Déboguer le code natif de la plate-forme Android

Cette section résume les outils utiles et les commandes associées pour le débogage, le traçage et le profilage du code natif de la plate-forme Android lors du développement de fonctionnalités au niveau de la plate-forme.

Remarque:Les pages de cette section et d'autres pages de ce site recommandent d'utiliser adb avec l'argument setprop pour déboguer certains aspects d'Android. Dans Android 7.x et versions antérieures, la longueur des noms de propriétés était limitée à 32 caractères. Par conséquent, pour créer une propriété de mise en forme avec le nom de l'application, il était nécessaire de le tronquer pour qu'il s'adapte. Sous Android 8.0 ou version ultérieure, cette limite est beaucoup plus élevée et ne devrait pas nécessiter de troncature.

Cette page présente les principes de base des fichiers de dump d'erreur trouvés dans la sortie logcat. D'autres pages fournissent des informations beaucoup plus détaillées sur le diagnostic des plantages natifs, l'exploration des services système avec dumpsys, l'affichage de l'utilisation de la mémoire native, du réseau et de la RAM, l'utilisation de AddressSanitizer pour détecter les bugs de mémoire dans le code natif, l'évaluation des problèmes de performances (y compris systrace) et l'utilisation de débogueurs.

Dumps de plantage et pierres tombales

Lorsqu'un exécutable lié dynamiquement démarre, plusieurs gestionnaires de signaux sont enregistrés. En cas de plantage, un dump de plantage de base est écrit dans logcat et un fichier tombstone plus détaillé est écrit dans /data/tombstones/. La pierre tombale est un fichier contenant des données supplémentaires sur le processus qui a planté. Plus précisément, il contient des traces de pile pour tous les threads du processus de plantage (et pas seulement le thread qui a détecté le signal), une carte mémoire complète et une liste de tous les descripteurs de fichiers ouverts.

Avant Android 8.0, les plantages étaient gérés par les daemons debuggerd et debuggerd64. Sous Android 8.0 ou version ultérieure, crash_dump32 et crash_dump64 sont créés selon les besoins.

Le générateur de dump de plantage ne peut s'attacher que si aucun autre élément n'est déjà associé, ce qui signifie que l'utilisation d'outils tels que strace ou lldb empêche la création de dump de plantage.

Exemple de sortie (avec suppression des codes temporels et des informations superflues):

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Build fingerprint: 'Android/aosp_angler/angler:7.1.1/NYC/enh12211018:eng/test-keys'
Revision: '0'
ABI: 'arm'
pid: 17946, tid: 17949, name: crasher  >>> crasher <<<
signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0xc
    r0 0000000c  r1 00000000  r2 00000000  r3 00000000
    r4 00000000  r5 0000000c  r6 eccdd920  r7 00000078
    r8 0000461a  r9 ffc78c19  sl ab209441  fp fffff924
    ip ed01b834  sp eccdd800  lr ecfa9a1f  pc ecfd693e  cpsr 600e0030

backtrace:
    #00 pc 0004793e  /system/lib/libc.so (pthread_mutex_lock+1)
    #01 pc 0001aa1b  /system/lib/libc.so (readdir+10)
    #02 pc 00001b91  /system/xbin/crasher (readdir_null+20)
    #03 pc 0000184b  /system/xbin/crasher (do_action+978)
    #04 pc 00001459  /system/xbin/crasher (thread_callback+24)
    #05 pc 00047317  /system/lib/libc.so (_ZL15__pthread_startPv+22)
    #06 pc 0001a7e5  /system/lib/libc.so (__start_thread+34)
Tombstone written to: /data/tombstones/tombstone_06

La dernière ligne de sortie indique l'emplacement de la pierre tombale complète sur le disque.

Si vous disposez des binaires non tronqués, vous pouvez obtenir un déroulement plus détaillé avec des informations sur le numéro de ligne en collant la pile dans development/scripts/stack:

development/scripts/stack

Conseil:Pour plus de commodité, si vous avez exécuté lunch, stack est déjà sur votre $PATH. Vous n'avez donc pas besoin de fournir le chemin d'accès complet.

