aNndrold
Compatibility Program

Android 5.0
Compatibility Definition

Last updated: January 11,2015

Copyright © 2015,Google Inc. All rights reserved.

Table of Contents

1. Introduction

2. Device Types

2.1 Device Configurations

3. Software

3.1.
3.2.

3.3.

3.4.

3.5.
3.6.
3.7.
3.8.

Managed APl Compatibility

Soft APl Compatibility

3.2.1. Permissions

3.2.2. Build Parameters

3.2.3. Intent Compatibility
3.2.3.1. Core Application Intents
3.2.3.2. Intent Overrides
3.2.3.3. Intent Namespaces
3.2.3.4. Broadcast Intents
3.2.3.5. Default App Settings

Native API Compatibility

3.3.1 Application Binary Interfaces

Web Compatibility

3.4.1. WebView Compatibility

3.4.2. Browser Compatibility

API Behavioral Compatibility

APl Namespaces

Runtime Compatibility

User Interface Compatibility

3.8.1. Launcher (Home Screen)

3.8.2. Widgets

3.8.3. Notifications

3.8.4. Search

3.8.5. Toasts

3.8.6. Themes

3.8.7. Live Wallpapers

3.8.8. Activity Switching

3.8.9. Input Management

3.8.10. Lock Screen Media Control

3.8.11. Dreams

3.8.12. Location

3.8.13. Unicode and Font

3.9.

Device Administration

3.10. Accessibility
3.11. Text-to-Speech
3.12. TV Input Framework

4. Application Packaging Compatibility

5. Multimedia Compatibility

5.1.

5.2.
5.3.
5.4.

5.5.

5.6.
5.7.
5.8.

Media Codecs

5.1.1. Audio Codecs

5.1.2. Image Codecs

5.1.3. Video Codecs

Video Encoding

Video Decoding

Audio Recording

5.4.1. Raw Audio Capture

5.4.2. Capture for Voice Recognition
5.4.3. Capture for Rerouting of Playback
Audio Playback

5.5.1. Raw Audio Playback

5.5.2. Audio Effects

5.5.3. Audio Output Volume

Audio Latency

Network Protocols

Secure Media

6. Developer Tools and Options

Compatibility

6.1.
6.2.

Developer Tools
Developer Options

7. Hardware Compatibility

7.1.

Display and Graphics

7.1.1. Screen Configuration
7.1.1.1. Screen Size
7.1.1.2. Screen Aspect Ratio
7.1.1.3. Screen Density

7.1.2. Display Metrics

7.2.

7.3.

7.4.

7.5.

7.1.3. Screen Orientation
7.1.4. 2D and 3D Graphics Acceleration

7.1.5. Legacy Application Compatibility Mode

7.1.6. Screen Technology

7.1.7. External Displays

Input Devices

7.2.1. Keyboard

7.2.2. Non-touch Navigation

7.2.3. Navigation Keys

7.2.4. Touchscreen Input

7.2.5. Fake Touch Input

7.2.6. Game Controller Support
7.2.6.1. Button Mappings

7.2.7. Remote Control

Sensors

7.3.1. Accelerometer

7.3.2. Magnetometer

7.3.3.GPS

7.3.4. Gyroscope

7.3.5. Barometer

7.3.6. Thermometer

7.3.7. Photometer

7.3.8. Proximity Sensor

Data Connectivity

7.4.1. Telephony

7.4.2. IEEE 802.11 (Wi-Fi)
7.4.2.1. Wi-Fi Direct
7.4.2.2. Wi-Fi Tunneled Direct Link Setup

7.4.3. Bluetooth

7.4.4. Near-Field Communications

7.4.5. Minimum Network Capability

7.4.6. Sync Settings

Cameras

7.5.1. Rear-Facing Camera

7.5.2. Front-Facing Camera

7.5.3. External Camera

7.5.4. Camera API Behavior

7.5.5. Camera Orientation
7.6. Memory and Storage

7.6.1. Minimum Memory and Storage

7.6.2. Application Shared Storage
7.7. USB
7.8. Audio

7.8.1. Microphone

7.8.2. Audio Output

7.8.2.1. Analog Audio Ports

8. Performance Compatibility
8.1. User Experience Consistency
8.2. Memory Performance

9. Security Model Compatibility

9.1. Permissions

9.2. UID and Process Isolation

9.3. Filesystem Permissions

9.4. Alternate Execution Environments
9.5. Multi-User Support

9.6. Premium SMS Warning

9.7. Kernel Security Features

9.8. Privacy

9.9. Full-Disk Encryption

9.10. Verified Boot

10. Software Compatibility Testing

10.1. Compatibility Test Suite
10.2. CTS Verifier

11. Updatable Software
12. Document Changelog
13. Contact Us

14. Resources

1. Introduction

This document enumerates the requirements that must be met in order for devices to be compatible with Android 5.0.

The use of "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",
"MAY" and "OPTIONAL" is per the IETF standard defined in RFC2119 [Resources, 1].

As used in this document, a "device implementer” or "implementer” is a person or organization developing a
hardware/software solution running Android 5.0. A "device implementation” or "implementation” is the
hardware/software solution so developed.

To be considered compatible with Android 5.0, device implementations MUST meet the requirements presented in this
Compatibility Definition, including any documents incorporated via reference.

Where this definition or the software tests described in section 10 is silent, ambiguous, or incomplete, it is the
responsibility of the device implementer to ensure compatibility with existing implementations.

For this reason, the Android Open Source Project [Resources, 2] is both the reference and preferred implementation of
Android. Device implementers are strongly encouraged to base their implementations to the greatest extent possible
on the "upstream” source code available from the Android Open Source Project. While some components can
hypothetically be replaced with alternate implementations this practice is strongly discouraged, as passing the
software tests will become substantially more difficult. It is the implementer's responsibility to ensure full behavioral
compatibility with the standard Android implementation, including and beyond the Compatibility Test Suite. Finally,
note that certain component substitutions and modifications are explicitly forbidden by this document.

Many of the resources listed in section 14 are derived directly or indirectly from the Android SDK, and will be
functionally identical to the information in that SDK's documentation. For any case where this Compatibility Definition
or the Compatibility Test Suite disagrees with the SDK documentation, the SDK documentation is considered
authoritative. Any technical details provided in the references included in section 14 are considered by inclusion to be
part of this Compatibility Definition.

2. Device Types

While the Android Open Source Project has been used in the implementation of a variety of device types and form
factors, many aspects of the architecture and compatibility requirements were optimized for handheld devices.
Starting from Android 5.0, the Android Open Source Project aims to embrace a wider variety of device types as
described in this section.

Android Handheld device refers to an Android device implementation that is typically used by holding it in the hand,
such as mp3 players, phones, and tablets. Android Handheld device implementations:

e MUST have a touchscreen embedded in the device
e MUST have a power source that provides mobility, such as a battery

http://www.google.com/url?q=http%3A%2F%2Fwww.ietf.org%2Frfc%2Frfc2119.txt&sa=D&sntz=1&usg=AFQjCNHXjIbC6KvT6ag4nc_COAXF7moB5w
http://source.android.com/

Android Television device refers to an Android device implementation that is an entertainment interface for consuming
digital media, movies, games, apps, and/or live TV for users sitting about ten feet away (a “lean back” or “10-foot user
interface”). Android Television devices:

e MUST have an embedded screen OR include a video output port, such as VGA, HDMI, or a wireless port for
display

e MUST declare the features android.software.leanback and android.hardware.type.television
[Resources, 3

Android Watch device refers to an Android device implementation intended to be worn on the body, perhaps on the
wrist, and:

e MUST have a screen with the physical diagonal length in the range from 1.1 to 2.5 inches
e MUST declare the feature android.hardware.type.watch
e MUST support uiMode = UI_MODE TYPE WATCH [Resources, 4]

All Android device implementations that do not fit into any of the above device types still MUST meet all requirements
in this document to be Android 5.0 compatible, unless the requirement is explicitly described to be only applicable to a
specific Android device type.

2.1 Device Configurations

This is a summary of major differences in hardware configuration by device type. (Empty cells denote a “MAY"). Not all
configurations are covered in this table; see relevant hardware sections for more detail.

Category Feature Section Handheld | Television | Watch Other

Input D-pad 7.2.2. Non-touch Navigation MUST
Touchscreen 7.2.4. Touchscreen input MUST MUST | SHOULD
Microphone 7.8.1. Microphone MUST SHOULD MUST | SHOULD

Sensors Accelerometer 7.3.1 Accelerometer SHOULD SHOULD | SHOULD
GPS 7.3.3. GPS SHOULD

Connectivity | Wi-Fi 7.4.2. IEEE 802.11 SHOULD MUST SHOULD
Wi-Fi Direct 7.4.2.1. Wi-Fi Direct SHOULD | SHOULD SHOULD
Bluetooth 7.4.3. Bluetooth SHOULD MUST MUST | SHOULD
Bluetooth Low Energy 7.4.3. Bluetooth SHOULD MUST SHOULD | SHOULD
USB peripheral/ host mode | 7.7. USB SHOULD SHOULD

Output Speaker and/or Audio 7.8.2. Audio Output MUST MUST MUST

output ports

http://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_LEANBACK
http://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_WATCH

3. Software

3.1. Managed API Compatibility

The managed Dalvik bytecode execution environment is the primary vehicle for Android applications. The Android
application programming interface (API) is the set of Android platform interfaces exposed to applications running in
the managed runtime environment. Device implementations MUST provide complete implementations, including all
documented behaviors, of any documented API exposed by the Android SDK [Resources, 5] or any API decorated with
the "@SystemApi” marker in the upstream Android source code.

