
 IMS Single Registration in Android

 Contents

 Objective

 Background

 Overview

 Design

 Configuration

 Security

 Provisioning

 SIP Message Transport

 Dedicated Bearer Access

 RCS User Capability Exchange

 GBA Authentication

 Specifications and References

 © 2021 Google LLC. All Rights Reserved. No express or implied warranties are provided for herein. All specifications are subject to change and any

 expected future products, features or functionality will be provided on an if and when available basis.

 Version 1.1.1 2022-06-17 1

 Objective
 ● Support a single IMS registration for managing both MMTEL features provided by an

 ImsService and RCS features provided by an RCS application in AOSP.
 ● Consolidate existing non-standard interfaces into a common AOSP API with CTS/VTS

 testing and validation.

 Background
 There have traditionally been many models for applications supporting RCS to access the
 carrier’s core network in the Android framework, but they usually fall into one of two categories:

 1. the “dual registration” model, as shown below in Figure 1.1. In this scenario, all
 applications that support IMS features perform their own IMS registration and manage
 their own IMS stacks to implement RCS and MMTEL features. This “over-the-top” model
 for supporting RCS is the easiest to manage from the device side and allows any
 application to be downloaded from the application store and provides RCS features to
 the user.

 2. the “single registration” model shown in Figure 1.2. In this model, the device provides the
 ability for an RCS application to access the IMS stack that exists in the telephony layer to
 support MMTEL features, such as voice/video calling and SMS over IMS. This “primary”
 IMS stack manages the IMS registration for all IMS implementations on the device as
 well as the SIP signalling traffic to and from the network. There are many variations of
 this second model, for example, a partner can choose to implement all RCS features in
 the telephony stack itself and provide access to these RCS features to a messaging
 application at a higher level or instead provide a lower level signalling transport interface
 and an RCS application itself implements the RCS features.

 Version 1.1.1 2022-06-17 2

 Figure 1.1 : An RCS application in an over-the-top dual registration scenario. The RCS stack and
 device ImsService do not know about each other and manage their own IMS registration to
 the cellular carrier’s network, SIP Message dialog handling, and data traffic.

 Figure 1.2 : An RCS application configured in an example single registration scenario. The device
 ImsService manages a single IMS registration on the cellular carrier’s network for all IMS
 enabled applications. Data traffic is still handled by the RCS application over an established
 dedicated bearer, however SIP messaging traffic is forwarded to the ImsService separately to

 Version 1.1.1 2022-06-17 3

 be sent over the same port bound to the carrier’s core network.

 North American cellular carriers have formed the Cross Carrier Messaging Initiative (CCMI) and
 have required that all devices on their network use the “single registration” model for
 implementing RCS moving forward. In order to support these requirements, Android 12 will be
 introducing new APIs to provide applications with the ability to integrate with the device
 ImsService to support RCS as part of the AOSP ecosystem.

 Overview
 There are four components involved in supporting IMS Single Registration: the RCS messaging
 application, AOSP telephony service, vendor or OEM provided IMS service, and vendor radio
 service. Figure 2.1 below illustrates the roles and responsibilities of all four components as well
 as the changes required to support single registration. In summary, single registration requires
 the following changes to be made:

 1. Extend the IMS Service API by
 a. Defining a SipTransport API that allows the messaging application to forward

 SIP messages from its SIP stack to the vendor SIP stack and vice-versa to be
 sent and received over the carrier network.

 b. Extending the existing ImsConfig API to provide the ability for applications to
 provision the device for RCS.

 c. Provide the user capability exchange (UCE) service so that the IMS service can
 manage capability exchange on behalf of all applications.

 2. Extend the vendor IRadio interface by defining a QosSession callback mechanism to
 allow the RCS messaging application to listen to dedicated bearer setup/teardown on
 the IMS PDN for active MSRP connections as well as any Quality of Service (QoS)
 information.

 3. Provide a GbaService API to allow the vendor to provide GBA authentication if required
 by the carrier.

 4. Refactor the RCS Messaging Application to
 a. Open up a SIP transport to the vendor IMS service for the features that it

 supports for SIP signalling through the existing IMS registration and authenticate
 when required.

 b. Listen to provisioning updates provided by the framework.
 c. Set up and tear down MSRP connections and use updates from the QoS callback

 mechanism to start data traffic when required.
 d. Provide capability updates to the framework for publishing UCE information as

 well as receive cached presence information from contacts.

 Version 1.1.1 2022-06-17 4

 Figure 2.1: A summary of each of the components required to support single registration as
 well as a summary of the new/modified AOSP APIs as part of this feature.

 This document covers the new API surfaces that will be available to both an RCS application
 wishing to use single registration as well as the partner changes required to support single
 registration on an Android device. If a new Android device supports IMS as part of the AOSP
 telephony stack, they will be required to support these AOSP APIs in order to meet the North
 American CCMI requirements.

 For the purposes of readability and focused discussion, the API changes have been split into
 five surfaces, which are outlined above in Figure 2.1 and will all be required in order to support
 single registration. The following table outlines each API surface area as well as more details on
 what that surface area provides in the context of single registration:

 Version 1.1.1 2022-06-17 5

 API Surface Area RCS application
 APIs

 Vendor IMS APIs Description

 RCS Provisioning ProvisioningMana
 ger

 ImsConfigImplBas
 e

 Allows an OEM or carrier to provide an
 app to update the RCS provisioning
 status if the carrier uses a proprietary
 carrier entitlement mechanism. The
 ImsService must also support the
 standard AutoConfigurationServer
 (ACS) for provisioning for carriers that
 don't use a proprietary mechanism.

 SIP Message
 Forwarding

 SipDelegateMana
 ger

 SipTransportImpl
 Base

 Allows an RCS application to first
 associate specific RCS feature tags
 with the device ImsService
 associated with the RcsFeature and
 then send/receive SIP messages and
 IMS registration updates associated
 with those RCS feature tags.

 Dedicated Bearer
 Notifications

 ConnectivityMana
 ger

 DataCallRespons
 e

 Allows an app to listen to QoS
 notifications on a socket that's
 associated with a specific local port
 and connected to a specific remote
 port.

 GBA
 Authentication

 bootstrapAuthentic
 ationRequest

 GbaService Allows an RCS app to authenticate
 with the network and access keys used
 for RCS features such as file transfer.

 RCS User
 Capability
 Exchange

 ImsRcsManager RcsCapabilityExc
 hangeImplBase

 Provides AOSP the ability to send its
 MMTEL and RCS capabilities to the
 vendor ImsService so that they can be
 PUBLISHed under one entity to the
 network for RCS User Capability
 Exchange. Also allows other apps
 interested in the RCS capabilities of
 one or more contacts to query the
 network for the contact(s) RCS
 capabilities.

 Version 1.1.1 2022-06-17 6

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android10-release/telephony/java/android/telephony/ims/ProvisioningManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android10-release/telephony/java/android/telephony/ims/ProvisioningManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android10-release/telephony/java/android/telephony/ims/stub/ImsConfigImplBase.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android10-release/telephony/java/android/telephony/ims/stub/ImsConfigImplBase.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/SipDelegateManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/SipDelegateManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/stub/SipTransportImplBase.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/stub/SipTransportImplBase.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/packages/Connectivity/framework/src/android/net/ConnectivityManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/packages/Connectivity/framework/src/android/net/ConnectivityManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/data/DataCallResponse.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/data/DataCallResponse.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/TelephonyManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/TelephonyManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/gba/GbaService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/ImsRcsManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/stub/RcsCapabilityExchangeImplBase.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/stub/RcsCapabilityExchangeImplBase.java

 Design
 The following section contains an in-depth design description as well as the API definitions,
 examples, and discussion for each API surface. Each section of the design contains the
 overview and implementation instructions for both the RCS application and the vendor
 ImsService.

 Con�guration
 The following section outlines how to configure a device for IMS single registration support.

 In order to enable IMS single registration APIs, the following device feature flag must be defined:
 FEATURE_TELEPHONY_IMS_SINGLE_REGISTRATION . If this feature is enabled, the device must
 support all of the new APIs defined in this document.

 Carrier Con�gurations

 ● Once device support has been enabled, individual carrier support must be enabled via
 the carrier configuration : KEY_IMS_SINGLE_REGISTRATION_REQUIRED_BOOL .

 ● For User Capability exchange to be supported, all other configurations in
 CarrierConfigManager.Ims must be configured.

 ● ACS support must be enabled per carrier via the KEY_USE_ACS_FOR_RCS_BOOL key or
 else the carrier/OEM must provide a carrier entitlement application on a per carrier basis
 if the carrier requires provisioning.

 Version 1.1.1 2022-06-17 7

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/content/pm/PackageManager.java#2645
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/CarrierConfigManager.java#3996
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/CarrierConfigManager.java#3975
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/CarrierConfigManager.java#4319

 Security
 The purpose of this section is to outline a coherent strategy for secure access to the IMS PDN
 and the telephony framework. Unless otherwise noted in each of the API design sections below,
 all of the APIs in this document will be following the same security strategy in Android S. In
 future releases, this may be amended or modified to support more use cases, as these APIs
 become more mature.

 In order for an application to access the IMS PDN and the SIP message transport APIs, the
 application must do the following:

 1) The IMS application must have been granted the
 android.permission.CONNECTIVITY_USE_RESTRICTED_NETWORKS permission,
 which can only happen if the permission is granted using the OEM permission allowlist.
 This requires the application either be a privileged application or a system signed
 application, which also means that the application will need to be preinstalled and
 signed with the correct keys.

 2) In order to access SIP Transport API, the application will need to be granted the
 android.permission.PERFORM_IMS_SINGLE_REGISTRATION permission and also
 be set as the user’s default messaging application.

 3) To be able to request GBA authentication, the application must have carrier permissions
 (see hasCarrierPrivileges),
 android.permission. PERFORM_IMS_SINGLE_REGISTRATION, or
 android.permission. MODIFY_PHONE_STATE permissions.

 4) In order to access User Capability Exchange APIs, the IMS application must be either the
 default messaging application, default dialer application, or the default contacts
 application and request the
 android.permission. ACCESS_RCS_USER_CAPABILITY_EXCHANGE permission.

 Note : The single registration APIs used to access the IMS PDN are not being made
 available to downloadable applications with “carrier privileges” at this time. It will only be
 made accessible to preinstalled applications that have been granted the
 android.permission.CONNECTIVITY_USE_RESTRICTED_NETWORKS permission.

 Version 1.1.1 2022-06-17 8

https://developer.android.com/reference/android/telephony/TelephonyManager#hasCarrierPrivileges()

 Provisioning
 To enable IMS Single Registration, operators update the RCS configuration supported by the
 network over the air. RCS configuration received over the air shall be broadly classified into the
 following categories as per GSMA RCC.07 Annex A:

 1. RCS Volte Single Registration Enabled
 2. Allowed RCS services
 3. Allowed RCS services with mobile data off
 4. Configuration parameters for each service (like file size, maximum message length etc)
 5. User capability exchange (UCE) mechanism and related parameters for Presence and

 Subscribe

 These parameters shall be consumed by:
 ● RCS application to trigger the single IMS registration over the IMS PDN and configure

 various RCS services
 ● AOSP for application validation, trigger User Capability Exchange, etc...
 ● IMS vendor stack to trigger initial IMS registration and support UCE signaling like

 PUBLISH/SUBSCRIBE/OPTIONS/NOTIFY etc

 Also there are certain application specific parameters which may be required by the android
 framework and the ACS client like the RCS client version, vendor name, etc... which are
 required for fetching the configuration, constructing the user agent header, etc.

 This document shall address these requirements for an end to end solution.

 Proposed Design
 Provisioning using entitlement server

 - OEMs implement their own carrier settings application to fetch the carrier configuration
 from the entitlement server when this provisioning mechanism is used. Application shall
 use the AOSP APIs to pass the received configuration.

 - The carrier settings application must parse the configuration XML and update the
 Android framework with the relevant RCS configuration (for example,
 <RCSConfig>...</RCSConfig>) section of the XML. For other non-RCS parameters
 in the XML, applications must use the pre existing mechanism to pass the configuration.

 - The carrier configuration KEY_USE_ACS_FOR_RCS_BOOL must be set to false for this
 configuration.

 Version 1.1.1 2022-06-17 9

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/CarrierConfigManager.java#4319

 Provisioning using AutoCon�guration Server
 - The Vendor IMS stack shall implement the autoconfiguration client using the

 ImsConfigImplBase API when ACS is used. It shall use the AOSP APIs in
 ProvisioningManager to pass the received configuration into telephony.

 - A carrier configuration KEY_USE_ACS_FOR_RCS_BOOL is introduced to indicate if Auto
 Configuration server is used.

 The provisioning mechanism used by the provisioning application shall not impact the API
 interface used by the application to provide the configuration to the framework and the interface
 used by the RCS application to get the configuration.
 ProvisioningManager shall be enhanced for storing and publishing the RCS configuration
 on a per subscription basis.