Exemple de résultat (basé sur la sortie logcat ci-dessus):

Reading native crash info from stdin
03-02 23:53:49.477 17951 17951 F DEBUG   : *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
03-02 23:53:49.477 17951 17951 F DEBUG   : Build fingerprint: 'Android/aosp_angler/angler:7.1.1/NYC/enh12211018:eng/test-keys'
03-02 23:53:49.477 17951 17951 F DEBUG   : Revision: '0'
03-02 23:53:49.477 17951 17951 F DEBUG   : ABI: 'arm'
03-02 23:53:49.478 17951 17951 F DEBUG   : pid: 17946, tid: 17949, name: crasher  >>> crasher <<<
03-02 23:53:49.478 17951 17951 F DEBUG   : signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0xc
03-02 23:53:49.478 17951 17951 F DEBUG   :     r0 0000000c  r1 00000000  r2 00000000  r3 00000000
03-02 23:53:49.478 17951 17951 F DEBUG   :     r4 00000000  r5 0000000c  r6 eccdd920  r7 00000078
03-02 23:53:49.478 17951 17951 F DEBUG   :     r8 0000461a  r9 ffc78c19  sl ab209441  fp fffff924
03-02 23:53:49.478 17951 17951 F DEBUG   :     ip ed01b834  sp eccdd800  lr ecfa9a1f  pc ecfd693e  cpsr 600e0030
03-02 23:53:49.491 17951 17951 F DEBUG   :
03-02 23:53:49.491 17951 17951 F DEBUG   : backtrace:
03-02 23:53:49.492 17951 17951 F DEBUG   :     #00 pc 0004793e  /system/lib/libc.so (pthread_mutex_lock+1)
03-02 23:53:49.492 17951 17951 F DEBUG   :     #01 pc 0001aa1b  /system/lib/libc.so (readdir+10)
03-02 23:53:49.492 17951 17951 F DEBUG   :     #02 pc 00001b91  /system/xbin/crasher (readdir_null+20)
03-02 23:53:49.492 17951 17951 F DEBUG   :     #03 pc 0000184b  /system/xbin/crasher (do_action+978)
03-02 23:53:49.492 17951 17951 F DEBUG   :     #04 pc 00001459  /system/xbin/crasher (thread_callback+24)
03-02 23:53:49.492 17951 17951 F DEBUG   :     #05 pc 00047317  /system/lib/libc.so (_ZL15__pthread_startPv+22)
03-02 23:53:49.492 17951 17951 F DEBUG   :     #06 pc 0001a7e5  /system/lib/libc.so (__start_thread+34)
03-02 23:53:49.492 17951 17951 F DEBUG   :     Tombstone written to: /data/tombstones/tombstone_06
Reading symbols from /huge-ssd/aosp-arm64/out/target/product/angler/symbols
Revision: '0'
pid: 17946, tid: 17949, name: crasher  >>> crasher <<<
signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0xc
     r0 0000000c  r1 00000000  r2 00000000  r3 00000000
     r4 00000000  r5 0000000c  r6 eccdd920  r7 00000078
     r8 0000461a  r9 ffc78c19  sl ab209441  fp fffff924
     ip ed01b834  sp eccdd800  lr ecfa9a1f  pc ecfd693e  cpsr 600e0030
Using arm toolchain from: /huge-ssd/aosp-arm64/prebuilts/gcc/linux-x86/arm/arm-linux-androideabi-4.9/bin/

Stack Trace:
  RELADDR   FUNCTION                   FILE:LINE
  0004793e  pthread_mutex_lock+2       bionic/libc/bionic/pthread_mutex.cpp:515
  v------>  ScopedPthreadMutexLocker   bionic/libc/private/ScopedPthreadMutexLocker.h:27
  0001aa1b  readdir+10                 bionic/libc/bionic/dirent.cpp:120
  00001b91  readdir_null+20            system/core/debuggerd/crasher.cpp:131
  0000184b  do_action+978              system/core/debuggerd/crasher.cpp:228
  00001459  thread_callback+24         system/core/debuggerd/crasher.cpp:90
  00047317  __pthread_start(void*)+22  bionic/libc/bionic/pthread_create.cpp:202 (discriminator 1)
  0001a7e5  __start_thread+34          bionic/libc/bionic/clone.cpp:46 (discriminator 1)

Vous pouvez utiliser stack sur une pierre tombale entière. Exemple :

stack < FS/data/tombstones/tombstone_05

Cette option est utile si vous venez de décompresser un rapport de bug dans le répertoire actuel. Pour en savoir plus sur le diagnostic des plantages natifs et des tombstones, consultez la section Diagnostiquer les plantages natifs.

