Neural Networks HAL 1.2 introduce el concepto de ejecuciones en ráfaga. Las ejecuciones en ráfaga son una secuencia de ejecuciones del mismo modelo preparado que se producen en rápida sucesión, como las que operan en fotogramas de una captura de cámara o muestras de audio sucesivas. Un objeto de ráfaga se utiliza para controlar un conjunto de ejecuciones de ráfaga y para conservar recursos entre ejecuciones, lo que permite que las ejecuciones tengan una sobrecarga más baja. Los objetos de ráfaga permiten tres optimizaciones:
- Un objeto de ráfaga se crea antes de una secuencia de ejecuciones y se libera cuando finaliza la secuencia. Debido a esto, la vida útil del objeto reventado le indica al controlador cuánto tiempo debe permanecer en un estado de alto rendimiento.
- Un objeto de ráfaga puede conservar recursos entre ejecuciones. Por ejemplo, un controlador puede asignar un objeto de memoria en la primera ejecución y almacenar en caché la asignación en el objeto de ráfaga para reutilizarla en ejecuciones posteriores. Cualquier recurso almacenado en caché se puede liberar cuando se destruye el objeto de ráfaga o cuando el tiempo de ejecución de NNAPI notifica al objeto de ráfaga que el recurso ya no es necesario.
- Un objeto de ráfaga utiliza colas de mensajes rápidos (FMQ) para comunicarse entre la aplicación y los procesos del controlador. Esto puede reducir la latencia porque el FMQ pasa por alto HIDL y pasa los datos directamente a otro proceso a través de un FIFO circular atómico en la memoria compartida. El proceso del consumidor sabe sacar de la cola un elemento y comenzar a procesar, ya sea sondeando el número de elementos en el FIFO o esperando el indicador de evento del FMQ, que es señalado por el productor. Este indicador de evento es un mutex de espacio de usuario rápido (futex).
Un FMQ es una estructura de datos de bajo nivel que no ofrece garantías de por vida en todos los procesos y no tiene un mecanismo integrado para determinar si el proceso en el otro extremo del FMQ se está ejecutando como se esperaba. En consecuencia, si el productor del FMQ fallece, el consumidor puede quedarse atascado esperando datos que nunca llegan. Una solución a este problema es que el controlador asocie las FMQ con el objeto de ráfaga de nivel superior para detectar cuándo ha terminado la ejecución de la ráfaga.
Dado que las ejecuciones en ráfaga funcionan con los mismos argumentos y devuelven los mismos resultados que otras rutas de ejecución, las FMQ subyacentes deben pasar los mismos datos hacia y desde los controladores de servicio NNAPI. Sin embargo, los FMQ solo pueden transferir tipos de datos simples y antiguos. La transferencia de datos complejos se logra serializando y deserializando búferes anidados (tipos de vectores) directamente en los FMQ y utilizando objetos de devolución de llamada HIDL para transferir identificadores de grupos de memoria a pedido. El lado del productor del FMQ debe enviar la solicitud o los mensajes de resultado al consumidor de forma atómica usando MessageQueue::writeBlocking
si la cola está bloqueando, o usando MessageQueue::write
si la cola no está bloqueando.
Interfaces de ráfaga
Las interfaces de ráfaga para Neural Networks HAL se encuentran en hardware/interfaces/neuralnetworks/1.2/
y se describen a continuación. Para obtener más información sobre las interfaces de ráfaga en la capa NDK, consulte frameworks/ml/nn/runtime/include/NeuralNetworks.h
.
tipos.hal
types.hal
define el tipo de datos que se envían a través de FMQ.
-
FmqRequestDatum
: un solo elemento de una representación serializada de un objeto deRequest
de ejecución y un valor deMeasureTiming
, que se envía a través de la cola de mensajes rápidos. -
FmqResultDatum
: un solo elemento de una representación serializada de los valores devueltos de una ejecución (ErrorStatus
,OutputShapes
yTiming
), que se devuelve a través de la cola de mensajes rápidos.
IBurstContext.hal
IBurstContext.hal
define el objeto de interfaz HIDL que vive en el servicio de redes neuronales.
-
IBurstContext
: Objeto de contexto para gestionar los recursos de una ráfaga.
IBurstCallback.hal
IBurstCallback.hal
define el objeto de interfaz HIDL para una devolución de llamada creada por el tiempo de ejecución de Neural Networks y lo utiliza el servicio de Neural Networks para recuperar objetos hidl_memory
correspondientes a los identificadores de ranura.
- IBurstCallback : objeto de devolución de llamada utilizado por un servicio para recuperar objetos de memoria.
IPreparedModel.hal
IPreparedModel.hal
se amplía en HAL 1.2 con un método para crear un objeto IBurstContext
a partir de un modelo preparado.