 Design Description

 RCS Messaging Application Responsibilities
 ProvisioningManager defines a new Intent with action
 ACTION_RCS_SINGLE_REGISTRATION_CAPABILITY_UPDATE , which provides the single
 registration capability of the device and the carrier to the default messaging application. This
 intent only provides the capability of single registration and not the current provisioning status of
 the IMS Single Registration feature.
 An Int extra EXTRA_SUBSCRIPTION_INDEX is included to specify the subscription index for
 which the intent is valid. An int extra EXTRA_STATUS shall also be included to provide the
 capability status. Possible values are :

 ● KEY_STATUS_CARRIER_NOT_CAPABLE
 ● KEY_STATUS_DEVICE_NOT_CAPABLE
 ● KEY_STATUS_CAPABLE

 Telephony shall consider the carrier’s IMS Single Registration capability and the IMS stack
 capability to support single IMS registration. If either of them do not support IMS Single
 Registration, the telephony framework shall trigger the Intent with state
 KEY_STATUS_CARRIER_NOT_CAPABLE or KEY_STATUS_DEVICE_NOT_CAPABLE as the case
 may be.
 Otherwise, the intent is triggered with the state KEY_STATUS_CAPABLE . This explicit intent is
 sent to the registered application on the following events:

 1. On boot, after the carrier configuration is loaded for the subscription
 2. On active subscription change

 Version 1.1.1 2022-06-17 10

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/CarrierConfigManager.java#4319
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/ProvisioningManager.java

 3. On default messaging application change
 4. If the carrier, or device capability is updated. For example if the carrier has a late single

 registration deployment, or the device adds capability after an IMS software upgrade etc.

 When the application receives the intent with extra KEY_STATUS_CAPABLE . The application
 must send its RCS client parameters to telephony via the applicable ProvisioningManager
 API. When the UE and the network are capable and the default messaging application has sent
 the RCS client parameters to telephony, then the parameters will be provided to the provisioning
 client. The provisioning client shall then proceed with fetching the RCS provisioning XML.

 Provisioning Client Responsibilities
 Provisioning clients shall use the existing notifyRcsAutoConfigurationReceived () API to
 provide the RCS configuration XML to ProvisioningManager . ProvisioningManager
 shall parse the XML and store some key parsed values like rcsVolteSingleRegistration ,
 Services, DataOff, etc as defined in RCC.07 Annex A along with the complete XML. The keys
 are stored to allow the android framework to have an easier access to these parameters. If
 operators choose to define custom tags for these parameters, then mapping keys can be
 defined in CarrierConfigManager to parse the XML. RCS configuration shall be stored
 persistently across power cycles in the devices subscription database.
 ProvisioningManager shall allow the RCS application to register a callback to receive the
 configuration XML and shall notify any changes to them using the registered callback.

 When the default messaging application is changed by the user and it's no longer the
 preinstalled RCS application then the AOSP telephony framework shall detect this condition and
 purge the stored xml. It shall also inform the RCS application regarding the configuration reset
 and then unregister its provisioning callback.
 When default messaging application is changed by the user and it's set back to the preinstalled
 RCS application then AOP telephony shall wait for the Provisioning client to update the XML
 using ProvisioningManager#notifyRcsAutoConfigurationReceived .
 ProvisioningManager shall listen to the PackageManager#MATCH_SYSTEM_ONLY filter to
 determine if the application is a default system messaging application.

 Figure 3.2.1: below illustrates the high level flow and the components involved.

 Version 1.1.1 2022-06-17 11

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/ProvisioningManager.java#1188

 Figure 3.2.1 : RCS Configuration update using either ACS or carrier configuration server.

 API De�nition
 Provisioning manager interface shall be extended to expose an API to fetch the RCS
 configuration for each subscription.

 Permissions
 RCS Provisioning android API will only support the “system” application, which means that the
 application is one of the preinstalled, updatable applications that an OEM provides. This gives
 the application the ability to access privileged permissions that are not typically accessible to
 3rd party applications that are downloaded onto the device. To receive provisioning updates, an
 RCS application must be the Default messaging application.

 RCS Application API
 The RCS Application shall create an instance of provisioning manager on bootup or whenever
 the application is ready to manage RCS traffic for the active subscription. RCS applications

 Version 1.1.1 2022-06-17 12

 must register the RCS client parameters on boot or after its upgrade.These parameters shall be
 used by the ACS client during autoconfiguration HTTPS GET request.

 Telephony shall send the ACTION_RCS_SINGLE_REGISTRATION_CAPABILITY_UPDATE
 Intent explicitly to the default messaging application (DMA). This will also start the application if
 it is not currently alive at the time. The DMA can cache the status of this intent for later use if it's
 not ready yet.

 If the status indicates KEY_STATUS_CAPABLE , then the application must register for
 provisioning change events and process the provisioning XML sent by the carrier. It shall
 register a callback to receive the RCS configuration xml using the below defined new methods
 in the ProvisioningManager . The service listening to the provisioning updates is expected to
 remain alive to receive and process the callback events while the callback is registered.

 If the status indicates device or the carrier are not capable of RCS volte single IMS registration,
 then the application can choose to unbind its provisioning monitoring service using the existing
 PackageManager#COMPONENT_ENABLED_STATE_DISABLED to save battery. If the status
 changes at later time and another Intent is received with the updated value, RCS application
 can again bind the provisioning monitoring service using
 PackageManager#COMPONENT_ENABLED_STATE_ENABLED .

 Figure 3.2.2 depicts the updated class diagram

 Figure 3.2.2 : New Provisioning API class definitions

 Version 1.1.1 2022-06-17 13

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android10-release/telephony/java/android/telephony/ims/ProvisioningManager.java
https://developer.android.com/reference/android/service/carrier/CarrierMessagingClientService
https://developer.android.com/reference/android/content/pm/PackageManager#COMPONENT_ENABLED_STATE_DISABLED
https://developer.android.com/reference/android/content/pm/PackageManager#COMPONENT_ENABLED_STATE_ENABLED

 ProvisioningManager interface shall also be enhanced to provide APIs for the RCS
 application to trigger ACS reconfiguration due to a HTTP level authentication failure. When
 reconfiguration is triggered, ProvisioningManager shall purge the stored xml and inform the
 application regarding the configuration reset.

 Please see the ProvisioningManager and RcsClientConfiguration documentation
 for more information on how the RCS provisioning API is used.

 ImsService API Additions

 Entitlement Server for Provisioning
 When an entitlement server is used for RCS provisioning, then a carrier’s entitlement application
 must use ProvisioningManager to pass the configuration XML. The platform will then use
 the ImsConfigImplBase interface notifyRcsAutoConfigurationReceived () to provide the
 configuration xml to the vendor, which can then be used to update provisioning information in
 the IMS stack.
 Ims stack is expected to store the xml in persistent memory and use the same XML across boot
 cycles until itl is updated by the entitlement application at a later time.

 ACS for Provisioning

 When ACS is configured to be used by a carrier for provisioning:

 ● IMS stack shall implement the ACS client and update the Android framework using the
 existing ProvisioningManager# notifyRcsAutoConfigurationReceived () API to provide
 the RCS configuration XML whenever a new XML is received.

 ● ImsConfigImplBase#setRcsClientConfiguration will be called when the RCS
 application sends the framework its RCS client configuration parameters. The
 ImsService or vendor IMS stack should detect the change in the application
 configuration and trigger ACS reconfiguration as required.

 ● Some operators require an additional authentication token to be used by the ACS client
 during the initial HTTP get request. The ImsService or the ACS client shall acquire the
 token as defined by the operator specifications.

 ● EAP-AKA, OTP SMS and other authentication means for ACS shall be supported by the
 ACS client.

 ● ImsService shall intercept the incoming port directed SMS with the one-time password or
 Network requested configuration request. ImsService uses it for initial authentication with
 the ACS server or triggers the reconfiguration procedure if required by the operator.

 Version 1.1.1 2022-06-17 14

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/ProvisioningManager.java#1188
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/ProvisioningManager.java#1188

 ● If there is an error during ACS,
 ImsConfigImplBase#notifyAutoConfigurationErrorReceived must be
 called to notify the framework of the error.

 ● A new method shall be added to the ImsConfigImplBase class for the framework to pass
 the RCSApplication triggered reconfiguration request to the ACS client.

 ● ImsService shall detect conditions like factory reset, Maintenance release upgrade
 and trigger ACS reconfiguration as required.

 ● When default messaging application is changed by the user and it's set back to the
 preinstalled RCS application, then ImsService shall detect condition and trigger ACS
 reconfiguration as required.

 Version 1.1.1 2022-06-17 15

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android10-release/telephony/java/android/telephony/ims/stub/ImsConfigImplBase.java

 Sequence diagrams:

 Figures below depict the execution flow for various sunny day use cases:

 Scenario P.CS.1 - Device bootup sequence

 On boot, an RCS application shall provide the application configuration. It can use the intent
 ACTION_RCS_SINGLE_REGISTRATION_CAPABILITY_UPDATE to determine if single
 registration is possible and register a provisioning callback to retrieve the XML. When the
 operator has enabled rcsVolteSingleRegistration , it can create SIP delegate
 connections using the SIP transport API .

 Bootup sequence with RCS application as the default messaging application. In the case that
 an RCS application is not set as the default messaging application by the user, then they will not
 receive the ACTION_RCS_SINGLE_REGISTRATION_CAPABILITY_UPDATE intent.

 Version 1.1.1 2022-06-17 16

 Scenario P.CS.2 : RCS provisioning update

 In case of a subsequent provisioning update, telephony will update the default messaging
 application with the latest XML on the registered callback.

 Version 1.1.1 2022-06-17 17

 Execution flow for corner scenarios is discussed below.

 Scenario P.EC.1: User changes the default messaging application

 Scenario P.EC.2 : SIM change/Hot swap/Active subscription change

 SIM change shall be detected by the provisioning client and the framework. If a valid XML is not
 available for the active subscription then the provisioning client shall trigger a reconfiguration.

 Version 1.1.1 2022-06-17 18

 Scenario P.EC.3: Telephony process crash recovery

 Version 1.1.1 2022-06-17 19

 Scenario P.EC.4: RCS client upgrade or RCS application crash recovery

 In cases when the RCS application crashes and recovers from it, or when its updated via
 playstore, the application must provide its latest RCS client parameters to telephony.
 When the default messaging application specific parameters change, ProvisioningManager
 shall detect condition and purge the stored xml. If it has a registered application callback, it shall
 inform the application regarding the configuration reset.

 Version 1.1.1 2022-06-17 20

 Scenario P.EC.5: Recon�guration triggered by the RCS application due to
 403 forbidden

 Version 1.1.1 2022-06-17 21

 After triggering reconfiguration due to 403 forbidden error, the ProvisioningManager will
 clean up the stored XML and notify the application. When the new XML is available, application
 shall be notified via the previously registered callback.

 Scenario P.EC.7 : ACS triggered due to factory reset/ MR upgrade

 These cases trigger an application processor restart. RCS application, telephony and
 IMSservice will all be restarted. ImsService will detect that software is upgraded or reset and it
 shall trigger reconfiguration with the ACS client. Similarly, carrier configuration OEM application
 will trigger reconfiguration with the entitlement server. Remaining execution sequence would be
 the same as the boot up flow depicted in scenario P.CS.1 .

 Version 1.1.1 2022-06-17 22

 SIP Message Transpo�
 In order to support “single registration” in AOSP, there must be one central authority managing
 the IMS registration and either implementing all IMS functionality for the device or providing the
 interfaces for another application to implement a subset of the IMS functionality. This API
 surface allows the device ImsService to open up a SIP Message transport layer between the
 device ImsService and another sufficiently privileged application (more information in the
 permissions section below) for one or more IMS feature tags. This will allow an RCS messaging
 application to maintain its own RCS stack and send and receive SIP messages to and from the
 carrier’s network using the established IP address and port established during the registration
 process of the device ImsService . Figure 3.3.1 below shows the high level description of how
 this is designed. It also allows the RCS application the flexibility to switch between dual
 registration and single registration as needed, depending on the carrier/provisioning information.

 Figure 3.3.1: High level diagram illustrating the process of creating a SipDelegate in AOSP,
 which connects a remote RCS application to a device ImsService in order to forward SIP
 messages across the transport layer and through the socket set up for SIP message traffic. (1)
 Device IMS stack completes initial IMS registration. (2) RCS application boots and requests a
 SipDelegate for a set of RCS feature tags. (3) If allowed, the SipDelegateService creates
 the SipDelegate and then (4) returns the SipDelegateConnection to the RCS application,
 which connects the RCS application to the SipDelegate logically. (5) Telephony requests that
 the ImsService modifies the IMS registration to include the new feature tags on the network.
 The SipDelegateConnection is now free to forward SIP messages to the SipDelegate (6)
 and the SipDelegate can route the responses back to the RCS application. The
 SipDelegate can also route new out-of-dialog messages associated with the RCS feature tags
 to the RCS application.

 We will first look at how routing will work in the device ImsService as well as how outgoing
 messages from a remote application will be validated to ensure the SIP messages are not
 malformed or invalid. We will then touch on how IMS registration should work in this design and

 Version 1.1.1 2022-06-17 23

 then finally define the API surface for both the device ImsService and the RCS application that
 will be using this API. We will also be providing examples of expected behavior for all of these
 cases as required.