Device implementations MUST NOT omit any managed APlIs, alter APl interfaces or signatures, deviate from the
documented behavior, or include no-ops, except where specifically allowed by this Compatibility Definition.

This Compatibility Definition permits some types of hardware for which Android includes APIs to be omitted by device
implementations. In such cases, the APIs MUST still be present and behave in a reasonable way. See section 7 for
specific requirements for this scenario.

3.2. Soft APl Compatibility

In addition to the managed APIs from section 3.1, Android also includes a significant runtime-only "soft” AP, in the
form of such things as intents, permissions, and similar aspects of Android applications that cannot be enforced at
application compile time.

Device implementers MUST support and enforce all permission constants as documented by the Permission reference
page [Resources, 6]. Note that section 9 lists additional requirements related to the Android security model.

The Android APIs include a number of constants on the android.os.Build class [Resources, 7] that are intended to
describe the current device. To provide consistent, meaningful values across device implementations, the table below
includes additional restrictions on the formats of these values to which device implementations MUST conform.

Parameter Details

VERSION.RELEASE The version of the currently-executing Android system, in human-readable format.
This field MUST have one of the string values defined in [Resources, 8].

VERSION.SDK The version of the currently-executing Android system, in a format accessible to
third-party application code. For Android 5.0, this field MUST have the integer value
21.

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/os/Build.html
http://source.android.com/compatibility/5.0/versions.html

VERSION.SDK_INT

VERSION.INCREMENTAL

BOARD

BRAND

SUPPORTED_ABIS

SUPPORTED_32_BIT_ABIS

SUPPORTED_64_BIT_ABIS

CPU_ABI

CPU_ABI2

DEVICE

The version of the currently-executing Android system, in a format accessible to
third-party application code. For Android 5.0, this field MUST have the integer value
21.

A value chosen by the device implementer designating the specific build of the
currently-executing Android system, in human-readable format. This value MUST NOT
be reused for different builds made available to end users. A typical use of this field is
to indicate which build number or source-control change identifier was used to
generate the build. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string ("").

A value chosen by the device implementer identifying the specific internal hardware
used by the device, in human-readable format. A possible use of this field is to
indicate the specific revision of the board powering the device. The value of this field
MUST be encodable as 7-bit ASCIl and match the regular expression
"Ala-zA-%0-9 -]+5".

A value reflecting the brand name associated with the device as known to the end
users. MUST be in human-readable format and SHOULD represent the manufacturer
of the device or the company brand under which the device is marketed. The value of
this field MUST be encodable as 7-bit ASCIl and match the regular expression

"~ la-zA-Z0-9 -]1+$".

The name of the instruction set (CPU type + ABI convention) of native code. See
section 3.3. Native API Compatibility.

The name of the instruction set (CPU type + ABI convention) of native code. See
section 3.3. Native API Compatibility.

The name of the second instruction set (CPU type + ABI convention) of native code.
See section 3.3. Native APl Compatibility.

The name of the instruction set (CPU type + ABI convention) of native code. See
section 3.3. Native API Compatibility.

The name of the second instruction set (CPU type + ABI convention) of native code.
See section 3.3. Native APl Compatibility.

A value chosen by the device implementer containing the development name or code
name identifying the configuration of the hardware features and industrial design of
the device. The value of this field MUST be encodable as 7-bit ASCII and match the
regular expression "~ [a-zA-Z0-9 —-]1+$".

FINGERPRINT

HARDWARE

HOST

MANUFACTURER

MODEL

PRODUCT

A string that uniquely identifies this build. It SHOULD be reasonably human-readable.
It MUST follow this template:

$ (BRAND) /$ (PRODUCT) /$ (DEVICE) : $ (VERSION.RELEASE) /$ (ID) /$ (VERSION
.INCREMENTAL) : $ (TYPE) /$ (TAGS)

For example:
acme/myproduct/mydevice:5.0/LRWXX/3359:userdebug/test-keys

The fingerprint MUST NOT include whitespace characters. If other fields included in
the template above have whitespace characters, they MUST be replaced in the build
fingerprint with another character, such as the underscore (" _") character. The value
of this field MUST be encodable as 7-bit ASCII.

The name of the hardware (from the kernel command line or /proc). It SHOULD be
reasonably human-readable. The value of this field MUST be encodable as 7-bit ASCII
and match the regular expression "~ [a-zA-Z0-9 -]1+$".

A string that uniquely identifies the host the build was built on, in human-readable
format. There are no requirements on the specific format of this field, except that it
MUST NOT be null or the empty string ("").

An identifier chosen by the device implementer to refer to a specific release, in
human-readable format. This field can be the same as
android.os.Build.VERSION.INCREMENTAL, but SHOULD be a value sufficiently
meaningful for end users to distinguish between software builds. The value of this
field MUST be encodable as 7-bit ASCIl and match the regular expression

"~ a-zA-7Z0-9. -]1+S$".

The trade name of the Original Equipment Manufacturer (OEM) of the product. There
are no requirements on the specific format of this field, except that it MUST NOT be
null or the empty string ("").

A value chosen by the device implementer containing the name of the device as
known to the end user. This SHOULD be the same name under which the device is
marketed and sold to end users. There are no requirements on the specific format of
this field, except that it MUST NOT be null or the empty string (" ").

A value chosen by the device implementer containing the development name or code
name of the specific product (SKU) that MUST be unique within the same brand.
MUST be human-readable, but is not necessarily intended for view by end users. The
value of this field MUST be encodable as 7-bit ASCII and match the regular expression
"Ala-zA-20-9 -]1+S".

SERIAL A hardware serial number, which MUST be available. The value of this field MUST be

TAGS

TIME

TYPE

USER

encodable as 7-bit ASCIl and match the regular expression
"~ ([a-zA-Z0-9]{6,20})$".

A comma-separated list of tags chosen by the device implementer that further
distinguishes the build. This field MUST have one of the values corresponding to the
three typical Android platform signing configurations: release-keys, dev-keys,
test-keys.

A value representing the timestamp of when the build occurred.

A value chosen by the device implementer specifying the runtime configuration of the
build. This field MUST have one of the values corresponding to the three typical
Android runtime configurations: user, userdebug, or eng.

A name or user ID of the user (or automated user) that generated the build. There are
no requirements on the specific format of this field, except that it MUST NOT be null
or the empty string ("").

Device implementations MUST honor Android's loose-coupling intent system, as described in the sections below. By

"honored”, it is meant that the device implementer MUST provide an Android Activity or Service that specifies a

matching intent filter that binds to and implements correct behavior for each specified intent pattern.

3.2.3.1. Core Application Intents

Android intents allow application components to request functionality from other Android components. The Android

upstream project includes a list of applications considered core Android applications, which implements several intent

patterns to perform common actions. The core Android applications are:

Desk Clock
Browser
Calendar
Contacts
Gallery
GlobalSearch
Launcher
Music
Settings

Device implementations SHOULD include the core Android applications as appropriate but MUST include a component

implementing the same intent patterns defined by all the “public” Activity or Service components of these core Android

applications. Note that Activity or Service components are considered "public” when the attribute android:exported
is absent or has the value true.

3.2.3.2. Intent Overrides

As Android is an extensible platform, device implementations MUST allow each intent pattern referenced in section
3.2.3.1 to be overridden by third-party applications. The upstream Android open source implementation allows this by
default; device implementers MUST NOT attach special privileges to system applications’ use of these intent patterns,
or prevent third-party applications from binding to and assuming control of these patterns. This prohibition specifically
includes but is not limited to disabling the "Chooser” user interface that allows the user to select between multiple
applications that all handle the same intent pattern.

However, device implementations MAY provide default activities for specific URI patterns (eg. http://play.google.com)
if the default activity provides a more specific filter for the data URI. For example, an intent filter specifying the data
URI "http://www.android.com” is more specific than the browser filter for "http://". Device implementations MUST
provide a user interface for users to modify the default activity for intents.

3.2.3.3. Intent Namespaces

Device implementations MUST NOT include any Android component that honors any new intent or broadcast intent
patterns using an ACTION, CATEGORY, or other key string in the android.* or com.android.* namespace. Device
implementers MUST NOT include any Android components that honor any new intent or broadcast intent patterns
using an ACTION, CATEGORY, or other key string in a package space belonging to another organization. Device
implementers MUST NOT alter or extend any of the intent patterns used by the core apps listed in section 3.2.3.1.
Device implementations MAY include intent patterns using namespaces clearly and obviously associated with their
own organization. This prohibition is analogous to that specified for Java language classes in section 3.6.

3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain intents to notify them of changes in the hardware or
software environment. Android-compatible devices MUST broadcast the public broadcast intents in response to
appropriate system events. Broadcast intents are described in the SDK documentation.

3.2.3.5. Default App Settings

Android includes settings that provide users an easy way to select their default applications, for example for Home
screen or SMS. Where it makes sense, device implementations MUST provide a similar settings menu and be
compatible with the intent filter pattern and APl methods described in the SDK documentation as below.

