
Google Proprietary + Confidential

Bootcamp 2016
Android Keystore Attestation
...and other new hawtness
January 21, 2016

Proprietary + ConfidentialProprietary + Confidential

Proprietary + ConfidentialGoogle Proprietary + Confidential

Agenda

Hardware-backed KeyStore overview

Attestation

Other KeyStore enhancements

Bootloader changes

CDD requirements

Proprietary + ConfidentialProprietary + Confidential

Proprietary + ConfidentialGoogle Proprietary + Confidential

Hardware-backed KeyStore overview

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Google Proprietary + Confidential

Keep keys safe Control key usage Provide adequate toolset

Software-only keystore allows apps
to keep critical keys out of their
process space. Hardware-backing
allows the keys to be kept away from
even the Linux kernel, so Android
vulnerabilities cannot leak them.

Compromise of the Android system
doesn’t provide access to key material,
but it could allow attackers unlimited
use of the keys. Android Keystore
enables key usage to be limited, e.g.
access-controlled by user
authentication.

Hardware-backed cryptography is
useless if it doesn’t provide the tools
that developers need. Android
KeyStore provides a core suite of
cryptographic algorithms and tools
that covers the vast majority of
applications.

Hardware-backed KeyStore

Google Proprietary + Confidential

KeyStore Architecture

Android App

Android KeyStore

Linux Kernel

Non-secure user mode

Non-secure privileged mode

Keymaster App

Trusted OS

Secure user mode

Secure privileged mode

KeyStore
Keymaster HAL

Kernel Driver

Installed

Trust:

In-process

Out-of-process

Kernel

TEE

Proprietary + ConfidentialProprietary + Confidential

Proprietary + ConfidentialGoogle Proprietary + Confidential

Key Attestation

Google Proprietary + Confidential

What problem are we trying to solve?
There’s no way to know if keys are in secure hardware.

● The Keymaster HAL could lie.

● The framework could be compromised and misreport HAL response.

● Even if the device is good, apps can lie to off-device parties.

Solution: Have secure hardware produce an “attestation certificate”.

● The certificate describes the key, including its access controls.

● The certificate is signed by an attestation key injected at the factory.

● No runtime dependency on Google.

?

Google Proprietary + Confidential

Attestation details
● Attestation can be applied to RSA or EC keys.

● Attestations are produced in the form of an X.509 certificate.

○ Constraints and validity periods of certs will mirror the values specified for the keys.

○ A custom extension will contain the details of the access control constraints applied, and

indicate which are applied in hardware.

○ The signing key will be ECDSA (NIST P-384), with provision to switch to RSA (3072 bits) with

a security OTA.

● Attestation keys (ECDSA and RSA) will be provisioned in the factory.

● Google will provide the CA root and will certify attestation keys.

Google Proprietary + Confidential

FIDO and Android KeyStore Attestation

KeyStore attestation is similar to—but not an implementation of—FIDO U2F.

● U2F uses other data structures and protocols that are too specific for a
general-purpose crypto toolkit.

● KeyStore attestation does provide all of the security properties desired by
FIDO relying parties.

● Google will work with FIDO to reconcile the issues.

● Bottom line: FIDO relying parties will be able to use KeyStore. This is
expected to drive widespread use of KeyStore.

Google Proprietary + Confidential

Key Provisioning

● Google will certify attestation keys for
Google-approved devices.

● Keys will be deployed to device
batches: min 10K devices per key.

● Initially, Google will create the keys as
well as certify them.

● The process will be very similar to the
Widevine key distribution process (will
likely use the same delivery method).

Google Proprietary + Confidential

Key Revocation

App and server trust depends on attestation key

secrecy.

Compromised keys will be revoked via CRL and OSCP:

● Secure key injection can only be done at the factory, so a device
with a revoked key will become permanently untrusted.

● Keys are injected into device batches, so revocation affects an
entire batch, at minimum.

● Revocations will be applied as broadly as needed, depending on the
nature and extent of the leak.

Proprietary + ConfidentialProprietary + Confidential

Proprietary + ConfidentialGoogle Proprietary + Confidential

Other KeyStore enhancements

Google Proprietary + Confidential

Other KeyStore enhancements

● More elliptic curve functionality

○ ECIES

○ ECDH

● Exportable symmetric keys

● Fingerprint-bound keys that are not revoked on fingerprint enrollment

● OS version binding to protect against OS rollback

Proprietary + ConfidentialProprietary + Confidential

Proprietary + ConfidentialGoogle Proprietary + Confidential

Bootloader changes

Google Proprietary + Confidential

Bootloader changes

New hardware keystore features require some bootloader features:

● Bootloader must provide OS version and patch level to TEE.

● Bootloader must provide Verified Boot public key and lock status to TEE.

Proprietary + ConfidentialProprietary + Confidential

Proprietary + ConfidentialGoogle Proprietary + Confidential

CDD requirements

Google Proprietary + Confidential

CDD requirements

For Android Marshmallow, hardware-backed keystore was STRONGLY RECOMMENDED.

Hardware-backed keystore will be MANDATORY in a future release.

● All algorithms (RSA, AES, ECDSA, ECDH, ECIES, HMAC)

● All hash functions (MD5, SHA1, SHA-2 family)

● Hardware Gatekeeper (on devices with lockscreens)

○ With brute force protection in hardware

● Hardware attestation support

THANK YOU