 Routing
 At a basic level, RCS applications must create and respond to SIP transactions, which are each
 a series of SIP requests and responses, in order to perform some type of procedure. But first, a
 step back to review some SIP specific terminology (RFC 3261):

 ● Transaction - a SIP transaction consists of a single request and any responses to that
 request, which include zero or more provisional responses and one or more final
 responses. In the case of a transaction where the request was an INVITE (known as an
 INVITE transaction), the transaction also includes the ACK only if the final response was
 not a 2xx response. If the response was a 2xx, the ACK is not considered part of the
 transaction.

 ○ For routing purposes, a transaction can be thought of as a group of SIP request
 and response messages, which all contain the same via branch parameter.

 ● Dialog -A dialog is identified at each user agent with a dialog ID , which consists of a
 Call-ID value, a local tag and a remote tag.

 ○ For routing purposes, a dialog contains multiple transactions, all of which contain
 the same Call-ID .

 ● Session - A session (audio, video,...) is started, which can contain multiple active
 dialogs between remote user agents and are part of the same call.

 Although responses of outgoing SIP dialogs have the ability to be easily routed back to the
 application that started the dialog, it is a much more involved process for the ImsService to
 figure out which RCS application an incoming SIP message should be sent over.

 Note : RCC 59 requires that there should only be one RCS messaging client active at a
 time, so it is safe to assume there is no way to differentiate between clients on a more
 granular basis than per-feature for an incoming out-of-dialog request (such as an INVITE).

 There have been multiple proposed designs based on the level of detail and control we wish the
 AOSP telephony platform to have when handling these messages. For example, the spectrum
 ranges from SIP transaction granularity, where the RCS application requests to start a SIP
 transaction or receive an incoming SIP transaction to a loose per-feature granularity, where a
 send/receive message transport level API is defined and the ImsService inspects the
 incoming/outgoing traffic to route the incoming messages properly. We are taking the transport
 only approach in this design, where incoming messages are routed to the correct application in

 Version 1.1.1 2022-06-17 24

 the ImsService and outgoing messages are sent to the ImsService directly, with a small
 validation layer in between.

 Incoming Message Routing
 For incoming messages, there exists the problem of routing the initial SIP requests from the
 network, where there is no established transaction or dialog associated with them yet. In order
 to route these messages correctly, the ImsService can reference the Contact header, which
 should also specify feature tags (See RFC 3840 , Section 9). This gives information about the
 message and which features it is for.

 For incoming requests that are already in dialog or for responses to requests from the
 application, the Call-ID or the via branch parameters can be used to determine the correct
 routing.

 Figure 3.3.2 below illustrates the proprietary routing layer used to route SIP messages between
 internal components (for example MMTEL) and remote applications.

 Figure 3.3.2 : An additional verification layer helps verify outgoing SIP messages to ensure that
 they are following carrier and specification requirements.

 Version 1.1.1 2022-06-17 25

 Outgoing Message Validation
 In order for the platform to be able to verify the SIP messages, the SIP messages should be
 provided to the platform using a hybrid structure:

 class SipMessage {

 String startLine ;

 String header ;

 // May be encrypted/encoded

 byte [] content ;

 }

 This allows both the framework and the ImsService implementation to verify the SIP message
 header in order to detect malformed or incorrect messages from being sent.

 Since AOSP would allow the one or more applications to send SIP messages onto the carrier
 IMS core network, AOSP must ensure that the application is authorized to send the data that it
 is generating. This would only need to happen for outgoing SIP messages, since incoming SIP
 messages are being generated by the carrier IMS core network and have already been
 validated. AOSP will perform the following validation checks before allowing a SIP message to
 be sent to the ImsService :

 1. Ensure the application can only send new out-of-dialog requests for the feature tags that
 are currently provisioned for by the carrier. Carrier provisioning XML, carrier provided
 AutoConfig XML, or the preprovisioned data in CarrierConfigManager could be used
 to get the allowed feature tag list and listen to changes to this list (see the provisioning
 section for more information on how this information is delivered).

 2. Use the decoded header to perform data validation:
 a. Contact header - ensure that the feature tag added in the header is allowed for

 the delegate.
 3. Sanity checking and sanitization of messages:

 a. Ensure the message does not contain any invalid characters that would cause
 UTF-8 encoding to fail

 4. Filter out the following SIP message requests: REGISTER, OPTIONS, PUBLISH.
 5. Filter out SIP SUBSCRIBE requests if they contain the “Event:presence” header.

 This is an example of the first rules that will be implemented, more rules may be added in AOSP
 as needed. Once all the validation checks pass, AOSP SIP transport can now construct the SIP
 message using these headers and the other optional headers and body to send to the IMS

 Version 1.1.1 2022-06-17 26

 stack. If any of the validations fail, the outgoing SIP message will be rejected by the SIP
 transport layer.

 IMS Registration
 Another point to consider with the SIP transport APIs is how IMS registration changes are
 handled. The API is designed to allow for multiple appropriately privileged applications to
 access the SIP Transport API and provide the implementation for a subset of the features
 defined in the RCS Universal Profile document. For example, the following configuration is
 possible today (although devices are only expected to support the default messaging application
 for RCS messaging through this API for Android S):

 RCS Feature Permission Condition to Grant Access

 RCS Messaging Signed System/Carrier Application Default Messaging Application

 User Capability
 Exchange

 System Signed Application OEM installed UCE service

 Enriched Calling System/Carrier Signed Application Default Dialer Application

 This list could expand as more features are defined with application roles that implement these
 features.

 We do not want one IMS registration happening for each of these applications during boot up or
 every time there is a PDN or provisioning change. Instead, the application should “associate”
 the features that they want to provide once after boot and the framework will manage the
 registration associated with those features based on provisioning or PDN changes. The
 application should not destroy the delegate unless they will no longer support single registration,
 as that will cause an unnecessary IMS registration change.

 When a SipDelegate is destroyed, the IMS registration will need to be modified to include the
 new feature tags associated with that SipDelegate . In order to limit the number of
 back-to-back IMS registrations that may occur if there are multiple RCS applications registering
 SipDelegates , AOSP telephony will throttle the IMS registration change triggers to the
 ImsService . After the SipDelegate is destroyed, a configurable timer with a default of 1
 seconds will begin, which will batch together any other SipDelegate requests beginning at the
 same time. Once the registration has been triggered, a configurable throttling timer with a
 default of 5 seconds will begin, which will limit the number of IMS registration triggers to a
 minimum time. This does not guarantee that the vendor ImsService will not modify the IMS

 Version 1.1.1 2022-06-17 27

 registration due to independent factors, but it does throttle the potential IMS registration
 modifications due to RCS features changing.

 Note : Some carriers require that MMTEL and RCS features are registered at the same
 time and put strict requirements on when/how these tags should be registered as well as
 how fast the IMS registration should occur after boot. It is up to the partner ImsService
 implementation to ensure that the correct set of feature tags are registered once
 provisioning completes even if there are no SipDelegates connected yet. Once the
 device boots, AOSP will create the SipDelegate and trigger registration as soon as
 possible, but it is completely dependent on the time it takes to start the SMS application
 and receive the first request to create a SipDelegate . The vendor ImsService can either
 delay the registration of MMTEL and RCS features by some amount after boot and then
 register or preemptively register for MMTEL and provisioned RCS features and generate a
 new IMS registration later if the expected set of RCS features does not match the
 anticipated feature set.

 IMS Registration over INTERNET PDN

 There are some carriers that also require that the IMS stack register over the INTERNET PDN in
 some scenarios. This is still considered a single registration scenario and the device
 ImsService will still be in charge of setting up the IMS registration over the INTERNET PDN
 when required. The device ImsService will also still allow RCS applications to access the
 same single IMS registration via the SIP Transport API as well as handle RCS UCE. The RCS
 application will be able to identify when this transition has occurred using the
 SipDelegateConfiguration and use this information to perform PDN specific data setup
 procedures as required by carriers.

 Permissions & Feature Tag Filtering
 At this time, the Android API will only support single registration for a “system” application, which
 has been signed by the OEM and is one of the preinstalled, updatable applications that an OEM
 provides. This gives the application the ability to access privileged permissions that are not
 typically accessible to 3rd party applications that are downloaded onto the device. Please see
 the security section for more details on the general security model of an application trying to
 access these APIs.

 In order to open a SipDelegateConnection to the device ImsService , an application must
 meet the following prerequisites:

 Version 1.1.1 2022-06-17 28

 1. Declare the android.permission.CONNECTIVITY_USE_RESTRICTED_NETWORKS
 permission in their manifest and grant the permission in the OEM maintained privileged
 permission whitelist, which allows the application to access the IMS PDN.

 2. Fulfill the role required to access the feature tags that have been requested by the
 application. In Android S, the platform will enforce that all RCS feature tags are only
 available to the Default Messaging Application . See the below table for some
 examples of common RCS feature tags and their associated role restriction:

 Feature Associated Tags Role Restriction

 Standalone
 Messaging

 +g.3gpp.icsi-ref="urn%3Aurn-7%3A3gpps
 ervice.ims.icsi.oma.cpm.msg,urn%3Aurn-
 7%3A3gppservice.ims.icsi.oma.cpm.large
 msg,urn%3Aurn-7%3A3gppservice.ims.ic
 si.oma.cpm.deferred";+g.gsma.rcs.cpm.p
 ager-large

 Default Messaging
 Application

 Chat/Group
 Chat

 +g.3gpp.icsi-ref="urn%3Aurn-7%3A3gpps
 ervice.ims.icsi.oma.cpm.session"

 Default Messaging
 Application

 File Transfer +g.3gpp.iari-ref="urn%3Aurn-7%3A3gppa
 pplication.ims.iari.rcs.fthttp,
 urn%3Aurn-7%3A3gppapplication.ims.iari
 .rcs.ftsms"

 Default Messaging
 Application

 Geolocation
 PUSH via
 SMS

 +g.3gpp.iari-ref="urn%3Aurn-7%3A3gppa
 pplication.ims.iari.rcs.geosms"

 Default Messaging
 Application

 Chatbot +g.3gpp.iari-ref="urn%3Aurn-7%3A3gppa
 pplication.ims.iari.rcs.chatbot,urn%3Aurn-
 7%3A3gppapplication.ims.iari.rcs.chatbot.
 sa";+g.gsma.rcs.botversion="#=1,#=2"

 Default Messaging
 Application

 MMTEL +g.3gpp.iari-ref="urn%3Aurn-7%3A3gpp-
 service.ims.icsi.mmtel”; video;
 +g.3gpp.smsip

 Telephony Internal

 Presence +g.3gpp.iari-ref="urn:urn-7:3gpp-applicati
 on.ims.iari.rcse.dp”

 Telephony Internal

 Carrier
 Specific

 * Default Messaging
 Application

 Version 1.1.1 2022-06-17 29

 Tags

 * * Default Messaging
 Application

 Summary : Except for the cases mentioned above, all RCS feature tags are restricted to the
 Default Messaging Application. Any other application that requests a
 SipDelegateConnection to one or more feature tags will be denied and no
 SipDelegate will be created.

 In the future, the specifications for single registration may change and multiple IMS applications
 may all be granted access to the device ImsService in order to provide implementations for
 subsets of the RCS specifications, as shown in Figure 3.3.2. If the mapping of associated
 feature tags to allowed application roles changes, we will expand the code to include a dynamic
 feature_tag->allowed_roles mapping.

 API De�nition
 As stated above, this API acts as a transport only and passes through the telephony framework
 once a SIP delegate has been registered. The API is designed using a partially decoded SIP
 message in order for the telephony framework to validate that all outgoing messages are being
 sent for a feature tag that the RCS application is registered for. This first iteration of verification
 will be improved over time as needed.

 Logically, the RCS application and the ImsService’s SipDelegates will be connected
 together with a small layer in between for validation (as mentioned above). See Figure 3.3.3.

 Version 1.1.1 2022-06-17 30

 Figure 3.3.3 : The logical connection between the SipDelegateConnection and the
 SipDelegate .

 The SIP messages will be passed over Binder using a Parcelable class, which contains the
 partially encoded SipMessage . The header is sent decoded in order for the platform to easily
 access fields that may be necessary for outgoing message verification.

 ImsService API Additions
 When the framework requests that a SipDelegate is created, there will be one SipDelegate
 created per RCS application SipDelegateConnection (not per feature tag). This was done
 for the following reasons:

 1. Greater application flexibility with respect to grouping SIP messages.
 2. Decreases the management needed in the framework to maintain the state of each

 remote binder interface associated with a feature tag.
 3. Allows vendors to encapsulate implementation specific logic into their ImsService .

 Figure 3.3.4 below shows the new class structure in the ImsService .

 Version 1.1.1 2022-06-17 31

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/SipMessage.java

 Figure 3.3.4 : SipDelegate class relationship structure.

 In order to support the creation of SipDelegate, the vendor ImsService must implement
 SipTransportImplBase , which is the base class for all SipDelegate management. First, the
 framework will request that the SipDelegate be created in
 SipTransportImplBase#createSipDelegate using a DelegateRequest , which
 contains parameters about the request. For example, it currently contains which feature tags it
 should be created for. Once the ImsService has created the SipDelegate , it must call
 DelegateStateCallback#onCreated . The DelegateRequest will always be made for
 disjoint feature tag sets, meaning that there should never be a request for multiple
 SipDelegates with the same feature tags. If for some reason this occurs, the duplicate feature
 tag should be ignored and the tags should be allowed on a first-come first-serve basis.