Obtenir une trace de la pile ou une pierre tombale à partir d'un processus en cours d'exécution

Vous pouvez utiliser l'outil debuggerd pour obtenir un vidage de pile à partir d'un processus en cours d'exécution. À partir de la ligne de commande, appelez debuggerd à l'aide d'un ID de processus (PID) pour vider une pierre tombale complète dans stdout. Pour obtenir uniquement la pile de chaque thread du processus, incluez l'indicateur -b ou --backtrace.

Comprendre un déroulement complexe

Lorsqu'une application plante, la pile a tendance à être assez complexe. L'exemple détaillé suivant met en évidence de nombreuses complexités:

    #00 pc 00000000007e6918  /system/priv-app/Velvet/Velvet.apk (offset 0x346b000)
    #01 pc 00000000001845cc  /system/priv-app/Velvet/Velvet.apk (offset 0x346b000)
    #02 pc 00000000001847e4  /system/priv-app/Velvet/Velvet.apk (offset 0x346b000)
    #03 pc 00000000001805c0  /system/priv-app/Velvet/Velvet.apk (offset 0x346b000) (Java_com_google_speech_recognizer_AbstractRecognizer_nativeRun+176)

Les frames 00 à 03 proviennent du code JNI natif qui a été stocké non compressé dans l'APK pour économiser de l'espace disque au lieu d'être extrait dans un fichier .so distinct. L'outil de débogage de la pile sous Android 9 et versions ultérieures n'a pas besoin du fichier .so extrait pour gérer ce cas courant spécifique à Android.

Les frames 00 à 02 ne comportent pas de noms de symboles, car ils ont été supprimés par le développeur.

Le frame 03 montre que lorsque des symboles sont disponibles, le dévidoir les utilise.

    #04 pc 0000000000117550  /data/dalvik-cache/arm64/system@priv-app@Velvet@Velvet.apk@classes.dex (offset 0x108000) (com.google.speech.recognizer.AbstractRecognizer.nativeRun+160)

Le frame 04 est un code Java compilé à l'avance. L'ancien outil de désenroulement se serait arrêté ici, incapable de désenrouler via Java.

    #05 pc 0000000000559f88  /system/lib64/libart.so (art_quick_invoke_stub+584)
    #06 pc 00000000000ced40  /system/lib64/libart.so (art::ArtMethod::Invoke(art::Thread*, unsigned int*, unsigned int, art::JValue*, char const*)+200)
    #07 pc 0000000000280cf0  /system/lib64/libart.so (art::interpreter::ArtInterpreterToCompiledCodeBridge(art::Thread*, art::ArtMethod*, art::ShadowFrame*, unsigned short, art::JValue*)+344)
    #08 pc 000000000027acac  /system/lib64/libart.so (bool art::interpreter::DoCall<false, false>(art::ArtMethod*, art::Thread*, art::ShadowFrame&, art::Instruction const*, unsigned short, art::JValue*)+948)
    #09 pc 000000000052abc0  /system/lib64/libart.so (MterpInvokeDirect+296)
    #10 pc 000000000054c614  /system/lib64/libart.so (ExecuteMterpImpl+14484)

Les frames 5 à 10 proviennent de l'implémentation de l'interpréteur ART. Le débogueur de pile des versions antérieures à Android 9 aurait affiché ces frames sans le contexte du frame 11 expliquant le code que l'interpréteur interprétait. Ces cadres sont utiles si vous déboguez ART lui-même. Si vous déboguez une application, vous pouvez les ignorer. Certains outils, tels que simpleperf, omettent automatiquement ces cadres.