Device implementations:

e MUST honor the android.settings.HOME SETTINGS intent to show a default app settings menu for Home
Screen, if the device implementation reports android.software.home screen [Resources, 10]

http://developer.android.com/reference/android/provider/Settings.html

MUST provide a settings menu that will call the
android.provider.Telephony.ACTION CHANGE DEFAULT intent to show a dialog to change the default
SMS application, if the device implementation reports android.hardware.telephony [Resources, 9]
MUST honor the android.settings.NFC_PAYMENT SETTINGS intent to show a default app settings menu
for Tap and Pay, if the device implementation reports android.hardware.nfc.hce [Resources, 10

3.3. Native APl Compatibility

Managed Dalvik bytecode can call into native code provided in the application .apk file as an ELF .so file compiled for

the appropriate device hardware architecture. As native code is highly dependent on the underlying processor
technology, Android defines a number of Application Binary Interfaces (ABIs) in the Android NDK. Device
implementations MUST be compatible with one or more defined ABIs, and MUST implement compatibility with the
Android NDK, as below.

If a device implementation includes support for an Android ABI, it:

MUST include support for code running in the managed environment to call into native code, using the
standard Java Native Interface (JNI) semantics

MUST be source-compatible (i.e. header compatible) and binary-compatible (for the ABI) with each required
library in the list below

MUST support the equivalent 32-bit ABI if any 64-bit ABI is supported

MUST accurately report the native Application Binary Interface (ABI) supported by the device, via the
android.os.Build.SUPPORTED ABIS, android.os.Build.SUPPORTED 32 BIT ABIS, and
android.os.Build.SUPPORTED 64 BIT ABIS parameters, each a comma separated list of ABIs ordered
from the most to the least preferred one

MUST report, via the above parameters, only those ABlIs documented in the latest version of the Android NDK,
“NDK Programmer's Guide | ABI Management” in docs/ directory

SHOULD be built using the source code and header files available in the upstream Android Open Source
Project

The following native code APls MUST be available to apps that include native code:

libc (C library)

libm (math library)

Minimal support for C++

JNI interface

liblog (Android logging)

libz (Zlib compression)

libdl (dynamic linker)
libGLESv1_CM.so (OpenGL ES 1.x)
libGLESv2.s0 (OpenGL ES 2.0)

https://developer.android.com/reference/android/provider/Telephony.Sms.Intents.html
http://developer.android.com/reference/android/provider/Settings.html

e |ibGLESv3.s0 (OpenGL ES 3.x)

e [libEGL.so (native OpenGL surface management)
e libjnigraphics.so

e |ibOpenSLES.so (OpenSL ES 1.0.1 audio support)
e libOpenMAXAL.so (OpenMAX AL 1.0.1 support)
e libandroid.so (native Android activity support)

e libmediandk.so (native media APIs support)

e Support for OpenGL, as described below

Note that future releases of the Android NDK may introduce support for additional ABls. If a device implementation is
not compatible with an existing predefined ABI, it MUST NOT report support for any ABIs at all.

Note that device implementations MUST include 1ibGLESv3. so and it MUST symlink (symbolic link) to
1ibGLESvV2. so. in turn, MUST export all the OpenGL ES 3.1 and Android Extension Pack [Resources, 11] function
symbols as defined in the NDK release android-21. Although all the symbols must be present, only the corresponding
functions for OpenGL ES versions and extensions actually supported by the device must be fully implemented.

Native code compatibility is challenging. For this reason, device implementers are very strongly encouraged to use the
implementations of the libraries listed above from the upstream Android Open Source Project.

3.4. Web Compatibility

The complete implementation of the android.webkit.Webview APl MAY be provided on Android Watch
devices but MUST be provided on all other types of device implementations.

The platform feature android.software.webview MUST be reported on any device that provides a complete
implementation of the android.webkit.WebView API, and MUST NOT be reported on devices without a complete
implementation of the API. The Android Open Source implementation uses code from the Chromium Project to
implement the android.webkit .WebView [Resources, 12]. Because it is not feasible to develop a comprehensive
test suite for a web rendering system, device implementers MUST use the specific upstream build of Chromium in the
WebView implementation. Specifically:

e Device android.webkit.WebView implementations MUST be based on the Chromium build from the
upstream Android Open Source Project for Android 5.0. This build includes a specific set of functionality and
security fixes for the WebView [Resources, 13].

e The user agent string reported by the WebView MUST be in this format:

Mozilla/5.0 (Linux; Android $(VERSION); $ (MODEL) Build/$ (BUILD)) AppleWebKit/537.36
(KHTML, like Gecko) Version/4.0 $(CHROMIUM VER) Mobile Safari/537.36

o The value of the s (VERSTON) string MUST be the same as the value for
android.os.Build.VERSION.RELEASE
o The value of the s (MODEL) string MUST be the same as the value for android.os.Build.MODEL.

http://developer.android.com/guide/topics/graphics/opengl.html#aep
http://developer.android.com/reference/android/webkit/WebView.html
http://www.chromium.org/

o The value of the s (BUILD) string MUST be the same as the value for android.os.Build. ID.

o The value of the $ (CHROMIUM VER) string MUST be the version of Chromium in the upstream Android
Open Source Project.

o Device implementations MAY omit Mobile in the user agent string.

The WebView component SHOULD include support for as many HTMLS5 features as possible and if it supports the
feature SHOULD conform to the HTML5 specification [Resources, 14].

Android Television and Watch Devices MAY omit a browser application, but MUST support the
public intent patterns as described in section 3.2.3.1. All other types of device implementations
MUST include a standalone Browser application for general user web browsing.

The standalone Browser MAY be based on a browser technology other than WebKit. However, even if an alternate
Browser application is used, the android.webkit.WebView component provided to third-party applications MUST be
based on WebKit, as described in section 3.4.1.

Implementations MAY ship a custom user agent string in the standalone Browser application.

The standalone Browser application (whether based on the upstream WebKit Browser application or a third-party
replacement) SHOULD include support for as much of HTML5 [Resources, 14] as possible. Minimally, device
implementations MUST support each of these APIs associated with HTML5:

e application cache/offline operation [Resources, 15]
e the <video> tag [Resources, 16]
e geolocation [Resources, 17]

Additionally, device implementations MUST support the HTML5/W3C webstorage API [Resources, 18], and SHOULD
support the HTML5/W3C IndexedDB API [Resources, 19]. Note that as the web development standards bodies are
transitioning to favor IndexedDB over webstorage, IndexedDB is expected to become a required component in a future
version of Android.

3.5. API Behavioral Compatibility

The behaviors of each of the API types (managed, soft, native, and web) must be consistent with the preferred
implementation of the upstream Android Open Source Project [Resources, 2]. Some specific areas of compatibility are:

e Devices MUST NOT change the behavior or semantics of a standard intent.

e Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of system component (such as
Service, Activity, ContentProvider, etc.).

e Devices MUST NOT change the semantics of a standard permission.

The above list is not comprehensive. The Compatibility Test Suite (CTS) tests significant portions of the platform for
behavioral compatibility, but not all. It is the responsibility of the implementer to ensure behavioral compatibility with

https://www.google.com/url?q=https%3A%2F%2Fhtml.spec.whatwg.org%2Fmultipage%2F&sa=D&sntz=1&usg=AFQjCNH7pPjEWho8n19H_n0ZXrQbI9RVlg
https://www.google.com/url?q=https%3A%2F%2Fhtml.spec.whatwg.org%2Fmultipage%2F&sa=D&sntz=1&usg=AFQjCNH7pPjEWho8n19H_n0ZXrQbI9RVlg
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2Fhtml%2Fwg%2Fdrafts%2Fhtml%2Fmaster%2Fbrowsers.html%23offline&sa=D&sntz=1&usg=AFQjCNHFrAW3bF1WR7vlwCjIIgEbUdOFkA
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2Fhtml%2Fwg%2Fdrafts%2Fhtml%2Fmaster%2Fembedded-content.html%23video&sa=D&sntz=1&usg=AFQjCNGleKv_IMqq4vHjXaAh9-6-g9-GUw
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fgeolocation-API%2F&sa=D&sntz=1&usg=AFQjCNEwa24tCpM2yB3KksKfbXzTpLCDVA
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fwebstorage%2F&sa=D&sntz=1&usg=AFQjCNFuBgi4I_9dm0G2BfqyPfOFNcwOJw
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2FIndexedDB%2F&sa=D&sntz=1&usg=AFQjCNGj2CzgP0FREoYVw0Qh80t-vjpxNw
http://source.android.com/

the Android Open Source Project. For this reason, device implementers SHOULD use the source code available via the
Android Open Source Project where possible, rather than re-implement significant parts of the system.

3.6. APl Namespaces

Android follows the package and class namespace conventions defined by the Java programming language. To ensure
compatibility with third-party applications, device implementers MUST NOT make any prohibited modifications (see
below) to these package namespaces:

e java*
e javax.*
e sun.*

e android.*
e com.android.*

Prohibited modifications include:

e Device implementations MUST NOT modify the publicly exposed APIs on the Android platform by changing any
method or class signatures, or by removing classes or class fields.

e Device implementers MAY modify the underlying implementation of the APIs, but such modifications MUST
NOT impact the stated behavior and Java-language signature of any publicly exposed APls.

e Device implementers MUST NOT add any publicly exposed elements (such as classes or interfaces, or fields or
methods to existing classes or interfaces) to the APIs above.

A"publicly exposed element” is any construct which is not decorated with the "@hide” marker as used in the upstream
Android source code. In other words, device implementers MUST NOT expose new APIs or alter existing APIs in the
namespaces noted above. Device implementers MAY make internal-only modifications, but those modifications MUST
NOT be advertised or otherwise exposed to developers.

