[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-08-05 (世界標準時間)。"],[],[],null,["# Binder overview\n\n*Binder* is a system for interprocess\ncommunication that lets two processes on an Android-powered device\ncommunicate. Binder provides a means to execute function calls in another\nprocess that is completely transparent to the caller.\n\nIn binder terms, the calling process is considered the *client* and its\nendpoint is called the *binder proxy* or *proxy* . Conversely,\nthe process being called is the *server* and its endpoint is called the\n*binder node* or *node*.\n\nEach node can expose and implement its own interface. And, using a proxy, the\nclient can execute methods on a node interface as though invocation was a\nlocal function call. The following example shows a method being invoked: \n\n int result = someNodeInterface.foo(a, b); // someNodeInterface is a proxy object\n\nAssume that the client calling `foo()` is running in process A and the server\nimplementing `foo()` is running in process B. Figure 1 shows how this call is\nexecuted:\n\n**Figure 1.** Binder call execution.\n\nTo execute a method in another process, as shown in figure 1,\nthe following occurs:\n\n1. The client code in process A invokes the proxy code in process A. The proxy code in process A creates a transaction containing the following items:\n - An identifier for the node\n - An identifier for the `foo()` method on the node\n - A buffer containing a copy of the arguments `a` and `b`\n2. The transaction is submitted to the binder kernel driver.\n3. The binder kernel driver determines that process B hosts the node.\n4. The kernel copies the entire transaction into process B's address space.\n5. The kernel finds a thread in process B to handle the transaction and passes the transaction to it.\n6. The thread unpacks the transaction, finds the node, and sends the transaction to the node object.\n7. The node object obtains the function identifier from the transaction, unpacks `a` and `b` from the transaction buffer, and stores `a` and `b` in local variables.\n8. The node object calls `foo(a, b)` on the server code in process B.\n9. The result of the call is returned in a reply transaction, which is passed to the kernel driver and then back to the calling proxy in process A.\n10. The proxy returns that result to the caller in process A.\n\nBinder use cases\n----------------\n\nBinder can be used in a variety of scenarios where communication between\nsoftware in different processes must occur. For example:\n\n- A camera app uses binder to communicate with the camera server in\n another process. The camera server then uses binder to communicate with the\n camera HAL in another process.\n\n- An app uses binder to communicate with a system server in another process. The\n system server uses binder to talk to HALs in other processes.\n\n- An app in one process uses binder to communicate with a different app in\n another process.\n\n- The system daemon responsible for installing, updating, and removing\n apps (`installd`) uses binder to communicate with the Android\n runtime daemon ('artd') to compile apps.\n\nAIDL and binder\n---------------\n\nUse the Android Interface Design Language (AIDL) to define programming\ninterfaces that use binder for IPC. For further information, see the\n[AIDL overview](/docs/core/architecture/aidl).\n| **Note:** HIDL is deprecated; only AIDL is recommended for new implementations."]]