    #11 pc 00000000001992d6  /system/priv-app/Velvet/Velvet.apk (offset 0x26cf000) (com.google.speech.recognizer.AbstractRecognizer.run+18)

Le frame 11 correspond au code Java en cours d'interprétation.

    #12 pc 00000000002547a8  /system/lib64/libart.so (_ZN3art11interpreterL7ExecuteEPNS_6ThreadERKNS_20CodeItemDataAccessorERNS_11ShadowFrameENS_6JValueEb.llvm.780698333+496)
    #13 pc 000000000025a328  /system/lib64/libart.so (art::interpreter::ArtInterpreterToInterpreterBridge(art::Thread*, art::CodeItemDataAccessor const&, art::ShadowFrame*, art::JValue*)+216)
    #14 pc 000000000027ac90  /system/lib64/libart.so (bool art::interpreter::DoCall<false, false>(art::ArtMethod*, art::Thread*, art::ShadowFrame&, art::Instruction const*, unsigned short, art::JValue*)+920)
    #15 pc 0000000000529880  /system/lib64/libart.so (MterpInvokeVirtual+584)
    #16 pc 000000000054c514  /system/lib64/libart.so (ExecuteMterpImpl+14228)

Les frames 12 à 16 correspondent à l'implémentation de l'interprète elle-même.

    #17 pc 00000000002454a0  /system/priv-app/Velvet/Velvet.apk (offset 0x1322000) (com.google.android.apps.gsa.speech.e.c.c.call+28)

Le frame 17 correspond au code Java en cours d'interprétation. Cette méthode Java correspond aux frames d'interprète 12 à 16.

    #18 pc 00000000002547a8  /system/lib64/libart.so (_ZN3art11interpreterL7ExecuteEPNS_6ThreadERKNS_20CodeItemDataAccessorERNS_11ShadowFrameENS_6JValueEb.llvm.780698333+496)
    #19 pc 0000000000519fd8  /system/lib64/libart.so (artQuickToInterpreterBridge+1032)
    #20 pc 00000000005630fc  /system/lib64/libart.so (art_quick_to_interpreter_bridge+92)

Les frames 18 à 20 correspondent à la VM elle-même, c'est-à-dire au code permettant de passer du code Java compilé au code Java interprété.

    #21 pc 00000000002ce44c  /system/framework/arm64/boot.oat (offset 0xdc000) (java.util.concurrent.FutureTask.run+204)

Le frame 21 est la méthode Java compilée qui appelle la méthode Java dans le frame 17.

    #22 pc 0000000000559f88  /system/lib64/libart.so (art_quick_invoke_stub+584)
    #23 pc 00000000000ced40  /system/lib64/libart.so (art::ArtMethod::Invoke(art::Thread*, unsigned int*, unsigned int, art::JValue*, char const*)+200)
    #24 pc 0000000000280cf0  /system/lib64/libart.so (art::interpreter::ArtInterpreterToCompiledCodeBridge(art::Thread*, art::ArtMethod*, art::ShadowFrame*, unsigned short, art::JValue*)+344)
    #25 pc 000000000027acac  /system/lib64/libart.so (bool art::interpreter::DoCall<false, false>(art::ArtMethod*, art::Thread*, art::ShadowFrame&, art::Instruction const*, unsigned short, art::JValue*)+948)
    #26 pc 0000000000529880  /system/lib64/libart.so (MterpInvokeVirtual+584)
    #27 pc 000000000054c514  /system/lib64/libart.so (ExecuteMterpImpl+14228)

Les frames 22 à 27 correspondent à l'implémentation de l'interpréteur, qui effectue une invocation de méthode à partir d'un code interprété vers une méthode compilée.

    #28 pc 00000000003ed69e  /system/priv-app/Velvet/Velvet.apk (com.google.android.apps.gsa.shared.util.concurrent.b.e.run+22)

Le frame 28 correspond au code Java en cours d'interprétation.

    #29 pc 00000000002547a8  /system/lib64/libart.so (_ZN3art11interpreterL7ExecuteEPNS_6ThreadERKNS_20CodeItemDataAccessorERNS_11ShadowFrameENS_6JValueEb.llvm.780698333+496)
    #30 pc 0000000000519fd8  /system/lib64/libart.so (artQuickToInterpreterBridge+1032)
    #31 pc 00000000005630fc  /system/lib64/libart.so (art_quick_to_interpreter_bridge+92)

Les images 29 à 31 constituent une autre transition entre le code compilé et le code interprété.