Device implementers MAY add custom APIs, but any such APIs MUST NOT be in a namespace owned by or referring to
another organization. For instance, device implementers MUST NOT add APlIs to the com.google.* or similar
namespace: only Google may do so. Similarly, Google MUST NOT add APIs to other companies' namespaces.
Additionally, if a device implementation includes custom APIs outside the standard Android namespace, those APIs
MUST be packaged in an Android shared library so that only apps that explicitly use them (via the <uses-1library>
mechanism) are affected by the increased memory usage of such APIs.

If a device implementer proposes to improve one of the package namespaces above (such as by adding useful new
functionality to an existing API, or adding a new API), the implementer SHOULD visit source.android.com and begin the
process for contributing changes and code, according to the information on that site.

Note that the restrictions above correspond to standard conventions for naming APIs in the Java programming
language; this section simply aims to reinforce those conventions and make them binding through inclusion in this
Compatibility Definition.

https://source.android.com/

3.7. Runtime Compatibility

Device implementations MUST support the full Dalvik Executable (DEX) format and Dalvik bytecode specification and

semantics [Resources, 20]. Device implementers SHOULD use ART, the reference upstream implementation of the

Dalvik Executable Format, and the reference implementation’s package management system.

Device implementations MUST configure Dalvik runtimes to allocate memory in accordance with the upstream Android

platform, and as specified by the following table. (See section 7.1.1 for screen size and screen density definitions.)

Note that memory values specified below are considered minimum values and device implementations MAY allocate

more memory per application.

Screen Layout

small / normal

large

Screen Density
120 dpi (Idpi)
160 dpi (mdpi)
213 dpi (tvdpi)
240 dpi (hdpi)
320 dpi (xhdpi)
400 dpi (400dpi)
480 dpi (xxhdpi)
560 dpi (560dpi)
640 dpi (xxxhdpi)
120 dpi (Idpi)
160 dpi (mdpi)
213 dpi (tvdpi)
240 dpi (hdpi)
320 dpi (xhdpi)
400 dpi (400dpi)
480 dpi (xxhdpi)
560 dpi (560dpi)
(

640 dpi (xxxhdpi)

Minimum Application Memory

16MB

32MB

64MB
96MB
128MB
192MB
256MB
16MB

32MB

64MB

128MB
192MB
256MB
384MB

512MB

https://android.googlesource.com/platform/dalvik/+/lollipop-release/docs/

160 dpi (mdpi) 64MB
213 dpi (tvdpi)

96MB
240 dpi (hdpi)
320 dpi (xhdpi) 192MB

xlarge

400 dpi (400dpi) 288MB
480 dpi (xxhdpi) 384MB
560 dpi (560dpi) 576MB
640 dpi (xxxhdpi) 768MB

3.8. User Interface Compatibility

Android includes a launcher application (home screen) and support for third-party applications to replace the device
launcher (home screen). Device implementations that allow third-party applications to replace the device home screen
MUST declare the platform feature android.software.home screen.

I Widgets are optional for all Android device implementations, but SHOULD be supported on Android Handheld
devices.

Android defines a component type and corresponding APl and lifecycle that allows applications to expose an
"AppWidget" to the end user [Resources, 21] a feature that is strongly RECOMMENDED to be supported on Handheld

Device implementations. Device implementations that support embedding widgets on the home screen MUST meet the
following requirements and declare support for platform feature android.software.app widgets.

e Device launchers MUST include built-in support for AppWidgets, and expose user interface affordances to add,
configure, view, and remove AppWidgets directly within the Launcher.

e Device implementations MUST be capable of rendering widgets that are 4 x 4 in the standard grid size. See the
App Widget Design Guidelines in the Android SDK documentation [Resources, 21] for details.

e Device implementations that include support for lock screen MAY support application widgets on the lock

screen.

Android includes APIs that allow developers to notify users of notable events [Resources, 22], using hardware and
software features of the device.

http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html

Some APIs allow applications to perform notifications or attract attention using hardware—specifically sound,
vibration, and light. Device implementations MUST support notifications that use hardware features, as described in
the SDK documentation, and to the extent possible with the device implementation hardware. For instance, if a device
implementation includes a vibrator, it MUST correctly implement the vibration APIs. If a device implementation lacks
hardware, the corresponding APls MUST be implemented as no-ops. This behavior is further detailed in section 7.

Additionally, the implementation MUST correctly render all resources (icons, sound files, etc.) provided for in the APIs
[Resources, 23], or in the Status/System Bar icon style guide [Resources, 24]. Device implementers MAY provide an
alternative user experience for notifications than that provided by the reference Android Open Source implementation;
however, such alternative notification systems MUST support existing notification resources, as above.

Android includes support for various notifications, such as:

e Rich notifications—Interactive Views for ongoing notifications.
e Heads-up notifications—Interactive Views users can act on or dismiss without leaving the current app.
e Lockscreen notifications—Notifications shown over a lock screen with granular control on visibility.

Device implementations MUST properly display and execute these notifications, including the title/name, icon, text as
documented in the Android APIs [Resources, 25].

Android includes Notification Listener Service APIs that allow apps (once explicitly enabled by the user) to receive a
copy of all notifications as they are posted or updated. Device implementations MUST correctly and promptly send

notifications in their entirety to all such installed and user-enabled listener services, including any and all metadata

attached to the Notification object.

Android includes APIs [Resources, 26] that allow developers to incorporate search into their applications, and expose
their application’s data into the global system search. Generally speaking, this functionality consists of a single,
system-wide user interface that allows users to enter queries, displays suggestions as users type, and displays results.
The Android APIs allow developers to reuse this interface to provide search within their own apps, and allow developers
to supply results to the common global search user interface.

Android device implementations SHOULD include global search, a single, shared, system-wide search user interface
capable of real-time suggestions in response to user input. Device implementations SHOULD implement the APIs that
allow developers to reuse this user interface to provide search within their own applications. Device implementations
that implement the global search interface MUST implement the APIs that allow third-party applications to add
suggestions to the search box when it is run in global search mode. If no third-party applications are installed that
make use of this functionality, the default behavior SHOULD be to display web search engine results and suggestions.

https://developer.android.com/guide/topics/resources/available-resources.html
http://developer.android.com/design/style/iconography.html
https://developer.android.com/design/patterns/notifications.html
http://developer.android.com/reference/android/app/SearchManager.html

Applications can use the "Toast” API to display short non-modal strings to the end user, that disappear after a brief
period of time [Resources, 27]. Device implementations MUST display Toasts from applications to end users in some
high-visibility manner.

Android provides "themes” as a mechanism for applications to apply styles across an entire Activity or application.

Android includes a "Holo" theme family as a set of defined styles for application developers to use if they want to
match the Holo theme look and feel as defined by the Android SDK [Resources, 28]. Device implementations MUST
NOT alter any of the Holo theme attributes exposed to applications [Resources, 29].

Android 5.0 includes a “Material” theme family as a set of defined styles for application developers to use if they want
to match the design theme’s look and feel across the wide variety of different Android device types. Device
implementations MUST support the “Material” theme family and MUST NOT alter any of the Material theme attributes
or their assets exposed to applications [Resources, 30].

Android also includes a "Device Default” theme family as a set of defined styles for application developers to use if they
want to match the look and feel of the device theme as defined by the device implementer. Device implementations
MAY modify the Device Default theme attributes exposed to applications [Resources, 29].

Android supports a new variant theme with translucent system bars, which allows application developers to fill the
area behind the status and navigation bar with their app content. To enable a consistent developer experience in this
configuration, it is important the status bar icon style is maintained across different device implementations.
Therefore, Android device implementations MUST use white for system status icons (such as signal strength and
battery level) and notifications issued by the system, unless the icon is indicating a problematic status [Resources, 29].

Android defines a component type and corresponding APl and lifecycle that allows applications to expose one or more
"Live Wallpapers" to the end user [Resources, 31]. Live wallpapers are animations, patterns, or similar images with
limited input capabilities that display as a wallpaper, behind other applications.

Hardware is considered capable of reliably running live wallpapers if it can run all live wallpapers, with no limitations on
functionality, at a reasonable frame rate with no adverse effects on other applications. If limitations in the hardware
cause wallpapers and/or applications to crash, malfunction, consume excessive CPU or battery power, or run at
unacceptably low frame rates, the hardware is considered incapable of running live wallpaper. As an example, some
live wallpapers may use an OpenGL 2.0 or 3.x context to render their content. Live wallpaper will not run reliably on
hardware that does not support multiple OpenGL contexts because the live wallpaper use of an OpenGL context may
conflict with other applications that also use an OpenGL context.

Device implementations capable of running live wallpapers reliably as described above SHOULD implement live
wallpapers, and when implemented MUST report the platform feature flag android.software.live wallpaper.

http://developer.android.com/reference/android/widget/Toast.html
http://developer.android.com/guide/topics/ui/themes.html
http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/R.style.html#Theme_Material
http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/service/wallpaper/WallpaperService.html

As the Recent function navigation key is OPTIONAL, the requirements to implement the overview screen is
OPTIONAL for Android Television devices and Android Watch devices.