 The SipDelegate is an interface used by the framework to send new events from the RCS
 application used to receive messages from the remote IMS application and acknowledge that a
 SIP message has been sent successfully. It also defines a
 SipDelegate#notifyMessageReceiveError callback, which is only used in the scenario
 when the application’s SipDelegateConnection is unreachable due to the application
 crashing. In this condition, the framework will eventually call
 SipTransportImplBase#destroySipDelegate on this delegate. The API also provides a
 SipDelegate#cleanupSession method, which is used for routing purposes and allows the
 application to notify the SipDelegate when resources associated with routing that SIP dialog
 are no longer needed. This is because the SipDelegate is not keeping track of the state of the
 dialog and will not clean up routing resources associated with the SIP dialog automatically. The
 SipDelegate#cleanupSession will also be called by the RCS application after it receives an
 indication that a feature tag associated with that SIP dialog has been deregistered. This allows

 Version 1.1.1 2022-06-17 32

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/stub/SipTransportImplBase.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/stub/SipDelegate.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/DelegateRequest.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/stub/SipDelegate.java

 the ImsService to wait for the ongoing dialogs to be closed before modifying the IMS
 registration.

 The DelegateStateCallback is a callback used to communicate state events to the remote
 IMS application. This includes notifications when the SipDelegate has been destroyed as well
 as when the network IMS registration state has changed for one or more of these features.

 The DelegateRegistrationState class is used to communicate registration state changes of each
 feature tag to the IMS application. Registration changes are the primary way that the
 SipDelegate can communicate a change to the remote IMS application, since it will affect how
 the remote application responds. There are four states that a feature tag associated with a
 SipDelegate may be in: registered, registering, deregistering, and deregistered. Each feature
 tag must report one of these four states at all times. Intermediate registration states have been
 included in order to provide more information to the IMS application. The intermediate
 registering state exists to let the IMS application know that registration is in progress for UI
 reasons. The intermediate deregistering state has been included to allow the RCS application to
 respond to an in-progress deregistration and perform an action before the SipDelegate
 proceeds with the network registration. Currently, the only action that the RCS application must
 do is close existing SIP Dialogs for feature tags in the process of deregistration in order for the
 network IMS registration modification to proceed. For more information on when to report
 DEREGISTERING or DEREGISTERED for a feature tag can be found in the documentation for
 DelegateRegistrationState.

 The DelegateMessageCallback is used to send incoming SIP messages to the remote
 application as well as acknowledge when a message has been successfully/unsuccessfully
 sent.

 The SipDelegateConfiguration class is used to send IMS stack configuration information to the
 IMS application in order to communicate the state of the stack so that the IMS application can
 correctly generate SIP messages. In order for the SipDelegate to communicate the attributes
 that the remote application will need to construct SIP messages and operate their IMS stack,
 the SipDelegate will call DelegateStateCallback#onConfigurationChanged . The
 SipDelegateConfiguration will also contain a version associated with it. All outgoing
 SipMessages sent by the RCS application will also send the SipDelegateConfiguration
 version used to create it in order to avoid race conditions where the ImsService has created a
 new configuration, but the RCS application has constructed and sent a SipMessage using the
 now stale configuration. In this case, the ImsService should send the
 MessageStateCallback#onMessageSendFailure callback to the RCS application with
 error code

 Version 1.1.1 2022-06-17 33

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/DelegateStateCallback.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/DelegateRegistrationState.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/DelegateMessageCallback.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/SipDelegateConfiguration.java

 SipDelegateManager#MESSAGE_FAILURE_REASON_STALE_IMS_CONFIGURATION so that
 the RCS application can recreate and send the SipMessage again using the current
 SipDelegateConfiguration . The RCS messaging application should also use the
 SipDelegateConfiguration to determine the APN that the MSRP session will be created on
 (INTERNET vs IMS).

 Finally, there has been a change to the ImsRegistrationImplBase class In order to reduce the
 number of registrations on the network. The framework will call
 ImsRegistrationImplBase#updateSipDelegateRegistration when one or more SIP
 delegates have changed their supported feature tags. The ImsService should not trigger a
 new IMS registration with the new tags beforehand, as multiple SipDelegates may be in the
 process of modifying their SipDelegateConnections . The API also provides the following
 method ImsRegistrationImplBase# triggerNetworkReregistration , which is used in
 the case that the remote RCS application has received a permanent failure response to a SIP
 message and the vendor IMS stack should perform a new IMS registration.

 Figure 3.3.5 below shows the typical creation case for a new SIP delegate.

 Version 1.1.1 2022-06-17 34

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/stub/ImsRegistrationImplBase.java

 Figure 3.3.5 : Typical SIP delegate creation.

 Figure 3.3.6 : Destruction of a SIP delegate.

 Version 1.1.1 2022-06-17 35

 On older devices, the vendor ImsService may not be able to support the SIP Transport API at
 all. To determine if a device supports the SIP Transport API, an application can call
 S ipDelegateManager#isSupported . If it is supported on the device, an application can
 then create a SipDelegate . If it is not supported and the device tries to create a
 SipDelegate anyway, DelegateStateCallback#onDestroyed will be called
 immediately. In the case that the vendor ImsService supports the SIP transport API, but the
 carrier configuration set by Android disables single registration for the carrier, then this will act in
 the same way. The application can then listen to the CARRIER_CONFIG_CHANGED intent to
 listen for CarrierConfigManager#KEY_RCS_SINGLE_REGISTRATION_SUPPORTED_BOOL
 changes. More information is available in the provisioning section. See Figure 3.3.7 below for
 more details.

 Version 1.1.1 2022-06-17 36

 Figure 3.3.7 : (top) A device that doesn’t support the API. (bottom) A carrier is configured to not
 support single registration in the Android carrier configuration.

 Once the SipDelegate has been created, messages can then be sent and received over this
 interface, see Figure 3.3.8 below. The case where a SIP dialog has ended is also shown below in
 Figure 3.3.9.

 Version 1.1.1 2022-06-17 37

 Figure 3.3.8 : (top) Message send procedure, (bottom) message receive procedure.

 Version 1.1.1 2022-06-17 38

 Figure 3.3.9 : Closing an existing SIP dialog.

 RCS Application APIs

 The following APIs are implemented by telephony and used by a remote RCS application to
 create and destroy SipDelegates on the ImsService as needed.

 Manager API definitions
 The RCS application will interface with the telephony framework using the ImsManager API to
 create a SipDelegateManager . This will allow the RCS application to request a
 SipDelegateConnection to send and receive SipMessage s over the transport interface.

 The ImsManager class will be extended to include a new method to retrieve a
 SipDelegateManager on a per-subscription basis. See the section on multi-SIM devices
 below for how DSDS will be supported.

 The SipDelegateManager will be an interface defined by telephony and used by RCS
 applications to create and destroy SipDelegateConnection s, which can be created using

 Version 1.1.1 2022-06-17 39

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ImsManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/SipDelegateManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/SipDelegateConnection.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/SipMessage.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ImsManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/SipDelegateManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/SipDelegateManager.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/SipDelegateConnection.java

 the DelegateRequests and destroyed at a later time. It will also define the various
 status/failure messages used by the ImsService and RCS applications.

 SipDelegateConnection Setup
 When designing the SipDelegateConnection API, special consideration went into making
 sure that this API handles the following cases:

 ● Requesting a SipDelegateConnection for one or more features.
 ● Minimizing the number of IMS registration operations that occur on the network by

 decoupling registration from the creation and destruction of the SipDelegates . This
 also handles race conditions for receiving INVITEs during/after the deregistration and
 destruction procedure has started.

 Figure 3.3.10 below shows the class level interfaces that the RCS application will use to set up
 this SIP delegate on the vendor ImsService .

 Figure 3.3.10 : New RCS Application API class definitions

 The SipDelegateManager allows an RCS application to create and modify
 SipDelegateConnections using a DelegateRequest , which contains the parameters that
 the SipDelegate will need to set up a connection. This decouples the expected parameters of
 the SipDelegate from the status of the SipDelegate (which feature tags are enabled and
 registered).

 Version 1.1.1 2022-06-17 40

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/DelegateRequest.java

 To create a SipDelegateConnection , a DelegateConnectionStateCallback must be passed
 in. When the SipDelegateConnection has been created and linked to a remote SipDelegate, the
 SipDelegateConnction will be passed to the IMS application using the
 DelegateConnectionStateCallback#onCreated API. After,
 DelegateConnectionStateCallback#onFeatureTagStatusChanged is used to notify
 the listener of the feature tags that are associated with the SipDelegateConnection as well
 as which ones were denied and the reason for the denial.
 DelegateConnectionStateCallback also provides the current registration state of each of
 the feature tags. This allows the RCS application to detect if there has been a provisioning
 change, which has caused an existing feature tag to become unavailable for the creation of new
 outgoing SIP dialogs.

 After a request to create a SipDelegate has been sent, the setup occurs on the ImsService
 and the resulting SipDelegateConnection is passed back asynchronously to the requesting
 application. This is because the setup of this connection can take an arbitrary amount of time
 depending on the state of telephony and the ImsService . The initial associated feature tags
 will be set on the SipDelegateConnection and any subsequent changes will be notified to
 the application via the onFeatureTagStatusChanged method. Finally, if the
 SipDelegateManager#destroySipDelegate method is called, the delegate will still be
 active for a short period of time until the onDestroyed method has been called. At that point,
 the application can safely destroy the state related to these objects.

 ● Note: after destroySipDelegate is called, there will be a short window of time where
 incoming messages can still be routed here until the new registration to the network is
 complete. If this occurs, the message should still be handled by the
 SipDelegateConnection . The transport will still be available until onDestroyed is
 called on the SipDelegateConnection .

 The RCS application will pass in a DelegateConnectionMessageCallback class as part of
 the SipDelegateManager#createSipDelegate method, which will handle incoming
 messages as well as the response from the framework for any outgoing messages sent. Any
 failures received at this layer are verification errors in the framework or network connectivity
 errors, it does not contain any errors related to SIP messaging, as that will come in the
 DelegateConnectionMessageCallback#onMessageReceived method.

 The connection to the remote SipDelegate , which is used to get the properties of this
 delegate as well as send messages or notify the ImsService that messages have been
 received or that there was an error receiving the message. The RCS application should not rely
 on the ImsService to send any messages on the behalf of this RCS application. The only

 Version 1.1.1 2022-06-17 41

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/stub/DelegateConnectionStateCallback.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/stub/DelegateConnectionMessageCallback.java

 exception here is the case where a new incoming message was received after the application
 called the destroySipDelegate method. In this case, the application should notify the
 ImsService of the error using
 SipDelegateConnection#notifyMessagedReceiveError(transactionId,
 MESSAGE_FAILURE_REASON_TAG_NOT_ASSOCIATED_WITH_APP) . This will notify the
 ImsService that the tag is in the process of destroying the connection and it should handle the
 response.

 Once the SipDelegateConnection is set up, SipMessages can then be sent and received
 on this transport. A ny time a feature tag associated with an ongoing SIP dialog moves to the
 deregistering state, the SipDelegateConnection must close the SIP Dialog in order for the IMS
 stack to modify the current IMS registration (as per some carrier’s requirements).

 Version 1.1.1 2022-06-17 42

 Sequence Diagrams

 Common Scenarios

 Scenario ST.CS.1

 An RCS application that is sufficiently privileged creates a SipDelegate for features {F1, F2,
 F3}, which are all provisioned:

 ̀

 Version 1.1.1 2022-06-17 43

 Edge Case Scenarios

 Scenario ST.EC.1

 Situations where the remote application, the telephony process, or the ImsService dies
 unexpectedly.

 Version 1.1.1 2022-06-17 44

 Scenario ST.EC.2

 Scenarios where there is no SipDelegate available to handle the response to a message. This
 can happen if the remote application has just died, for example. The ImsService should be
 able to handle sending a default error response to the network.

 Version 1.1.1 2022-06-17 45

 Scenario ST.EC.3

 When provisioning has changed and caused a feature tag to be reported as deregistering, it is
 the RCS application’s responsibility to call SipDelegateConnection#cleanupSession so
 the IMS stack can continue with modifying the IMS registration to reflect the new provisioning
 configuration. The diagrams below help illustrate how this should be handled. Provisioning
 changes can also occur when handing over between transports or when IMS moves across
 PDNs, so the same process must be applied. In the case that the RCS application still receives
 an incoming out-of-dialog message for a deprovisioned feature tag, it should still be able to
 respond accordingly.

 Version 1.1.1 2022-06-17 46

 Version 1.1.1 2022-06-17 47

 Version 1.1.1 2022-06-17 48

 Scenario ST.EC.4

 The user changes the default SMS application, requiring the framework to now deny feature
 tags that are no longer available to that app. First the framework deregisters the feature tags
 and allows the application to finish existing dialogs. Then after a timeout period, the framework
 tears down the SipDelegate and allows the new default SMS application to register for its own
 SipDelegateConnection.

 Version 1.1.1 2022-06-17 49

 Scenario ST.EC.5

 When the ImsService deregisters IMS, this should be communicated to the remote
 application and new outgoing SIP messages will be denied.