    #32 pc 0000000000329284  /system/framework/arm64/boot.oat (offset 0xdc000) (java.util.concurrent.ThreadPoolExecutor.runWorker+996)
    #33 pc 00000000003262a0  /system/framework/arm64/boot.oat (offset 0xdc000) (java.util.concurrent.ThreadPoolExecutor$Worker.run+64)
    #34 pc 00000000002037e8  /system/framework/arm64/boot.oat (offset 0xdc000) (java.lang.Thread.run+72)

Les frames 32 à 34 sont des frames Java compilés qui s'appellent directement les uns les autres. Dans ce cas, la pile d'appels native est identique à la pile d'appels Java.

    #35 pc 0000000000559f88  /system/lib64/libart.so (art_quick_invoke_stub+584)
    #36 pc 00000000000ced40  /system/lib64/libart.so (art::ArtMethod::Invoke(art::Thread*, unsigned int*, unsigned int, art::JValue*, char const*)+200)
    #37 pc 0000000000280cf0  /system/lib64/libart.so (art::interpreter::ArtInterpreterToCompiledCodeBridge(art::Thread*, art::ArtMethod*, art::ShadowFrame*, unsigned short, art::JValue*)+344)
    #38 pc 000000000027acac  /system/lib64/libart.so (bool art::interpreter::DoCall<false, false>(art::ArtMethod*, art::Thread*, art::ShadowFrame&, art::Instruction const*, unsigned short, art::JValue*)+948)
    #39 pc 0000000000529f10  /system/lib64/libart.so (MterpInvokeSuper+1408)
    #40 pc 000000000054c594  /system/lib64/libart.so (ExecuteMterpImpl+14356)

Les cadres 35 à 40 correspondent à l'interprète lui-même.

    #41 pc 00000000003ed8e0  /system/priv-app/Velvet/Velvet.apk (com.google.android.apps.gsa.shared.util.concurrent.b.i.run+20)

Le frame 41 correspond au code Java en cours d'interprétation.

    #42 pc 00000000002547a8  /system/lib64/libart.so (_ZN3art11interpreterL7ExecuteEPNS_6ThreadERKNS_20CodeItemDataAccessorERNS_11ShadowFrameENS_6JValueEb.llvm.780698333+496)
    #43 pc 0000000000519fd8  /system/lib64/libart.so (artQuickToInterpreterBridge+1032)
    #44 pc 00000000005630fc  /system/lib64/libart.so (art_quick_to_interpreter_bridge+92)
    #45 pc 0000000000559f88  /system/lib64/libart.so (art_quick_invoke_stub+584)
    #46 pc 00000000000ced40  /system/lib64/libart.so (art::ArtMethod::Invoke(art::Thread*, unsigned int*, unsigned int, art::JValue*, char const*)+200)
    #47 pc 0000000000460d18  /system/lib64/libart.so (art::(anonymous namespace)::InvokeWithArgArray(art::ScopedObjectAccessAlreadyRunnable const&, art::ArtMethod*, art::(anonymous namespace)::ArgArray*, art::JValue*, char const*)+104)
    #48 pc 0000000000461de0  /system/lib64/libart.so (art::InvokeVirtualOrInterfaceWithJValues(art::ScopedObjectAccessAlreadyRunnable const&, _jobject*, _jmethodID*, jvalue*)+424)
    #49 pc 000000000048ccb0  /system/lib64/libart.so (art::Thread::CreateCallback(void*)+1120)

Les frames 42 à 49 correspondent à la VM elle-même. Cette fois, c'est le code qui commence à exécuter Java sur un nouveau thread.

    #50 pc 0000000000082e24  /system/lib64/libc.so (__pthread_start(void*)+36)
    #51 pc 00000000000233bc  /system/lib64/libc.so (__start_thread+68)

Les frames 50 à 51 sont la façon dont tous les threads doivent commencer. Il s'agit du code de démarrage du nouveau thread libc.