The upstream Android source code includes the overview screen [Resources, 32], a system-level user interface for task
switching and displaying recently accessed activities and tasks using a thumbnail image of the application's graphical
state at the moment the user last left the application. Device implementations including the recents function
navigation key as detailed in section 7.2.3, MAY alter the interface but MUST meet the following requirements:

e MUST display affiliated recents as a group that moves together

e MUST support at least up to 20 displayed activities

e MUST at least display the title of 4 activities at a time

e SHOULD display highlight color, icon, screen title in recents

e MUST implement the screen pinning behavior [Resources, 33] and provide the user with a settings menu to
toggle the feature

e SHOULD display a closing affordance ("x") but MAY delay this until user interacts with screens

Device implementations are STRONGLY ENCOURAGED to use the upstream Android user interface (or a similar
thumbnail-based interface) for the overview screen.

Android includes support for Input Management and support for third-party input method editors [Resources, 34].
Device implementations that allow users to use third-party input methods on the device MUST declare the platform
feature android.software.input methods and support IME APIs as defined in the Android SDK documentation.

Device implementations that declare the android.software.input methods feature MUST provide a
user-accessible mechanism to add and configure third-party input methods. Device implementations MUST display the
settings interface in response to the android.settings.INPUT METHOD SETTINGS intent.

The Remote Control Client APl is deprecated from Android 5.0 in favor of the Media Notification Template that allows
media applications to integrate with playback controls that are displayed on the lock screen [Resources, 35]. Device
implementations that support a lock screen in the device MUST support the Media Notification Template along with
other notifications.

Android includes support for interactive screensavers called Dreams [Resources, 36]. Dreams allows users to interact
with applications when a device connected to a power source is idle or docked in a desk dock. Android Watch devices
MAY implement Dreams, but other types of device implementations SHOULD include support for Dreams and provide a
settings option for users to configure Dreams in response to the android.settings.DREAM SETTINGS intent.

http://developer.android.com/guide/components/recents.html
https://developer.android.com/about/versions/android-5.0.html#ScreenPinning
http://developer.android.com/guide/topics/text/creating-input-method.html
https://developer.android.com/reference/android/app/Notification.MediaStyle.html
http://developer.android.com/reference/android/service/dreams/DreamService.html

When a device has a hardware sensor (e.g. GPS) that is capable of providing the location coordinates, location modes
MUST be displayed in the Location menu within Settings [Resources, 37].

Android includes support for color emoji characters. When Android device implementations include an IME, devices
MUST provide an input method to the user for the Emoji characters defined in Unicode 6.1 [Resources, 38]. All devices
MUST be capable of rendering these emoji characters in color glyph.

Android 5.0 includes support for Roboto 2 font with different weights—sans-serif-thin, sans-serif-light,
sans-serif-medium, sans-serif-black, sans-serif-condensed, sans-serif-condensed-light—which MUST all be included for
the languages available on the device and full Unicode 7.0 coverage of Latin, Greek, and Cyrillic, including the Latin
Extended A, B, C, and D ranges, and all glyphs in the currency symbols block of Unicode 7.0.

3.9. Device Administration

Android includes features that allow security-aware applications to perform device administration functions at the
system level, such as enforcing password policies or performing remote wipe, through the Android Device
Administration API [Resources, 39]. Device implementations MUST provide an implementation of the
DevicePolicyManager class [Resources, 40]. Device implementations that include support for lock screen MUST
support the full range of device administration policies defined in the Android SDK documentation [Resources, 39] and
report the platform feature android.software.device admin.

Device implementations MAY have a preinstalled application performing device administration functions but this
application MUST NOT be set out-of-the box as the default Device Owner app [Resources, 41].

3.10. Accessibility

Android provides an accessibility layer that helps users with disabilities to navigate their devices more easily. In
addition, Android provides platform APIs that enable accessibility service implementations to receive callbacks for user
and system events and generate alternate feedback mechanisms, such as text-to-speech, haptic feedback, and
trackball/d-pad navigation [Resources, 42]. Device implementations MUST provide an implementation of the Android
accessibility framework consistent with the default Android implementation. Device implementations MUST meet the
following requirements:

e MUST support third-party accessibility service implementations through the
android.accessibilityservice APIs [Resources, 43]

e MUST generate AccessibilityEvents and deliver these events to all registered AccessibilityService
implementations in a manner consistent with the default Android implementation

http://developer.android.com/reference/android/provider/Settings.Secure.html#LOCATION_MODE
http://www.google.com/url?q=http%3A%2F%2Fwww.unicode.org%2Fversions%2FUnicode6.1.0%2F&sa=D&sntz=1&usg=AFQjCNFHS8XRo19fWQ0TFw2J2AT9ocogIA
http://developer.android.com/guide/topics/admin/device-admin.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
http://developer.android.com/guide/topics/admin/device-admin.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isDeviceOwnerApp(java.lang.String)
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
http://developer.android.com/reference/android/view/accessibility/package-summary.html

e Unless an Android Watch device with no audio output, device implementations MUST provide a
user-accessible mechanism to enable and disable accessibility services, and MUST display this interface in
response to the android.provider.Settings.ACTION ACCESSIBILITY SETTINGS intent.

Additionally, device implementations SHOULD provide an implementation of an accessibility service on the device, and
SHOULD provide a mechanism for users to enable the accessibility service during device setup. An open source
implementation of an accessibility service is available from the Eyes Free project [Resources, 44].

3.11. Text-to-Speech

Android includes APIs that allow applications to make use of text-to-speech (TTS) services and allows service
providers to provide implementations of TTS services [Resources, 45]. Device implementations reporting the feature
android.hardware.audio.output MUST meet these requirements related to the Android TTS framework.

Device implementations:

e MUST support the Android TTS framework APIs and SHOULD include a TTS engine supporting the languages
available on the device. Note that the upstream Android open source software includes a full-featured TTS
engine implementation.

e MUST support installation of third-party TTS engines

e MUST provide a user-accessible interface that allows users to select a TTS engine for use at the system level

3.12. TV Input Framework

The Android Television Input Framework (TIF) simplifies the delivery of live content to Android Television devices. TIF
provides a standard API to create input modules that control Android Television devices. Android Television device
implementations MUST support Television Input Framework [Resources, 46].

Device implementations that support TIF MUST declare the platform feature android.software.live tv.

4. Application Packaging Compatibility

Device implementations MUST install and run Android ".apk” files as generated by the "aapt” tool included in the official

Android SDK [Resources, 47].

Devices implementations MUST NOT extend either the .apk [Resources, 48], Android Manifest [Resources, 49], Dalvik
bytecode [Resources, 20], or RenderScript bytecode formats in such a way that would prevent those files from
installing and running correctly on other compatible devices

5. Multimedia Compatibility
5.1. Media Codecs

Device implementations MUST support the core media formats specified in the Android SDK documentation
[Resources, 50] except where explicitly permitted in this document. Specifically, device implementations MUST support

https://code.google.com/p/eyes-free/
http://developer.android.com/reference/android/speech/tts/package-summary.html
https://source.android.com/devices/tv/index.html
http://developer.android.com/guide/developing/tools/index.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
https://android.googlesource.com/platform/dalvik/+/lollipop-release/docs/
http://developer.android.com/guide/appendix/media-formats.html

the media formats, encoders, decoders, file types, and container formats defined in the tables below. All of these
codecs are provided as software implementations in the preferred Android implementation from the Android Open

Source Project.

Please note that neither Google nor the Open Handset Alliance make any representation that these codecs are free

from third-party patents. Those intending to use this source code in hardware or software products are advised that
implementations of this code, including in open source software or shareware, may require patent licenses from the
relevant patent holders.

5.1.1. Audio Codecs

Supported File Type(s) /

Format / Codec Encoder Decoder Details R
Container Formats
MPEG-4 AAC Profil 2 i
CZAAC EC) rofile REQUIRED' REQUIRED Support for mono/.stereo/5.0/5.1 content with
standard sampling rates from 8 to 48 kHz. - 3GPP (.3gp)
MPEG-4 HE AAC REQUIRED' Support for mono/stereo/5.0/5.12 content with |~ MF £0-4 (mp4, .m4a)
Profile (AAC+) (Android 4.1+) REQUIRED standard sampling rates from 16 to 48 kHz " ADTS raw AAC (.aac,
) piing) decode in Android 3.1+,
MPEG-4 HE AACv2 2 . encode in Android 4.0+,
Profile (enhanced REQUIRED Suppo;t fc;r monc:./stereo/5%0/5.1 contenl;[with ADIF not supported)
AAC+) standard sampling rates from 16 to 48 kHz. - MPEG-TS (ts, not
1 . seekable, Android 3.0+)
AAC ELD (enhanced REQUIRED REQUIRED Support for mono/stereo content with standard

low delay AAC) (Android 4.1+) (Android 4.1+) sampling rates from 16 to 48 kHz.
AMR-NB REQUIRED® REQUIRED® 4.75 to 12.2 kbps sampled @ 8kHz
; ; 3GPP (.3gp)
AMR-WB REQUIRED? REQUIRED? 9 rates from 6.60 kbit/s to 23.85 kbit/s sampled @
16kHz
Mono/Stereo (no multichannel). Sample rates up
REQUIRED to 48 kHz (but up to 44.1 kHz is recommended on
FLAC . devices with 44.1 kHz output, as the 48 to 44.1 kHz FLAC (.flac) only
(Android 3.1+) . .
downsampler does not include a low-pass filter).
16-bit recommended; no dither applied for 24-bit.
Mono/Stereo 8-320Kbps constant (CBR) or
MP3 REQUIRED . MP3 (.mp3
Q variable bitrate (VBR) (mp3)
* Type 0 and 1 (.mid, .xmf,
MIDI Type 0 and 1. DLS Version 1 and 2. XMF and .mxmf)
MIDI REQUIRED Mobile XMF. Support for ringtone formats * RTTTL/RTX (.rtttl, .rtx)
RTTTL/RTX, OTA, and iMelody + OTA (.ota)
+ iMelody (.imy)
+ Ogg (-0g9)
Vorbis REQUIRED * Matroska (.mkv, Android
4.0+)
16-bit linear PCM (rates up to limit of hardware).
REQUIRED* Devices MUST support sampling rates for raw
PCM/WAVE REQUIRED . WAVE (.
/ (Android 4.1+) Q PCM recording at 8000, 11025, 16000, and 44100 (wav)
Hz frequencies.
Opus REQUIRED Matroska (.mkv)

(Android 5.0+)

android

21 of 68

! Required for device implementations that define android.hardware.microphone but optional for Android Watch device

implementations.