 Version 1.1.1 2022-06-17 50

 Scenario ST.EC.6

 There are race conditions associated with the SipDelegateConfiguration changing after a
 SipMessage is on the way of being sent to the vendor ImsService . In order to reduce the
 amount of verification the vendor ImsService needs to do for each message to ensure it is
 using the most up-to-date configuration, each SipMessage generated by the RCS application
 will also be required to provide the SipDelegateConfiguration version used to generate it.
 This will allow the vendor ImsService to verify the message quickly and reject it if the

 Version 1.1.1 2022-06-17 51

 configuration used to create it is out-of-date. The RCS application may then regenerate the
 SipMessage with the new configuration.

 Version 1.1.1 2022-06-17 52

 Dedicated Bearer Access

 Objectives
 ● Create a generalized QoS app level API that provides consumers QoS a�ributes from

 various di�erent sources such as an LTE, NR or WiFi Network.
 ● Create a QoS app level APIs that suppo�s RECEIVING unsolicited requests, while still

 providing enough �exibility in the de�nition that it can later suppo� making Qos
 requests. (see Appendix.)

 ● Provide QoS signals from network initiated Dedicated Bearers or Qos �ows needed for
 the RCS Single Reg project.

 ● Create IRadio HAL APIs to expose the QOS information from vendors to suppo� the
 above pla�orm APIs.

 Background
 This proposal is tied to the overall RCS Single Reg project, and more speci�cally, a need to
 suppo� MSRP (an instant messaging protocol) over Carrier Networks which includes
 connecting sockets over a Dedicated Bearer. Dedicated Bearers ensure Qos levels for various
 media types such as Video Streaming, Voice, etc. over an LTE or 5G network on the IMS
 PDN/DNN. A Dedicated Bearer / QOS �ow becomes available as a pa� of an SIP session which
 is negotiated through the exchange of SIP \ SDP messages outside of the context of this API.

 In this proposal, we propose a Qos API within the connectivity stack with a �exible enough
 shape to handle a wide range of Qos use cases including the one needed for RCS Single Reg.
 Since our current requirement has no need to request a qos in a generic way, this API strictly
 provides the ability to receive Qos signals and NOT request a Qos level.

 This proposal is split up into two broad pa�s. Pa� 1 addresses the general Qos API, and Pa� 2
 shows how we would apply this API to the speci�c RCS use case.

 All APIs will sta� out as System APIs in V1, with the potential to be promoted to a public
 API if the need arises in either Android S or beyond.

 De�nitions
 In order to reduce confusion, here are a few terms de�ned ahead of time:

 Version 1.1.1 2022-06-17 53

 ● 3-tuple- Transpo� Protocol \ Local IP \ Local Po�
 ● 5-tuple- Transpo� Protocol \ Local IP \ Local Po� \ Remote IP \ Remote Po�
 ● Packet �lter- A broad term that covers both 3-Tuple and 5-Tuple
 ● Socket- Covers both a TCP and UDP socket unless otherwise speci�ed. When in a

 Java code sample though, Socket is referring to a Java Socket object which is TCP only.
 ● Local address- Refers to both the Local IP and Local Po� as a tuple.
 ● Remote address- Refers to both the Remote IP and Remote Po� as a tuple.
 ● DB- Stands for Dedicated Bearer

 Pa� 1 - General Qos API

 API Concepts

 Qos Sessions and Services

 Qos Sessions

 A Qos Session represents a Quality of Service level that is available to either an already
 established connection or a possible future connection that the UE could establish. We
 purposely call it a Session because it has a de�nitive sta� and end to it.

 Each Qos Session has a type id associated with it which represents a type of Qos Session
 based o� on the speci�cs of a Network.

 The Qos Session also has a unique id in order for the API consumer to distinguish Qos Session
 from one another. The unique id is a long and is composed of two halves:

 The �rst 32 bits are reserved for the Qos Session Type.
 The last 32 bits are le� to the Qos Service to set. Pa� II contains the details on how the session
 id is set in practice.

 Qos Session A�ributes
 There are di�erent types of Qos Sessions. Some a�ributes may be common between types of
 sessions and others will be unique to that type of Qos Session.

 Version 1.1.1 2022-06-17 54

 A common set of Qos a�ributes will exist within an inte�ace called QosSessionA�ributes. An
 example a�ribute could be the max bit rate on the downlink. A Qos a�ribute considered
 common enough to exist on this inte�ace needs to exist in at least two session types to be
 useful. We currently propose to roll out with two common a�ributes: max uplink and max
 downlink. Since the common section is an inte�ace, adding on additional a�ributes in later
 Android versions is trivial.

 There are also non-common a�ributes that we need to expose. Non-common a�ributes will
 be exposed on a class that implements QosSessionA�ributes. An example of such an a�ribute
 would be the qci (Qos Class Identi�er) value that exists on an LTE Bearer Qos Session. That
 a�ribute is within the class EpsBearerQosSessionA�ributes which implements
 QosSessionA�ributes. The qci a�ribute is NOT within QosSessionA�ributes though since it’s
 speci�c to the eps bearer case.

 Qos Service

 A Qos Service generates Qos Sessions of a pa�icular type. They are a non-API visible concept
 and exist within the system server under any AOSP component that the Connectivity Service
 has access to (eg. Telephony, Wi�, etc.)

 Qos Services both generate Qos Sessions and evaluate which Qos Sessions are visible to
 which Qos Filters. Having the matching logic within the Qos Service and not a generic
 component gives Qos Services the �exibility around possible edge cases that would be
 di�cult to code in a generic component.

 Below is a conceptual diagram of how the components are associated with one another and
 not meant to serve as an architectural diagram:

 Version 1.1.1 2022-06-17 55

 Receiving Qos Sessions
 A Qos Session Callback listens for changes on Qos Sessions that match a given �lter. The two
 parameters are the key inputs required to receive Qos Sessions. Both concepts are addressed
 in the sections below.

 ConnectivityManager .registerQosCallback(QosFilter , executor, QosCallback);

 The register method will not throw exceptions directly. Exceptions are communicated through
 the callback onError. For more information, see the “Exception Handling” section below.

 To release the callback, thereby stopping it, the consumer simply calls the unregister method
 with the same callback instance used in the �lter. Non-registered or previously unregistered
 callbacks are treated as a no op. The same callback may not be used if it is already registered
 with ConnectivityManager. BUT , it may be re-used if it was unregistered.

 ConnectivityManager.unregisterQosCallback(callback);

 Version 1.1.1 2022-06-17 56

https://android.googlesource.com/platform//frameworks/base/+/refs/heads/master/packages/Connectivity/framework/src/android/net/ConnectivityManager.java
https://android.googlesource.com/platform//frameworks/base/+/refs/heads/master/packages/Connectivity/framework/src/android/net/QosFilter.java
https://android.googlesource.com/platform//frameworks/base/+/refs/heads/master/packages/Connectivity/framework/src/android/net/QosCallback.java

 Filtering Qos Sessions
 There are several ways that a developer may want to �lter down which Qos Sessions they’re
 interested in. For example, a developer may be interested in all Qos Sessions that satisfy
 localPo� = 2250, and another may want Qos Sessions that run over UDP to a speci�c IP
 address.

 We do not know all of the combinations of �lters that developers may want. In V1, we are
 providing just one type of �lter that is referred to as a “Qos Socket Filter.” Long term though,
 we expect several di�erent types of �lters that can suppo� a variety of parameters. For
 example, a �lter could be created that listens for an exact 5-tuple match, another example is a
 3-Tuple �lter that matches on a local po� range.

 To keep the API shape �exible, each type of �lter would come with its own factory method that
 returns a type of QosFilter.

 Most types of Qos Filters will require a type of Network. If the consumer does NOT have
 access to the speci�ed Network, a SecurityException will be passed to the API consumer (see
 Exception Handling section below for more information on how security exceptions are
 handled.)

 Qos Socket Filter
 A Qos Socket Filter takes a socket and a network as inputs. The �lter matches Qos Sessions
 against the parameters used in its bind() method, making this a 3-Tuple �lter with a couple of
 special rules:

 1. The socket MUST be bound to on registration, otherwise an exception is thrown.
 2. The callback is torn down if the socket becomes unbound while trying to deliver a

 callback.

 Here are a couple of ways to create and then bind the socket using the Network object:

 Socket bindSocketOne (Network network) {
 Socket socket = network.getSocketFactory().createSocket();
 //Create the socket and then bind using Socket#bind
 socket.bind("1.2.3.4" , 99);
 return socket;

 }

 Version 1.1.1 2022-06-17 57

 Socket bindSocketExampleTwo (Network network) {
 //Create and bind the socket in one shot
 return network.getSocketFactory().createSocket("1.2.3.4" , 99);

 }

 To handle the cases where the network may not use the local po� in the dedicated bearer
 establishment and only includes the remote po� information, it's best if the applications use a
 connected socket for listening to the MSRP dedicated bearer events.

 Exception Handling
 All exceptions are asynchronously passed through onError(), including exceptions that occur
 upon registration of the callback. To access the underlying exception, the consumer checks
 for the cause set on QosCallbackException.

 void onError (QosCallbackException exception) {
 Exception underlyingException = exception.getCause();

 }

 Exceptional Cases
 Binder dies (or other unexpected runtime exception)- onError() is invoked with the
 underlying runtime exception as the cause within QosCallbackException.

 The socket is unbound upon registration- onError() is invoked with a
 QosFilter.SocketNotBoundException as the cause.

 The socket on a socket �lter becomes unbound- onError() is invoked with a
 QosFilter.SocketNotBoundException as the cause.

 The Application does not have access to the Network- onError() is invoked with a
 SecurityException as the cause.

 Version 1.1.1 2022-06-17 58

 Security
 There is no overarching permission required to register a callback. The only requirement for V1
 is that the application has access to the Network used within the Qos Filter. In the event that
 the consumer does not have the correct permission, onError() will be invoked with an
 underlying SecurityException as the cause.

 Happy Path
 The code sample below shows how an Application Developer would consume this API:

 //A socket that is already bound to the source address and po�.//
 Socket mSocket;

 void main (Network imsNetwork, Executor executor) {
 /* Set the appropriate network, callback, and socket. */
 QosFilter socketFilter = QosFilter.fromSocket(mSocket, imsNetwork);

 /* Requests a new qos callback to be a�ached with an associated callback. */
 ConnectivityManager.registerQosCallback(socketFilter, executor, mCallback);

 }

 /*The callback is associated with the callback request made with ConnectivityManager and receives the Qos
 events emi�ed from matching Qos sessions.*/
 QosCallback mCallback = new QosCallback() {

 /* Invoked when an active Qos session matches the socket. */
 @Override
 void onQosSessionAvailable (@NonNull QosSession session, @NonNull QosSessionA�ributes

 sessionA�ributes) {
 /* A qos session is available. */

 }
 }

 When onQosSessionAvailable is called, the QosSessionA�ributes returned will either be an
 instance of EpsBearerQosSessionA�ributes or NrQosSessionA�ributes , depending on the
 underlying radio access technology.

 Version 1.1.1 2022-06-17 59

https://android.googlesource.com/platform//frameworks/base/+/refs/heads/master/telephony/java/android/telephony/data/EpsBearerQosSessionAttributes.java
https://android.googlesource.com/platform//frameworks/base/+/refs/heads/master/telephony/java/android/telephony/data/NrQosSessionAttributes.java

 Security
 The only security requirement to receive callbacks from EPS Bearer Qos Sessions is that the
 API consumer have access to the IMS Network. The IMS network is restricted. Restricted
 networks require the application to have the CONNECTIVITY_USE_RESTRICTED_NETWORKS
 permission which is only available to privileged applications.

 Common Eps Bearer Work�ow
 The work�ow below shows how an App would pe�orm a MSRP SDP negotiation alongside the
 Qos Callback API.

 Following sequence diagram shows application registering for call back for a bound socket i.e
 socket is not yet connected. In this case the telephony will do �lter matching based on the
 local address and po� number and it will successfully match when the network provides local
 address and po� number with the dedicated bearer.

 Version 1.1.1 2022-06-17 60

 Note: The work�ow on the application side is not meant to be followed precisely but is rather
 an example of what one could do.

 Following sequence diagram shows that the application is registering for a call back a�er the
 socket is connected. In this case the telephony will do �lter matching based on the remote
 address and po� number and it will successfully match when the network provides local
 address and po� number with the dedicated bearer.

 Version 1.1.1 2022-06-17 61

 Note: The work�ow on the application side is not meant to be followed precisely but is rather
 an example of what one could do.

 Version 1.1.1 2022-06-17 62

 Abnormal Cases

 Multiple File Transfers in MSRP
 Multiple �le transfers in a single MSRP was �agged as a potential issue. A�er review, there
 appears to be no con�ict with the current design.

 Each �le transfer within an MSRP includes a SIP INVITE that is sent ahead of time. Fo�unately,
 the same po� is used on each �le transfer and the Application uses the same socket. From
 the perspective of the Dedicated Bearer session, there is no impact.

 Refer to: h�ps://tools.ie�.org/html/�c5547#section-8.2.3

 Application Died
 If an application registers Qos Callbacks and then dies for whatever reason, the Connectivity
 Service will notify the Qos Services to remove the corresponding callbacks.