-
configureExecutionBurst
: configura un objeto de ráfaga que se utiliza para ejecutar múltiples inferencias en un modelo preparado en rápida sucesión.
Admite ejecuciones en ráfaga en un controlador
La forma más sencilla de admitir objetos de ráfaga en un servicio HIDL NNAPI es usar la función de utilidad de ráfaga ::android::nn::ExecutionBurstServer::create
, que se encuentra en ExecutionBurstServer.h
y está empaquetada en las bibliotecas estáticas libneuralnetworks_common
y libneuralnetworks_util
. Esta función de fábrica tiene dos sobrecargas:
- Una sobrecarga acepta un puntero a un objeto
IPreparedModel
. Esta función de utilidad utiliza el métodoexecuteSynchronously
en un objetoIPreparedModel
para ejecutar el modelo. - Una sobrecarga acepta un objeto
IBurstExecutorWithCache
personalizable, que se puede usar para almacenar en caché los recursos (como las asignacioneshidl_memory
) que persisten en varias ejecuciones.
Cada sobrecarga devuelve un objeto IBurstContext
(que representa el objeto de ráfaga) que contiene y administra su propio subproceso de escucha dedicado. Este subproceso recibe solicitudes de requestChannel
FMQ, realiza la inferencia y luego devuelve los resultados a través de resultChannel
FMQ. Este subproceso y todos los demás recursos contenidos en el objeto IBurstContext
se liberan automáticamente cuando el cliente de la ráfaga pierde su referencia a IBurstContext
.
Como alternativa, puede crear su propia implementación de IBurstContext
que comprenda cómo enviar y recibir mensajes a través de los requestChannel
requestChannel y resultChannel
pasados a IPreparedModel::configureExecutionBurst
.
Las funciones de utilidad de ráfaga se encuentran en ExecutionBurstServer.h
.
/**
* Create automated context to manage FMQ-based executions.
*
* This function is intended to be used by a service to automatically:
* 1) Receive data from a provided FMQ
* 2) Execute a model with the given information
* 3) Send the result to the created FMQ
*
* @param callback Callback used to retrieve memories corresponding to
* unrecognized slots.
* @param requestChannel Input FMQ channel through which the client passes the
* request to the service.
* @param resultChannel Output FMQ channel from which the client can retrieve
* the result of the execution.
* @param executorWithCache Object which maintains a local cache of the
* memory pools and executes using the cached memory pools.
* @result IBurstContext Handle to the burst context.
*/
static sp<ExecutionBurstServer> create(
const sp<IBurstCallback>& callback, const FmqRequestDescriptor& requestChannel,
const FmqResultDescriptor& resultChannel,
std::shared_ptr<IBurstExecutorWithCache> executorWithCache);
/**
* Create automated context to manage FMQ-based executions.
*
* This function is intended to be used by a service to automatically:
* 1) Receive data from a provided FMQ
* 2) Execute a model with the given information
* 3) Send the result to the created FMQ
*
* @param callback Callback used to retrieve memories corresponding to
* unrecognized slots.
* @param requestChannel Input FMQ channel through which the client passes the
* request to the service.
* @param resultChannel Output FMQ channel from which the client can retrieve
* the result of the execution.
* @param preparedModel PreparedModel that the burst object was created from.
* IPreparedModel::executeSynchronously will be used to perform the
* execution.
* @result IBurstContext Handle to the burst context.
*/
static sp<ExecutionBurstServer> create(const sp<IBurstCallback>& callback,
const FmqRequestDescriptor& requestChannel,
const FmqResultDescriptor& resultChannel,
IPreparedModel* preparedModel);
La siguiente es una implementación de referencia de una interfaz de ráfaga que se encuentra en el controlador de ejemplo de Neural Networks en frameworks/ml/nn/driver/sample/SampleDriver.cpp
.
Return<void> SamplePreparedModel::configureExecutionBurst(
const sp<V1_2::IBurstCallback>& callback,
const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel,
configureExecutionBurst_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"SampleDriver::configureExecutionBurst");
// Alternatively, the burst could be configured via:
// const sp<V1_2::IBurstContext> burst =
// ExecutionBurstServer::create(callback, requestChannel,
// resultChannel, this);
//
// However, this alternative representation does not include a memory map
// caching optimization, and adds overhead.
const std::shared_ptr<BurstExecutorWithCache> executorWithCache =
std::make_shared<BurstExecutorWithCache>(mModel, mDriver, mPoolInfos);
const sp<V1_2::IBurstContext> burst = ExecutionBurstServer::create(
callback, requestChannel, resultChannel, executorWithCache);
if (burst == nullptr) {
cb(ErrorStatus::GENERAL_FAILURE, {});
} else {
cb(ErrorStatus::NONE, burst);
}
return Void();
}