2 Only downmix of 5.0/5.1 content is required; recording or rendering more than 2 channels is optional.
3 Required for Android Handheld device implementations.
#Required for device implementations that define android.hardware.microphone, including Android Watch device implementations.

5.1.2. Image Codecs

Format / Codec Encoder Decoder Details Supporte_d File Type(s) /
Container Formats
JPEG REQUIRED REQUIRED Base+progressive JPEG (.jpg)
GIF REQUIRED GIF (.gif)
PNG REQUIRED REQUIRED PNG (.png)
BMP REQUIRED BMP (.bmp)
WebP REQUIRED REQUIRED WebP (.webp)

5.1.3. Video Codecs

Video codecs are optional for Android Watch device implementations.

Supported File Type(s) / Container

Format / Codec Encoder Decoder Details
Formats
+ 3GPP (.3gp)
H.263 1 2
REQUIRED REQUIRED - MPEG-4 (.mp4)
See section 5.2 and 5.3 for X l:/I:)I;CI;EZP4(.(3r?1F;)4)
H.264 AVC 2 2 detail N
REQUIRED REQUIRED etars - MPEG-TS (ts, AAC audio only, not
seekable, Android 3.0+)
H.265 HEVC 2 . . MPEG-4 (.mp4
REQUIRED See section 5.3 for details (mp4)
2
MPEG-4 SP REQUIRED 3GPP (.3gp)
vpg? REQUIRED? REQUIRED? See section 5.2 and 5.3 for | * WebM (.webm) [Resources, 110
(Android 4.3+) (Android 2.3.3+) details * Matroska (.mkv, Android 4.0+)*
VP9 REQUIRED? + WebM (.webm) [Resources, 110
(Android 4.4+) See section 5.3 for details | « Matroska (.mkv, Android 4.0+)*

! Required for device implementations that include camera hardware and define android.hardware.camera or

android.hardware.camera. front.
2 Required for device implementations except Android Watch devices.
3 For acceptable quality of web video streaming and video-conference services, device implementations SHOULD use a hardware VP8 codec

that meets the requirements in [Resources, 51].
“Device implementations SHOULD support writing Matroska WebM files.

android

22 of 68

http://www.webmproject.org/
http://www.webmproject.org/
http://www.webmproject.org/hardware/rtc-coding-requirements/

5.2. Video Encoding

. Video codecs are optional for Android Watch device implementations.

Android device implementations with H.264 codec support, MUST support Baseline Profile Level 3 and the following SD
(Standard Definition) video encoding profiles and SHOULD support Main Profile Level 4 and the following HD (High
Definition) video encoding profiles. Android Television devices are STRONGLY RECOMMENDED to encode HD 1080p
video at 30 fps.

SD (Low quality) SD (High quality) HD 720p’ HD 1080p’
Video resolution 320 x 240 px 720 x 480 px 1280 x 720 px 1920 x 1080 px
Video frame rate 20 fps 30 fps 30 fps 30 fps
Video bitrate 384 Kbps 2 Mbps 4 Mbps 10 Mbps

" When supported by hardware, but STRONGLY RECOMMENDED for Android Television devices.

Android device implementations with VP8 codec support MUST support the SD video encoding profiles and SHOULD
support the following HD (High Definition) video encoding profiles.

SD (Low quality) SD (High quality) HD 720p' HD 1080p’
Video resolution 320 x 180 px 640 x 360 px 1280 x 720 px 1920 x 1080 px
Video frame rate 30 fps 30 fps 30 fps 30 fps
Video bitrate 800 Kbps 2 Mbps 4 Mbps 10 Mbps

" When supported by hardware.

5.3. Video Decoding

. Video codecs are optional for Android Watch device implementations.

Device implementations MUST support dynamic video resolution switching within the same stream for VP8, VP9
,H.264, and H.265 codecs.

Android device implementations with H.264 decoders, MUST support Baseline Profile Level 3 and the following SD
video decoding profiles and SHOULD support the HD decoding profiles. Android Television devices MUST support High
Profile Level 4.2 and the HD 1080p decoding profile.

SD (Low quality) SD (High quality) HD 720p’ HD 1080p’

Video resolution 320 x 240 px 720 x 480 px 1280 x 720 px 1920 x 1080 px
Video frame rate |30 fps 30 fps 30 fps / 60 fps? 30 fps / 60 fps?
Video bitrate 800 Kbps 2 Mbps 8 Mbps 20 Mbps

! Required for Android Television device implementations, but for other device types only when supported by hardware.

2 Required for Android Television device implementations.

Android device implementations when supporting VP8 codec as described in section 5.1.3, MUST support the following
SD decoding profiles and SHOULD support the HD decoding profiles. Android Television devices MUST support the HD
1080p decoding profile.

SD (Low quality) | SD (High quality) HD 720p' HD 1080p’
Video resolution 320 x 180 px 640 x 360 px 1280 x 720 px 1920 x 1080 px
Video frame rate |30 fps 30 fps 30 fps / 60 fps? 30/ 60 fps?
Video bitrate 800 Kbps 2 Mbps 8 Mbps 20 Mbps

1 Required for Android Television device implementations, but for other type of devices only when supported by hardware.
2 Required for Android Television device implementations.

Android device implementations, when supporting VP9 codec as described in section 5.1.3, MUST support the
following SD video decoding profiles and SHOULD support the HD decoding profiles. Android Television devices are
STRONGLY RECOMMENDED to support the HD 1080p decoding profile and SHOULD support the UHD decoding profile.
When the UHD video decoding profile is supported, it MUST support 8 bit color depth.

SD (Low quality) |SD (High quality) HD 720p' HD 1080p 2 UHD 2
Video resolution {320 x 180 px 640 x 360 px 1280 x 720 px 1920 x 1080 px 3840 x 2160 px
Video frame rate |30 fps 30 fps 30 fps 30 fps 30 fps
Video bitrate 600 Kbps 1.6 Mbps 4 Mbps 10 Mbps 20 Mbps

' Required for Android Television device implementations, but for other type of devices only when supported by hardware.
2 STRONGLY RECOMMENDED for Android Television device implementations when supported by hardware.

Android device implementations, when supporting H.265 codec as described in section 5.1.3, MUST support the Main
Profile Level 3 Main tier and the following SD video decoding profiles and SHOULD support the HD decoding profiles.

Android Television devices MUST support the Main Profile Level 4.1 Main tier and the HD 1080p decoding profile and
SHOULD support Main10 Level 5 Main Tier profile and the UHD decoding profile.

SD (Low quality) |SD (High quality) HD 720p' HD 1080p ' UHD 2

Video resolution 352 x 288 px 640 x 360 px 1280 x 720 px 1920 x 1080 px 3840 x 2160 px
Video frame rate |30 fps 30 fps 30 fps 30 fps 30 fps
Video bitrate 600 Kbps 1.6 Mbps 4 Mbps 10 Mbps 20 Mbps

! Required for Android Television device implementation, but for other type of devices only when supported by hardware.
2 Required for Android Television device implementations when supported by hardware.

5.4. Audio Recording

While some of the requirements outlined in this section are stated as SHOULD since Android 4.3, the Compatibility
Definition for a future version is planned to change these to MUST. Existing and new Android devices are very strongly
encouraged to meet these requirements, or they will not be able to attain Android compatibility when upgraded to the
future version.

Device implementations that declare android.hardware.microphone MUST allow capture of raw audio content
with the following characteristics:

e Format: Linear PCM, 16-bit
e Sampling rates: 8000, 11025, 16000, 44100
e Channels: Mono

Device implementations that declare android.hardware.microphone SHOULD allow capture of raw audio content

with the following characteristics:

e Format: Linear PCM, 16-bit
e Sampling rates: 22050, 48000
e Channels: Stereo

In addition to the above recording specifications, when an application has started recording an audio stream using the
android.media.MediaRecorder.AudioSource.VOICE RECOGNITION audio source:

e The device SHOULD exhibit approximately flat amplitude versus frequency characteristics: specifically, +3 dB,
from 100 Hz to 4000 Hz.

e Audio input sensitivity SHOULD be set such that a 90 dB sound power level (SPL) source at 1000 Hz yields
RMS of 2500 for 16-bit samples.

e PCM amplitude levels SHOULD linearly track input SPL changes over at least a 30 dB range from -18 dB to +12
dB re 90 dB SPL at the microphone.

e Total harmonic distortion SHOULD be less than 1% for 1Khz at 90 dB SPL input level at the microphone.

e Noise reduction processing, if present, MUST be disabled.

e Automatic gain control, if present, MUST be disabled

If the platform supports noise suppression technologies tuned for speech recognition, the effect MUST be controllable
from the android.media.audiofx.NoiseSuppressor APl. Moreover, the UUID field for the noise suppressor's
effect descriptor MUST uniquely identify each implementation of the noise suppression technology.