 Phone Process Dies
 If the phone process dies, the active EPS Bearer Sessions will be removed. The callback will
 NOT receive onQosSessionLost() for each formerly available session, but instead, onError() will
 be called.

 PDN no longer accessible
 If the PDN is lost, the UE can no longer receive bearer deactivation signals from the network.
 onError() will be invoked with NetworkReleasedException as the underlying cause.
 onQosSessionLost() will be called for each session.

 Handover
 On handover from LTE to IWLAN, any sockets connected over a Dedicated Bearer will lose its
 Qos. AOSP will send onQosSessionLost() for each session since they are no longer available to
 the socket.

 Version 1.1.1 2022-06-17 63

https://tools.ietf.org/html/rfc5547#section-8.2.3

 UE misses DEACTIVATE EPS BEARER CONTEXT REQUEST
 The scenario sta�s with the following steps taking place:

 1. A new SDP session was initiated
 2. The SDP session was closed
 3. The UE missed the DEACTIVATE EPS BEARER signal from the Network.

 If this occurs, we run the risk that the UE may think Qos is ready to go prematurely. In reality
 though, this is HIGHLY unlikely because the following conditions would need to apply:

 1. The BYE SIP message was received by the Network
 2. The Network retried sending the DEACTIVATE signal 4 times but the UE never received

 it.
 3. The PDN stayed connected.
 4. The same remote ip and po� was sent back from the Network for the next SDP session.

 There was a possible solution proposed to solve this issue, but the solution added enough
 complexity to both the Application and the Framework that the team deemed it unnecessary.

 To avoid this scenario all together, the Application should rotate local po�s between SDP
 sessions.

 IRADIO HAL changes
 To expose the QoS of LTE dedicated bearers and NR PDU sessions to applications via

 the connectivity manager APIs de�ned above, telephony would need the following HAL APIs
 suppo�ed by vendors. This is included in the IRADIO 1.6 hal .

 1. Vendor shall provide the global QoS indications per PDN in the
 SetupDataCallResult

 2. Telephony will track the QoS callback requests from CS and pe�orm the �lter
 matching.

 LTE to IWLAN handover

 As IWLAN does not suppo� dedicated bearers / QoS, it's be�er to drop the dedicated
 bearers even if the network doesn’t deactivate explicitly. The vendor shall delete the dedicated
 bearers and notify telephony so that the call back can be given to the applications which have
 already registered.

 Version 1.1.1 2022-06-17 64

https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/master/radio/1.6/

 PDN drop by vendor / network

 If the vendor or network drops the PDN for any reason then the vendor shall clean up all
 the dedicated bearers associated with it and notify telephony with the empty list.

 Vendor crash

 When vendor RIL / modem crashes, the dedicated bearers shall be cleaned up locally.
 Usually telephony would send RADIO_POWER on=true when vendor services are up a�er a
 crash and its expected that vendor services will do fresh registration.

 Phone process crash / Airplane mode toggle

 Upon phone process crash or airplane mode toggle, telephony would send
 RADIO_POWER on=false followed by on=true. The vendor shall clean up all the dedicated
 bearers and notify telephony with the empty list.

 Version 1.1.1 2022-06-17 65

 RCS User Capability Exchange

 Overview
 The ImsService API is a trusted extension of the Android telephony framework and
 encapsulates the entirety of a vendor or carrier’s IMS implementation for both MMTEL and RCS
 services that the framework supports. This allows the framework to place video/voice calls, send
 SMS, provide supplementary services over Ut, and perform other IMS specific features, such as
 RCS User Capability Exchange (UCE). Using the ImsService API also allows vendor specific
 implementation details to be encapsulated and allows the Android telephony framework to
 provide implementation agnostic IMS features.

 The vendor IMS service will use new extensions to the ImsService API to provide the
 framework the ability to implement UCE. This new UCE API will extend the existing
 RcsFeature API, which has only been used to provide over-the-top RCS features up to this
 point. Figure 3.5.1 below shows the new architecture of the UCE API and its integration into the
 existing RcsFeature API. This mirrors the existing design pattern used in the MmTelFeature
 class to provide calling, SMS, and Ut specific features.

 From an application perspective, RCS applications may then use the new RcsUceAdapter API
 extensions to communicate with the android telephony framework and request the RCS
 capabilities of one or more contacts. If the SIP transport API is being used due to IMS Single
 Registration being enabled, the single registration capable messaging application will also be
 able to notify the framework of changes to its RCS capabilities so that these capabilities can be
 published to the network or be reflected during SIP OPTIONS exchange.

 Version 1.1.1 2022-06-17 66

 Figure 3.5.1 : High level summary of the changes required to support UCE in AOSP. The RCS
 applications will use the ImsManager API to request the cached capabilities of contacts or
 request availability queries from the network. AOSP Telephony will control UCE and send

 requests to the vendor ImsService when necessary to publish capabilities and subscribe to the
 capabilities of one or more contacts.

 Version 1.1.1 2022-06-17 67

 Design
 The RCS capabilities of one or more contacts are communicated to the device in different ways,
 depending on the mechanism that the cellular carrier uses: the OMA presence SIMPLE
 specification (usually simplified as “presence”) or via SIP OPTIONS. These mechanisms are
 User Capability Exchange (as defined in RCC.07), however there is a brief summary of the
 operation of these mechanisms below.

 SIP OPTIONS
 This mechanism is based on the exchange of a SIP OPTIONS request (RFC3261), which is a
 peer-to-peer capability exchange between two clients. In this approach, there are no
 intermediate servers caching the capabilities of the contacts, unlike the presence method
 described below. In this method the following procedure is performed for RCS client A to get the
 RCS capabilities of client B:

 1. A SIP OPTIONS request is created by client A, which contains the full set of RCS
 capabilities supported by client A in the contact header field of the message. This is
 received by client B, who then updates the capabilities of client A’s URI in their contacts
 address book (if it exists).

 2. Client B responds with a 200 OK message containing its full set of RCS capabilities in
 the contact header field. Client A then uses that response message to update its cached
 capabilities of the contact URI associated with client B in the contacts address book.

 a. The network will instead send a 480 TEMPORARILY UNAVAILABLE or 408
 REQUEST TIMEOUT if client B is a known IMS user, but is currently not
 registered for IMS. Client A can still use RCS services for Client B that are still
 allowed when Client B is offline.

 b. The network will instead send a 404 NOT FOUND or 604 DOES NOT EXIST
 ANYWHERE if client B is not an IMS user or there is no known subscriber
 matching the URI on the network. The contact should not be considered an RCS
 user.

 c. Any other final response from the network should mean that Client A should keep
 Client B’s capability cache in the state it was in before.

 d. According to RCC.07, SIP OPTIONS shall NOT contain an Session Description
 Protocol body.

 NOTE: According to RCC.07 there is no standardized way for SIP OPTIONS to return the
 aggregated result of multiple clients with the same user identity. Depending on the carrier, it may
 send a response with only the partial capabilities of that user.

 Version 1.1.1 2022-06-17 68

 The ImsService will return the feature tags associated with the 200 OK response for each
 contact requested.

 Presence
 As an alternative to a SIP OPTIONS message exchange, a carrier may instead choose to
 implement a “presence” server, which relies on two mechanisms to provide RCS capability
 information about client B to client A: A SIP PUBLISH procedure for all RCS clients to publish
 their RCS capabilities to the presence server for caching and a SIP SUBSCRIBE/NOTIFY
 mechanism for other clients such as Client A to use to asynchronously request the cached RCS
 capabilities of their contacts, such as the capabilities of Client B. The procedure for SIP
 PUBLISH as well as SIP SUBSCRIBE/NOTIFY is documented in RCC.07 and differs slightly
 depending on the number of contacts being requested, however the device’s capabilities as well
 as the capabilities of other remote contacts are always communicated using the Presence
 Information Data Format (PIDF), which is an XML-encoded format. Please see RFC3863
 section 4 for more details on each of the elements as well as which elements are mandatory vs
 optional. RCC.07 further defines how this is used in the context of RCS presence based on
 presence extensions defined in the OMA DDS Presence Data Extensions document. As
 mentioned in RCC.07 and RFC3863 , carrier extensions to the PIDF are also supported through
 these standards.

 The ImsService will pass the entire XML PIDF document to AOSP as the presence
 documents are being received in subsequent NOTIFYs. Telephony can then parse the XML file
 and pull out the relevant information to be stored in the EAB database as well as pass the
 information to applications consuming this information.

 Presence - Querying Multiple Contacts
 When requesting for the capabilities of multiple contacts, instead of creating an individual
 SUBSCRIBE request for each contact and expecting a NOTIFY response, the subscriber will
 use an RLMI (Resource List Meta-Information) document (See RFC4662 for more information).
 The RLMI document in the SUBSCRIBE request allows a subscriber to subscribe to many
 resources and receive NOTIFY responses as resources in the resource list change. In the
 context of presence, the RLMI document in the NOTIFY response will contain multiple PIDF
 documents for the resources that the subscriber has listed in the initial SUBSCRIBE request
 resource list. Each individual NOTIFY response may only contain a subset of the presence
 information subscribed for as the carrier’s resource list server is searching other entities for
 presence information about one or more of the subscribed resources. Typically, the
 SUBSCRIBE request will also have a relatively short expires header field defined (30-60
 seconds) in this context in order to give time for the carrier’s server to find presence information

 Version 1.1.1 2022-06-17 69

 about the subscribed resources as well as not constantly take up resources if the status of one
 of the resources changes.

 It will be the ImsService’s responsibility to handle the SUBSCRIBE and subsequent NOTIFY
 messages from the network as well as parse and interpret the RLMI and PLMI documents that
 are returned in this case. The AOSP framework will only require the following information in
 order to properly manage a pending presence request to the ImsService for one or more
 contacts:

 ● The RcsContactPresenceCapability objects as they are parsed from the incoming
 NOTIFY messages,

 ● SIP error and reason codes in the event that a SUBSCRIBE request generates an error
 response,

 ● The reason , and retry-after parameters from the final NOTIFY response determined
 when the Subscription-State is terminated ,

 ● The reason code specified by a resource with a state of terminated and will not be
 receiving further RLMI information for this subscription.

 The presence information should be streamed from the ImsService to the framework as it is
 being received; the ImsService should not wait for the subscription to be terminated.

 Capability Discovery
 If the carrier has provisioned the device for periodic capability refresh of the user’s contacts, the
 telephony enhanced address book (EAB) service will periodically schedule a refresh of the RCS
 capabilities of each contact based on the phone number saved. This requires that the user’s
 contacts’ phone numbers either need to be periodically sent to the carrier’s presence server in
 order to retrieve the RCS capabilities of each phone number or a SIP OPTIONS exchange
 needs to take place for each contact. Applications integrated with RCS will then be able to use
 the contact capability query API defined below in RcsUceAdapter to retrieve this information in
 order to determine if the contact supports RCS capabilities related to RCS messaging and video
 calling.

 Below is a table defining the carrier configurable optional parameters associated with capability
 discovery, defined in RCC.07 A.1.9, although there may be more carrier specific parameters not
 listed here:

 Parameter Name Description

 DISABLE-INITIAL-
 ADDRESS-BOOK-SCAN

 When set to 0 (Default value), the EAB service shall perform a
 capability check for all contacts in the address book when it is

 Version 1.1.1 2022-06-17 70

 first started.

 When set to 1 , the device shall skip the scan and only perform
 capability exchange requests based on other triggers defined
 below.

 CAPABILITY-INFO-EXPIRY The amount of time in seconds that the last RCS capabilities
 fetched from the network are valid for. The default value is
 259200 seconds (30 days).

 SERVICE-AVAILABILITY-
 INFO-EXPIRY

 The amount of time in seconds that the RCS availability
 information associated with a contact is valid for. The default
 value is 60 seconds.

 CAPABILITY-DISCOVERY-
 MECHANISM

 If set to 0 , the preferred mechanism for capability discovery is
 OPTIONS.

 If set to 1 , the preferred mechanism for capability discovery is
 presence.

 If set to 2 or not provided (default), the capability discovery
 mechanism is disabled.

 CAPABILITY-DISCOVERY-
 ALLOWED-PREFIXES

 If absent, all phone numbers shall be considered for capability
 discovery. If not empty, this configuration provides a list of
 prefixes or regular expressions that phone numbers must
 match in order to be considered for capability discovery.

 NON-RCS-CAPABILITY-
 INFO-EXPIRY

 If a contact is labeled as non-RCS, this parameter controls how
 long that label is valid before the RCS capabilities of the
 contact should be queried again. The default is 2592000
 seconds (30 days).

 The parameters defined above will affect when the device EAB service queries the RCS
 capabilities of the user’s contacts. If DISABLE_INITIAL_ADDRESS_BOOK_SCAN is set to 0,
 the user’s contacts will be scanned and sent to the network using either Presence or SIP
 OPTIONS, depending on the carrier’s method of capability discovery, defined in
 CAPABILITY-DISCOVERY-ALLOWED-PREFIXES (as long as the user has opted-in for
 capability discovery, more information defined below in “Privacy Considerations”).

 Version 1.1.1 2022-06-17 71

 The following triggers will cause the EAB service to scan the user’s contacts to perform
 capability discovery for one more entries whose cached capabilities do not exist or have
 expired.

