080p.
e [7.1.1.3/H-1-1] MUST have screen density of at least 400 dpi.
e [7.6.1/H-1-1] MUST have at least 6 GB of physical memory.

If Handheld device implementations return android.os.Build. VERSI