The android.media.MediaRecorder.AudioSource class includes the REMOTE SUBMIX audio source. Devices
that declare android.hardware.audio.output MUST properly implement the REMOTE SUBMIX audio source so
that when an application uses the android.media.AudioRecord API to record from this audio source, it can
capture a mix of all audio streams except for the following:

e STREAM RING
e STREAM ALARM
e STREAM NOTIFICATION

5.5. Audio Playback

Device implementations that declare android.hardware.audio.output MUST conform to the requirements in this
section.

The device MUST allow playback of raw audio content with the following characteristics:

e Format: Linear PCM, 16-bit
e Sampling rates: 8000, 11025, 16000, 22050, 32000, 44100
e Channels: Mono, Stereo

The device SHOULD allow playback of raw audio content with the following characteristics:

e Sampling rates: 24000, 48000

Android provides an API for audio effects for device implementations [Resources, 52]. Device implementations that
declare the feature android.hardware.audio.output:

e MUST support the EFFECT TYPE EQUALIZER and EFFECT TYPE LOUDNESS ENHANCER implementations
controllable through the AudioEffect subclasses Equalizer, LoudnessEnhancer

e MUST support the visualizer APl implementation, controllable through the Visualizer class

e SHOULD support the EFFECT TYPE BASS BOOST,EFFECT TYPE ENV REVERB,
EFFECT_TYPE PRESET REVERB,and EFFECT TYPE VIRTUALIZER implementations controllable through
the AudioEffect sub-classes BassBoost, EnvironmentalReverb, PresetReverb,and Virtualizer

http://developer.android.com/reference/android/media/audiofx/AudioEffect.html

Android Television device implementations MUST include support for system Master Volume and digital audio output

volume attenuation on supported outputs, except for compressed audio passthrough output (where no audio decoding

is done on the device).

5.6. Audio Latency

Audio latency is the time delay as an audio signal passes through a system. Many classes of applications rely on short

latencies, to achieve real-time sound effects.

For the purposes of this section, use the following definitions:

output latency—The interval between when an application writes a frame of PCM-coded data and when the
corresponding sound can be heard by an external listener or observed by a transducer.

cold output latency—The output latency for the first frame, when the audio output system has been idle and
powered down prior to the request.

continuous output latency—The output latency for subsequent frames, after the device is playing audio.

input latency—The interval between when an external sound is presented to the device and when an
application reads the corresponding frame of PCM-coded data.

cold input latency—The sum of lost input time and the input latency for the first frame, when the audio input
system has been idle and powered down prior to the request.

continuous input latency—The input latency for subsequent frames, while the device is capturing audio.
cold output jitter—The variance among separate measurements of cold output latency values.
cold input jitter—The variance among separate measurements of cold input latency values.

continuous round-trip latency—The sum of continuous input latency plus continuous output latency plus 5
milliseconds.

OpenSL ES PCM buffer queue API—The set of PCM-related OpenSL ES APIs within Android NDK; see
NDK_root/docs/opensles/index.html.

Device implementations that declare android.hardware.audio.output SHOULD meet or exceed these audio
output requirements:

cold output latency of 100 milliseconds or less
continuous output latency of 45 milliseconds or less
minimize the cold output jitter

If a device implementation meets the requirements of this section after any initial calibration when using the OpenSL
ES PCM buffer queue API, for continuous output latency and cold output latency over at least one supported audio
output device, it MAY report support for low-latency audio, by reporting the feature
android.hardware.audio.low latency viathe android.content.pm.PackageManager class [Resources,
53]. Conversely, if the device implementation does not meet these requirements it MUST NOT report support for
low-latency audio.

Device implementations that include android.hardware.microphone SHOULD meet these input audio
requirements:

e cold input latency of 100 milliseconds or less

e continuous input latency of 30 milliseconds or less

e continuous round-trip latency of 50 milliseconds or less
e minimize the cold input jitter

5.7. Network Protocols

Devices MUST support the media network protocols for audio and video playback as specified in the Android SDK
documentation [Resources, 50]. Specifically, devices MUST support the following media network protocols:

e RTSP (RTP, SDP)
e HTTP(S) progressive streaming
e HTTP(S) Live Streaming draft protocol, Version 3 [Resources, 54]

5.8. Secure Media

Device implementations that support secure video output and are capable of supporting secure surfaces MUST declare
support for Display.FLAG SECURE. Device implementations that declare support for Display.FLAG SECURE, if
they support a wireless display protocol, MUST secure the link with a cryptographically strong mechanism such as
HDCP 2.x or higher for Miracast wireless displays. Similarly if they support a wired external display, the device
implementations MUST support HDCP 1.2 or higher. Android Television device implementations MUST support HDCP
2.2 for devices supporting 4K resolution and HDCP 1.4 or above for lower resolutions. The upstream Android open
source implementation includes support for wireless (Miracast) and wired (HDMI) displays that satisfies this
requirement.

6. Developer Tools and Options Compatibility

6.1. Developer Tools

Device implementations MUST support the Android Developer Tools provided in the Android SDK. Android compatible
devices MUST be compatible with:

http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/guide/appendix/media-formats.html
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Fdraft-pantos-http-live-streaming-03&sa=D&sntz=1&usg=AFQjCNHOfFP6Th7VnsoaviSGgMm74vVapA

e Android Debug Bridge (adb) [Resources, 55]

Device implementations MUST support all adb functions as documented in the Android SDK including
dumpsys [Resources, 56]. The device-side adb daemon MUST be inactive by default and there MUST be a
user-accessible mechanism to turn on the Android Debug Bridge. If a device implementation omits USB
peripheral mode, it MUST implement the Android Debug Bridge via local-area network (such as Ethernet or
802.11).

Android includes support for secure adb. Secure adb enables adb on known authenticated hosts. Device
implementations MUST support secure adb.

e Dalvik Debug Monitor Service (ddms) [Resources, 57]

Device implementations MUST support all ddms features as documented in the Android SDK. As ddms uses
adb, support for ddms SHOULD be inactive by default, but MUST be supported whenever the user has activated
the Android Debug Bridge, as above.

e Monkey [Resources, 58]

Device implementations MUST include the Monkey framework, and make it available for applications to use.

e SysTrace [Resources, 59]

Device implementations MUST support systrace tool as documented in the Android SDK. Systrace must be
inactive by default, and there MUST be a user-accessible mechanism to turn on Systrace.

Most Linux-based systems and Apple Macintosh systems recognize Android devices using the standard Android SDK
tools, without additional support; however Microsoft Windows systems typically require a driver for new Android
devices. (For instance, new vendor IDs and sometimes new device IDs require custom USB drivers for Windows
systems.) If a device implementation is unrecognized by the adb tool as provided in the standard Android SDK, device
implementers MUST provide Windows drivers allowing developers to connect to the device using the adb protocol.
These drivers MUST be provided for Windows XP, Windows Vista, Windows 7, Windows 8, and Windows 9 in both 32-bit
and 64-bit versions.

6.2. Developer Options

Android includes support for developers to configure application development-related settings. Device
implementations MUST honor the android.settings.APPLICATION DEVELOPMENT SETTINGS intentto show
application development-related settings [Resources, 60]. The upstream Android implementation hides the Developer
Options menu by default and enables users to launch Developer Options after pressing seven (7) times on the Settings
> About Device > Build Number menu item. Device implementations MUST provide a consistent experience for
Developer Options. Specifically, device implementations MUST hide Developer Options by default and MUST provide a
mechanism to enable Developer Options that is consistent with the upstream Android implementation.

http://developer.android.com/tools/help/adb.html
https://source.android.com/devices/tech/input/dumpsys.html
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/systrace.html
http://developer.android.com/reference/android/provider/Settings.html#ACTION_APPLICATION_DEVELOPMENT_SETTINGS

7. Hardware Compatibility

If a device includes a particular hardware component that has a corresponding API for third-party developers, the
device implementation MUST implement that API as described in the Android SDK documentation. If an APl in the SDK
interacts with a hardware component that is stated to be optional and the device implementation does not possess
that component:

e Complete class definitions (as documented by the SDK) for the component's APIs MUST still be presented.

e The API's behaviors MUST be implemented as no-ops in some reasonable fashion.

e APl methods MUST return null values where permitted by the SDK documentation.

e APl methods MUST return no-op implementations of classes where null values are not permitted by the SDK
documentation.

e APl methods MUST NOT throw exceptions not documented by the SDK documentation.

A typical example of a scenario where these requirements apply is the telephony API: even on non-phone devices, these
APIls must be implemented as reasonable no-ops.

Device implementations MUST consistently report accurate hardware configuration information via the
getSystemAvailableFeatures () and hasSystemFeature (String) methods on the
android.content.pm.PackageManager class for the same build fingerprint. [Resources, 53]

7.1. Display and Graphics

Android includes facilities that automatically adjust application assets and Ul layouts appropriately for the device, to
ensure that third-party applications run well on a variety of hardware configurations [Resources, 61]. Devices MUST
properly implement these APIs and behaviors, as detailed in this section.