 ● First time activation of the service after factory reset or sim swap,
 ● CAPABILITY-INFO-EXPIRY or NON-RCS-CAPABILITY-INFO-EXPIRY has elapsed for

 one or more contacts,
 ● New contacts added or modified due to contacts sync,
 ● New contacts added or modified manually.

 Note : If using presence, this will trigger either an individual SUBSCRIBE or RLS list
 SUBSCRIBE, depending on whether or not the capabilities are being fetched for an
 individual number or a list of numbers.

 If DISABLE_INITIAL_ADDRESS_BOOK_SCAN is set to 1, the framework will not periodically
 refresh the capabilities of the user’s contacts and will only perform a capability request if
 requested by an external RCS application. Once the capabilities are requested, the cache of the
 capabilities for the requested contacts will stay valid for the amount of time specified in
 CAPABILITY-INFO-EXPIRY or NON-RCS-CAPABILITY-INFO-EXPIRY if the RCS application
 requests the capabilities of that contact again.

 An RCS application may also request the “availability” information for a contact, which will
 bypass the cached capabilities of the contact and perform a capability request. The response
 will be updated in the capability cache and will also be cached separately in the shorter
 availability cache, which expires based on the SERVICE-AVAILABILITY-
 INFO-EXPIRY parameter. This allows applications to get the near real-time RCS status and
 capabilities of a contact to show real time video calling status to the user or to determine if a
 contact is online/capable for a service such as RCS 1-to-1 or group messaging.

 Telephony will use a private Provider to store the cached contacts in a database since these
 contacts may need to be cached for days or weeks, depending on the carrier’s configuration.
 Telephony will provide an interface for applications to use to request the capability or availability
 information of one or more contact URIs. If there is non-stale cached information about these
 contacts in the telephony enhanced address book (EAB) provider, then this information will be
 returned immediately. If the request is for a URI that has cached information that is either stale
 or doesn’t exist, telephony will then request that the ImsService performs a capability request
 for the contact URIs that the application is requesting capabilities for. Figure 3.5.2 illustrates
 how telephony will cache the capabilities of the contacts. Figure 3.5.3 shows how AOSP will
 cache real-time capability and availability requests, which expire based on the configuration
 options used in the above table.

 Version 1.1.1 2022-06-17 72

 FIgure 3.5.2 : Flow diagram showing the caching behavior of AOSP for the RCS capabilities of
 the user’s contacts.

 Version 1.1.1 2022-06-17 73

 Version 1.1.1 2022-06-17 74

 FIgure 3.5.3 : Flow diagram showing the caching behavior of AOSP for real-time availability (top)
 and capability requests (bottom) of a contact.

 Version 1.1.1 2022-06-17 75

 For carriers that require that the database of cached contact capabilities to be purged when a
 subscription is removed, the database will be purged of cached contact information related to
 that subscription only. Other cached information for other subscriptions will not be purged. For
 carriers that do not require the cached contact capabilities to be purged, the information will
 stay in the database, however it will not be updated or used for capability requests from RCS
 applications. If a user swaps the SIM card back to a subscription where the database of cached
 information has not been purged, the EAB service will only perform a capability fetch for
 contacts whose cached contact information has exceeded the expiration time set in
 CAPABILITY-INFO-EXPIRY.

 Privacy Considerations
 The RCS universal profile specficiation RCC.71 as well as RCC.07 specify that by default, the
 device should perform a full address book scan of the user’s contacts to get the RCS
 capabilities of each one if DISABLE_INITIAL_ADDRESS_BOOK_SCAN is set to 0. Starting in
 Android R, this is no longer enough justification to upload the phone numbers associated with all
 the contacts in the user’s address book. The user must also separately consent to this periodic
 upload of contact information on the device. In Android S, this will continue to be enforced and
 the RCS messaging application will also need to get user consent before the contact presence
 polling service can be started. The messaging application will be able to use the
 ImsRcsManager#ACTION_SHOW_CAPABILITY_DISCOVERY_OPT_IN Intent to show the
 settings screen, where the user can choose to enable capability discovery before being able to
 use RCS services. This opt-in will not affect availability requests from RCS applications,
 however, as these requests are on-demand and required for RCS functionality to work. In order
 for on-demand requests from the RCS application to be completed by the framework UCE
 service, the RCS application must have been granted CONTACTS permission.

 Publishing Presence Information from RCS Applications
 Along with requesting the RCS capabilities of another contact, the device must also provide its
 RCS capabilities so that other devices can perform the same look up to look up the user’s RCS
 capabilities. When using a presence server, the user’s device sends a SIP PUBLISH request to
 the carrier’s network periodically to refresh the network’s cached information on the user’s RCS
 capabilities. This periodic interval is governed by the SOURCE-THROTTLE-PUBLISH
 configuration parameter. See figure 3.5.8 below for the typical PUBLISH sequence.

 If using the OPTIONS mechanism, the device caches the RCS capabilities of the device locally
 and responds to the request with a 200 OK containing the cached capabilities. See figure 3.5.10
 for the typical OPTIONS exchange sequence.

 Version 1.1.1 2022-06-17 76

https://developer.android.com/reference/android/telephony/ims/ImsRcsManager#ACTION_SHOW_CAPABILITY_DISCOVERY_OPT_IN

 RCS applications will not directly provide the features that they wish telephony to PUBLISH to
 the network or respond to via SIP OPTIONS. These features will be determined by the
 telephony framework based off of the Feature Tags that the RCS application is currently
 associated with. The related SIP PUBLISH will follow after the first IMS registration as well as
 after any IMS registration modification that occurs. Since RCS applications do not modify the
 PUBLISHed tags directly, they will need to tear down and then recreate a new SipDelegate if
 they no longer support a specific feature tag. This will generate a new PUBLISH on the network
 following the modification of the IMS registration. Figure 3.5.4 below outlines the expected
 operation of UCE based on changes to the IMS registration due to the state of the
 SipDelegates.

 Figure 3.5.4 : The expected operation of a SIP PUBLISH in response to a SIP delegate being
 created. To help distinguish these paths, existing operational paths are in gray, new UCE related

 sequences are in blue, and new SIP transport related operations are in red.

 Version 1.1.1 2022-06-17 77

 In the case that the default messaging application has changed, the following procedure will be
 followed:

 1. Default Messaging Application change notification is sent to framework telephony.
 2. The old Default Messaging Application then destroys its SipDelegateConnection, which

 removes those RCS feature tags from being tracked by the ImsService.
 3. After the old Default Messaging Application destroys its SipDelegateConnection, a timer

 will be started to trigger a new IMS registration and PUBLISH. During this time, the new
 Default Messaging Application should create its own SipDelegateConnection.

 4. Once the IMS registration and PUBLISH timer expires, the new IMS registration and
 PUBLISH will be triggered. A new IMS registration and PUBLISH will only be sent to the
 network if the feature tags of the new Default Messaging Application differ from the old
 set. This will reduce the number of back-to-back PUBLISHes on the network.

 See figure 3.5.5 below for more information about when a SIP PUBLISH is generated after a
 DMA change.

 Version 1.1.1 2022-06-17 78

 Figure 3.5.6 : Sequence of events that occur after the Default Messaging Application (DMA)
 changes. The events in red are related to SIP Transport signalling and the events in blue are

 related to UCE PUBLISH.

 Version 1.1.1 2022-06-17 79

 APIs
 The ImsService API will be extended to allow the system IMS stack to support RCS
 capabilities from contacts as well as publish UCE state updates to the IMS stack. Applications
 such as dialer, contacts, and messaging apps will be able to access new APIs through
 ImsManager , which will allow them to query the RCS capabilities of one or more contact URIs.
 In single registration mode, the framework will also support allowing RCS features managed by
 RCS applications using SipDelegateConnections to publish UCE updates for those
 associated feature tags only.

 ImsService API Changes
 The ImsService API will be extended to support both presence and OPTIONS forms of UCE.
 See Figure 3.5.6 below for a summary of the new API surface.

 Figure 3.5.6 : The modified system API surface used for UCE as part of the ImsService API.

 Signalling UCE capability status to the framework
 The first component is the additional APIs added to the RcsFeature class, which has the
 responsibility of creating an implementation of RcsCapabilityExchangeImplBase that is
 implemented by the vendor as well as signalling to the RcsFeature which types of capability
 exchange the carrier supports. The RcsFeature can also respond to the framework and notify
 the framework of the capability status for UCE. The framework will only start using the
 RcsCapabilityExchangeImplBase implementation once the RcsFeature signals that the
 capability status is enabled. This is similar to how MmTelFeature notifies the framework of the
 capability status for voice, video, Ut, and SMS over IMS. The sequence diagram in figure 3.5.7
 below illustrates this process.

 Version 1.1.1 2022-06-17 80

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/feature/RcsFeature.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/stub/RcsCapabilityExchangeImplBase.java

 Figure 3.5.7: The typical setup flow of the RcsFeature associated with the ImsService and
 creation of the vendor RcsCapabilityExchangeImplBase implementation.

 Integrating User Capability Exchange into the Platform
 The second component is the UCE implementation of RcsCapabilityExchangeImplBase
 provided by the vendor ImsService as well as the CapabilityExchangeEventListener ,
 which allows the vendor to notify telephony when there is a new event. Figures 3.5.8 - 3.5.11

 Version 1.1.1 2022-06-17 81

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/stub/CapabilityExchangeEventListener.java

 below show the expected operation of these APIs.

 Figure 3.5.8: Expected operation of the ImsService during PUBLISH operation for presence.

 Version 1.1.1 2022-06-17 82

 Figure 3.5.9: Expected operation of the ImsService during SUBSCRIBE operation for
 presence.

 Version 1.1.1 2022-06-17 83

 Figure 3.5.10: Expected operation of the ImsService when sending out a SIP OPTIONS
 request.

 Version 1.1.1 2022-06-17 84

 Figure 3.5.11: Expected operation of the ImsService during when receiving a SIP OPTIONS
 request.

 Application API Changes

 On the RCS application side, the RcsUceAdpater will allow RCS applications to request the
 capabilities of one or more contacts from the EAB provider or bypass the EAB cache and
 request the network capabilities of one contact from the network for an availability query.

 Version 1.1.1 2022-06-17 85

 Figure 3.5.12 : Application API changes to support UCE capability queries and capability
 updates for interested applications.

 RCS applications will be able to use ImsRcsManager to query the state of the capabilities of
 the vendor ImsService that is associated with the cellular subscription that the instance was
 created for. It also allows the RCS application to get the associated RcsUceAdapter , which is
 used for UCE related features. The capability/availability callbacks in the ImsRcsManager is
 not the same as the capability/availability related to UCE and is a more general concept that is
 used throughout all features in the ImsService . ImsRcsManager#isCapable is used to
 query AOSP for whether or not carrier configurations and telephony configurations have
 enabled a specific feature. At this time, the only defined features for the ImsService are:

 ● UCE via presence exchange and
 ● UCE via OPTIONS exchange.

 The ImsRcsManager#isCapable API does not determine if UCE via presence or OPTIONS
 is available at the current time, only that the carrier supports this feature and telephony has
 enabled the feature for the vendor ImsService.

 The ImsRcsManager#isAvailable callback can be used to determine if the feature is
 capable and the ImsService has successfully set up the feature. When this method returns
 true for a specific feature, it is available to be used at the current time. Similarly, the
 ImsRcsManager#AvailabilityCallback allows an application to get callbacks when a
 specific feature has moved to available/unavailable and can use this information to start or stop
 services.

 Figure 3.9.13 below shows how these APIs may be used by the RCS application.

 Version 1.1.1 2022-06-17 86

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/ims/RcsUceAdapter.java

 Figure 3.9.13: How the ImsRcsManager APIs can be used to query the capability and
 availability of certain RCS features implemented by the vendor ImsService .

 Below are two examples of using the RcsUceAdapter for capability fetch as well as availability
 fetch. The first is the result the RCS application should expect when calling
 RcsUceAdapter#requestCapabilities , as shown in Figure 3.9.14 below. Note the list

 Version 1.1.1 2022-06-17 87

 SUBSCRIBE will be shortened to a single SUBSCRIBE/NOTIFY procedure if the capabilities of
 only a single contact needs to be retrieved. The second example is what the RCS application
 should expect when performing a single contact query for live network availability, as shown in
 Figure 3.9.15 below. Note that this query bypasses the normal capability cache and first checks
 the separate availability cache, which expires after SERVICE-AVAILABILITY-INFO-EXPIRY
 seconds and does not automatically refresh.

 Figure 3.9.14 : The expected result when an application calls
 RcsUceAdapter#requestCapabilities to fetch the cached capabilities of one or more
 contacts.

 Version 1.1.1 2022-06-17 88

 Figure 3.9.15 : The expected result when an application calls
 RcsUceAdapter#requestNetworkAvailability to fetch the live network capabilities of a
 single contact URI.

 AOSP and Vendor Responsibilities

 Since AOSP does not have an IMS stack that can be used to directly generate the SIP signaling
 required to implement the PUBLISH, SUBSCRIBE/NOTIFY and OPTIONS procedures required for
 capability exchange, it must rely on the hybrid approach described in detail above. In general,
 this means that the AOSP stack manages capability requests from applications, RCS capability
 state of the device, contact capability refreshing, and PUBLISH trigger/refresh events. The
 ImsService contains the actual SIP stack and manages the SIP level signalling required to
 complete the procedures requested by the AOSP telephony stack and report the result of the
 operation back to telephony.

 The AOSP stack handles:

 ● Managing capability/availability requests from many applications and responding with

 Version 1.1.1 2022-06-17 89

 either the cached data in the EAB database or generating SUBSCRIBE or OPTIONS
 requests to the ImsService for the RCS capabilities of one or more contacts.

 ● Using the device’s IMS/RCS state to trigger PUBLISH events when required as well as
 generate the PIDF presence document required for PUBLISH as well as handle error
 conditions generated in response that may require a retry.

 ● Handling error responses to SUBSCRIBEs and either retrying later or failing permanently,
 depending on the operator requirements.

 ● Receiving the NOTIFY response for one or more contacts interpreted by the
 ImsService and using that to update the RCS capabilities and availability of those
 contacts. In the case of list subscribes requested by AOSP, AOSP can not handle the raw
 RLMI data from each individual NOTIFY and will instead rely on the ImsService to
 interpret this information and send the appropriate PIDF document for each contact as it
 is received.

 ● Parsing PIDF XML documents from the ImsService and updating the EAB database.
 ● Managing capability and availability parameters received during provisioning for caching

 and configuration and pushing them to the ImsService.
 ● Triggering PUBLISH events as required by the operator after initial IMS registration has

 occurred.
 ● Generating the feature tags required to request or respond to an OPTIONS request.
 ● Handling SIP error codes that require a retry of a specific operation after a specific time

 period.
 ● Throttling multiple PUBLISH requests as per the SOURCE-THROTTLE-PUBLISH

 command.

 The Vendor ImsService handles:

 ● SIP procedures related to generating the full SIP PUBLISH, SUBSCRIBE, and OPTIONS
 requests/responses as well as handling NOTIFY requests/responses.

 ● Handling list SUBSCRIBEs and parsing the RLMI documents contained in the subsequent
 NOTIFY requests from the network before sending the relevant updates to the
 framework for the in progress list SUBSCRIBE.

 ● Generating and handling SIP Entity-Tag related information as required.
 ● Notifying the AOSP UCE service of RAT changes separately from IMS registration

 indications. Note: The AOSP UCE service may not start PUBLISH procedure until the
 initial IMS Registration has completed after boot up.

 ● Cleaning up presence documents and notifying the framework that the presence
 document has been unpublished before deregistering for IMS.

 ● Persisting UCE configuration items set via ImsConfigImplBase across device reboots.
 ● Handling SIP error codes that require an immediate retry, such as ones that result from

 Version 1.1.1 2022-06-17 90

 IMS registration misconfiguration or error codes generated in response to a SIP
 message misconfiguration.

 ○ The only exception here is “403 Forbidden” and “489 Bad Event” responses to a
 PUBLISH Request. In these cases, the AOSP framework will move into a
 “disabled” state, where we will no longer generate PUBLISH requests based on
 state change or allow capability requests from applications to be sent to the
 vendor UCE stack. The AOSP framework will move out of this state when one of
 the two events occurs:

 ■ The vendor stack initiates a PUBLISH request, which the AOSP framework
 will respond to. If the network reports a 200 OK, then the AOSP framework
 will be enabled again.

 ■ For some carriers, the “489 Bad Event” header will also require AOSP to
 set a timer. The device will stay in the disabled state for that amount of
 time until the timer expires (across reboots) and we generate a PUBLISH
 request that results in a 200 OK response or the vendor stack initiates a
 PUBLISH request and the network responds with a 200 OK.

 Version 1.1.1 2022-06-17 91

 GBA Authentication

 Generic bootstrapping Authentication is a shared secret based authentication specified in
 TS33.220 . GBA authentication extends SIM based authentication to web applications (for
 example using HTTP/HTTPS requests) hence enhancing user security. AKA authentication is
 used to mutually authenticate the UE and the network and then derive the GBA authentication
 keys.
 Primary use cases considered here are for RCS file transfer, XCAP etc.

 Design
 Applications shall use the TelephonyManager interface to access the new GBA authentication
 APIs. Service to run GBA authentication for the application could be implemented by the vendor
 or in AOSP or by a third party. To allow for a flexible architecture, a GBA resolver shall be
 implemented within the telephony process, which can dynamically link to the available GBA
 service. Figure 3.6.2: below illustrates the high level flow and the components involved.

 Figure 3.6.2 : GBA High level design diagram

 GbaService

 Version 1.1.1 2022-06-17 92

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/TelephonyManager.java

 The GbaService will register itself as a service in the AndroidManifest and will be bound to
 based on the Device configuration. IGbaService AIDL will be defined in the framework for
 exposing the GBA authentication APIs. GbaService will extend this interface.

 Permissions
 GBA APIs can be exposed to the OEM approved applications and the applications approved by
 the carrier. Users will not have the capability to allow an application to run GBA. Applications will
 need carrier permissions (see hasCarrierPrivileges),
 PERFORM_IMS_SINGLE_REGISTRATION, or MODIFY_PHONE_STATE permissions to use
 these APIs.

 Application APIs
 New APIs are defined in TelephonyManager for the application to get GBA keys. Application
 must register a callback to receive the keys for each request. If the bootstrapping procedure
 was already completed and a valid key is available corresponding to the NAF, the application
 callback shall be invoked immediately.

 Version 1.1.1 2022-06-17 93

https://developer.android.com/reference/android/telephony/TelephonyManager#hasCarrierPrivileges()
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/TelephonyManager.java

 In order to ensure that the GBA keys are valid at the time of use, it is recommended for the
 application to always invoke the API and get the keys at the time of use, instead of caching the
 keys.
 Each request from the application to get the GBA keys is treated independently and must have
 a unique callback. If multiple calls are made to request the keys before receiving the keys for
 the previous request, then the requests shall be processed in the order in which they are
 received and the callback corresponding to each request shall be invoked. If all requests point
 to the same NAF and do not force bootstrapping, then they may all get the same key. If
 bootstrapping occurs while processing the request, then the new key shall be returned.

 GbaService inte�ace
 The vendor must implement the GbaService , which shall maintain the central database to store
 bootstrapping keys and keys requested by the application and their validity. Gba keys are stored
 until their lifetime expires, or the keys are invalidated due to another bootstrapping session.
 When the GBA keys are requested, the service will check its internal cache to determine if the
 valid keys exist for the NAF. If they do, then it can return the keys immediately. If not then it can
 rerun bootstrapping and get new keys.
 Gba Service shall be started and bound by telephony on demand when the application requests
 Gba authentication keys and unbound once the response to all ongoing requests is received. In
 case the Gba Service dies it must ensure that its internal database is updated with all the valid
 keys and their parameters like NAF url, BTID, valid until duration etc.

 Sequence diagrams

 Figures below depict the execution flow for various use cases:

 Scenario GBA.1: Service initialization and GBA authentication success

 Version 1.1.1 2022-06-17 94

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/telephony/java/android/telephony/gba/GbaService.java

 Scenario GBA.2: GBA authentication network failure

 Scenario GBA.3: GBA authentication service not ready

 Scenario 4: GBA authentication service not suppo�ed on device

 Version 1.1.1 2022-06-17 95

 Scenario 5: Security protocol not suppo�ed

 Version 1.1.1 2022-06-17 96

 Multi-SIM Device Con�gurations
 With a device in Dual-SIM, Dual-Standby (DSDS) configuration, telephony and the vendor IMS
 stack may support dual IMS stacks. When two SIMs are inserted on the device (using either
 pSIM or eSIM) then IMS may be registered simultaneously on both subscriptions to handle IMS
 traffic. All new AOSP single RCS registration APIs shall be capable of managing dual IMS
 registration for RCS and handle RCS traffic on both subscriptions simultaneously.

 Specific impacts to each API category are discussed below.

 Provisioning
 ● Telephony shall be able to store RCS client configuration per subscription.Telephony

 shall maintain the two provisioning xmls independently and will allow applications to
 register callbacks and retrieve the configurations for each.

 ● When provisioning updates are received for either subscription, telephony shall be able
 to update its internal storage and also notify applications which have registered a
 callback to receive updates on that subscription.

 SIP Transpo�, Registration and UCE
 ● SIP transport APIs allow applications to create SipDelegates on either or both the

 subscriptions simultaneously
 ● If RCS is provisioned for both subscriptions and SipDelegateConnections are

 created by the application for both subscriptions, then IMS shall register on both subs for
 RCS.

 ● RCS applications may create an ImsRcsManager instance per subscription and trigger
 user capability exchange using the ImsRcsManager APIs.

 ● SIP transport APIs allow applications to send and receive data on either subscription
 irrespective of DDS configuration.

 GBA Authentication
 ● Application shall be able to use GBA authentication API on both subscriptions.

 Dedicated Bearer
 ● The dedicated bearer listener can be registered for either subscription irrespective of the

 Version 1.1.1 2022-06-17 97

 Default Data Subscription configuration and the subscription being the primary or
 secondary call subscription.

 ● Dedicated bearer indications can be sent to registered applications, irrespective of the
 Default Data Subscription configuration and the subscription being either the primary or
 secondary subscription.

 RCS Application considerations

 ● Irrespective of the application support for DSDS, applications must be aware that an
 ongoing transaction may get interrupted due to voice call activity on the other
 subscription. In that case application retransmissions should kick in.

 ● RCS applications supporting dual RCS registration must be able to maintain the
 provisioning status and data for individual subscriptions.

 ● RCS applications supporting dual RCS registration must be capable of handling
 incoming messages on either subscription.

 ● Subscription selection for outgoing traffic shall be the RCS Application’s responsibility.

 In the event that an RCS application does not support simultaneous IMS Single Registration
 even though both SIMs are RCS provisioned, then it shall be the application’s responsibility to
 choose the subscription for RCS registration.

 Version 1.1.1 2022-06-17 98

 Speci�cations and References

 Reference Title

 RFC3261 “SIP: Session Initiation Protocol”, June 2002,
 https://tools.ietf.org/html/rfc3261

 RCC.59 RCC.59 - North America RCS Common Implementation Guidelines,
 Version 1.0,
 https://www.gsma.com/futurenetworks/wp-content/uploads/2015/05/RC
 C-59-v1-0.pdf

 RFC 3840 “Indicating User Agent Capabilities in the Session Initiation Protocol
 (SIP)”, August 2004, https://tools.ietf.org/html/rfc3840

 RCC.07 “Rich Communication Suite - Advanced Communications Services and
 Client Specification”, Version 11, 16 October 2019,
 https://www.gsma.com/futurenetworks/wp-content/uploads/2019/10/RC
 C.07-v11.0.pdf

 RCC.14 “Service Provider Device Configuration”, Version 7.0 16 October 2019,
 https://www.gsma.com/newsroom/wp-content/uploads//RCC.14-v7.0-1.p
 df

 TS33.220 “Generic Authentication Architecture (GAA); Generic Bootstrapping
 Architecture (GBA)”, 3GPP TS 33.220, Version 15.4.0, Release 15, April
 2019,
 https://www.etsi.org/deliver/etsi_ts/133200_133299/133220/15.04.00_6
 0/ts_133220v150400p.pdf

 RCC.71 “RCC.71 - RCS Universal Profile Service Definition Document”, Version 2.4,
 16 October 2019,
 https://www.gsma.com/futurenetworks/wp-content/uploads/2019/10/RC
 C.71-v2.4.pdf

 OMA DDS “Presence SIMPLE Data Specification”, Version 2.3, 22 Dec 2015,

 Version 1.1.1 2022-06-17 99

https://tools.ietf.org/html/rfc3261
https://www.gsma.com/futurenetworks/wp-content/uploads/2015/05/RCC-59-v1-0.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2015/05/RCC-59-v1-0.pdf
https://tools.ietf.org/html/rfc3840
https://www.gsma.com/futurenetworks/wp-content/uploads/2019/10/RCC.07-v11.0.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2019/10/RCC.07-v11.0.pdf
https://www.gsma.com/newsroom/wp-content/uploads//RCC.14-v7.0-1.pdf
https://www.gsma.com/newsroom/wp-content/uploads//RCC.14-v7.0-1.pdf
https://www.etsi.org/deliver/etsi_ts/133200_133299/133220/15.04.00_60/ts_133220v150400p.pdf
https://www.etsi.org/deliver/etsi_ts/133200_133299/133220/15.04.00_60/ts_133220v150400p.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2019/10/RCC.71-v2.4.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2019/10/RCC.71-v2.4.pdf

 Presence
 Extensions

 http://www.openmobilealliance.org/release/PDE/V1_4-20151222-A/OMA-
 DDS-Presence_Data_Ext-V2_3-20151222-A.pdf

 RFC3863 “Presence Information Data Format (PIDF)”, August 2004,
 https://tools.ietf.org/html/rfc3863

 Version 1.1.1 2022-06-17 100

http://www.openmobilealliance.org/release/PDE/V1_4-20151222-A/OMA-DDS-Presence_Data_Ext-V2_3-20151222-A.pdf
http://www.openmobilealliance.org/release/PDE/V1_4-20151222-A/OMA-DDS-Presence_Data_Ext-V2_3-20151222-A.pdf
https://tools.ietf.org/html/rfc3863