The units referenced by the requirements in this section are defined as follows:

e physical diagonal size—The distance in inches between two opposing corners of the illuminated portion of the
display.

e dots per inch (dpi)—The number of pixels encompassed by a linear horizontal or vertical span of 1". Where dpi
values are listed, both horizontal and vertical dpi must fall within the range.

e aspect ratio—The ratio of the longer dimension of the screen to the shorter dimension. For example, a display
of 480x854 pixels would be 854 / 480 = 1.779, or roughly "16:9".

e density-independent pixel (dp)—The virtual pixel unit normalized to a 160 dpi screen, calculated as: pixels =
dps * (density / 160).

http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/guide/practices/screens_support.html

7.1.1.1. Screen Size
. Android Watch devices (detailed in section 2) MAY have smaller screen sizes as described in this section.

The Android Ul framework supports a variety of different screen sizes, and allows applications to query the device
screen size (aka "screen layout”) via android.content.res.Configuration.screenLayout with the
SCREENLAYOUT SIZE MASK. Device implementations MUST report the correct screen size as defined in the Android
SDK documentation [Resources, 61] and determined by the upstream Android platform. Specifically, device
implementations MUST report the correct screen size according to the following logical density-independent pixel (dp)
screen dimensions.

e Devices MUST have screen sizes of at least 426 dp x 320 dp ('small’), unless it is an Android Watch device.

e Devices that report screen size 'normal' MUST have screen sizes of at least 480 dp x 320 dp.

e Devices that report screen size 'large’ MUST have screen sizes of at least 640 dp x 480 dp.

e Devices that report screen size 'xlarge’ MUST have screen sizes of at least 960 dp x 720 dp.

In addition,

e Android Watch devices MUST have a screen with the physical diagonal size in the range from 1.1 to 2.5 inches
e Other types of Android device implementations, with a physically integrated screen, MUST have a screen at
least 2.5 inches in physical diagonal size.

Devices MUST NOT change their reported screen size at any time.

Applications optionally indicate which screen sizes they support via the <supports-screens> attribute in the
AndroidManifest.xml file. Device implementations MUST correctly honor applications’ stated support for small, normal,
large, and xlarge screens, as described in the Android SDK documentation.

7.1.1.2. Screen Aspect Ratio

. Android Watch devices MAY have an aspect ratio of 1.0 (1:1).

The screen aspect ratio MUST be a value from 1.3333 (4:3) to 1.86 (roughly 16:9), but Android Watch devices MAY have
an aspect ratio of 1.0 (1:1) because such a device implementation will use a UT_MODE TYPE WATCH as the

android.content.res.Configuration.uiMode

7.1.1.3. Screen Density

The Android Ul framework defines a set of standard logical densities to help application developers target application
resources. Device implementations MUST report only one of the following logical Android framework densities through
the android.util.DisplayMetrics APIs, and MUST execute applications at this standard density and MUST NOT
change the value at at any time for the default display.

e 120 dpi (Idpi)

http://developer.android.com/guide/practices/screens_support.html

e 160 dpi (mdpi)

e 213 dpi (tvdpi)

e 240 dpi (hdpi)

e 320 dpi (xhdpi)

e 400 dpi (400dpi)

e 480 dpi (xxhdpi)

e 560 dpi (560dpi)

e 640 dpi (xxxhdpi)

Device implementations SHOULD define the standard Android framework density that is numerically closest to the
physical density of the screen, unless that logical density pushes the reported screen size below the minimum
supported. If the standard Android framework density that is numerically closest to the physical density results in a
screen size that is smaller than the smallest supported compatible screen size (320 dp width), device implementations
SHOULD report the next lowest standard Android framework density.

Device implementations MUST report correct values for all display metrics defined in
android.util.DisplayMetrics [Resources, 62] and MUST report the same values regardless of whether the
embedded or external screen is used as the default display.

Devices MUST report which screen orientations they support (android.hardware.screen.portrait and/or
android.hardware.screen.landscape) and MUST report at least one supported orientation. For example, a
device with a fixed orientation landscape screen, such as a television or laptop, SHOULD only report

android.hardware.screen.landscape.

Devices that report both screen orientations MUST support dynamic orientation by applications to either portrait or
landscape screen orientation. That is, the device must respect the application's request for a specific screen
orientation. Device implementations MAY select either portrait or landscape orientation as the default.

Devices MUST report the correct value for the device's current orientation, whenever queried via the

android.content.res.Configuration.orientation, android.view.Display.getOrientation (), Or

other APIs.

Devices MUST NOT change the reported screen size or density when changing orientation.

Device implementations MUST support both OpenGL ES 1.0 and 2.0, as embodied and detailed in the Android SDK
documentations. Device implementations SHOULD support OpenGL ES 3.0 or 3.1 on devices capable of supporting it.
Device implementations MUST also support Android RenderScript, as detailed in the Android SDK documentation
[Resources, 63].

http://developer.android.com/reference/android/util/DisplayMetrics.html
http://developer.android.com/guide/topics/renderscript/

Device implementations MUST also correctly identify themselves as supporting OpenGL ES 1.0, OpenGL ES 2.0,
OpenGL ES 3.0 or OpenGL 3.1. That is:

e The managed APIs (such as via the GLES10.getString () method MUST report support for OpenGL ES 1.0
and OpenGL ES 2.0.

e The native C/C++ OpenGL APIs (APIs available to apps via libGLES_v1CM.so, libGLES_v2.s0, or libEGL.s0)
MUST report support for OpenGL ES 1.0 and OpenGL ES 2.0.

e Device implementations that declare support for OpenGL ES 3.0 or 3.1 MUST support the corresponding
managed APIs and include support for native C/C++ APIls. On device implementations that declare support for
OpenGL ES 3.0 or 3.1, libGLESv2.so MUST export the corresponding function symbols in addition to the
OpenGL ES 2.0 function symbols.

In addition to OpenGL ES 3.1, Android provides an extension pack with Java interfaces [Resources, 64] and native
support for advanced graphics functionality such as tessellation and the ASTC texture compression format. Android
device implementations MAY support this extension pack, and—only if fully implemented—MUST identify the support
through the android.hardware.opengles.aep feature flag.

Also, device implementations MAY implement any desired OpenGL ES extensions. However, device implementations
MUST report via the OpenGL ES managed and native APIs all extension strings that they do support, and conversely
MUST NOT report extension strings that they do not support.

Note that Android includes support for applications to optionally specify that they require specific OpenGL texture
compression formats. These formats are typically vendor-specific. Device implementations are not required by Android
to implement any specific texture compression format. However, they SHOULD accurately report any texture
compression formats that they do support, via the getString () method in the OpenGL API.

Android includes a mechanism for applications to declare that they want to enable hardware acceleration for 2D
graphics at the Application, Activity, Window, or View level through the use of a manifest tag
android:hardwareAccelerated or direct API calls [Resources, 65].

Device implementations MUST enable hardware acceleration by default, and MUST disable hardware acceleration if the
developer so requests by setting android:hardwareAccelerated="false" or disabling hardware acceleration
directly through the Android View APIs.

In addition, device implementations MUST exhibit behavior consistent with the Android SDK documentation on
hardware acceleration [Resources, 65].

Android includes a TextureView object that lets developers directly integrate hardware-accelerated OpenGL ES
textures as rendering targets in a Ul hierarchy. Device implementations MUST support the Textureview API, and
MUST exhibit consistent behavior with the upstream Android implementation.

Android includes support for EGL, ANDROID RECORDABLE, an EGLConfig attribute that indicates whether the
EGLConfig supports rendering to an ANativeWindow that records images to a video. Device implementations MUST
support EGL_ANDROID RECORDABLE extension [Resources, 66].

https://developer.android.com/reference/android/opengl/GLES31Ext.html
http://developer.android.com/guide/topics/graphics/hardware-accel.html
http://developer.android.com/guide/topics/graphics/hardware-accel.html
https://www.google.com/url?q=https%3A%2F%2Fwww.khronos.org%2Fregistry%2Fegl%2Fextensions%2FANDROID%2FEGL_ANDROID_recordable.txt&sa=D&sntz=1&usg=AFQjCNE9OnY6xwwvmCj3keE6Zg7yE8gAwA

Android specifies a "compatibility mode” in which the framework operates in a 'normal’ screen size equivalent (320dp
width) mode for the benefit of legacy applications not developed for old versions of Android that pre-date screen-size
independence. Device implementations MUST include support for legacy application compatibility mode as
implemented by the upstream Android open source code. That is, device implementations MUST NOT alter the triggers
or thresholds at which compatibility mode is activated, and MUST NOT alter the behavior of the compatibility mode
itself.

The Android platform includes APls that allow applications to render rich graphics to the display. Devices MUST
support all of these APIs as defined by the Android SDK unless specifically allowed in this document.

e Devices MUST support displays capable of rendering 16-bit color graphics and SHOULD support displays
capable of 24-bit color graphics.

e Devices MUST support displays capable of rendering animations.

e The display technology used MUST have a pixel aspect ratio (PAR) between 0.9 and 1.15. That is, the pixel
aspect ratio MUST be near square (1.0) with a 10 ~ 15% tolerance.

Android includes support for secondary display to enable media sharing capabilities and developer APIs for accessing
external displays. If a device supports an external display either via a wired, wireless, or an embedded additional
display connection then the device implementation MUST implement the display manager API as described in the
Android SDK documentation [Resources, 67].

7.2. Input Devices

I Android Watch devices MAY but other type of device implementations MUST implement a soft keyboard.
Devic