Google is committed to advancing racial equity for Black communities. See how.
Esta página foi traduzida pela API Cloud Translation.
Switch to English

Depuração de código nativo da plataforma Android

Esta seção resume ferramentas úteis e comandos relacionados para depuração, rastreamento e criação de perfil de código nativo da plataforma Android ao desenvolver recursos de nível de plataforma.

Nota: As páginas nesta seção e em outras partes deste site recomendam o uso de adb em conjunto com o argumento setprop para depurar certos aspectos do Android. No Android 7.xe inferior, os nomes das propriedades tinham um limite de comprimento de 32 caracteres. Isso significava que, para criar uma propriedade wrap com o nome do aplicativo, era necessário truncar o nome para caber. No Android 8.0 e superior, esse limite é muito maior e não deve exigir truncamento.

Esta página cobre os fundamentos relacionados aos despejos de memória encontrados na saída do logcat. Outras páginas têm muito mais detalhes sobre como diagnosticar falhas nativas , explorar serviços de sistema com dumpsys , visualizar memória nativa , rede e uso de RAM , usar AddressSanitizer para detectar bugs de memória em código nativo, avaliar problemas de desempenho (inclui systrace ) e usar o depurador GNU (GDB) e outras ferramentas de depuração.

Crash dumps e tombstones

Quando um executável vinculado dinamicamente é iniciado, vários manipuladores de sinal são registrados que, no caso de uma falha, fazem com que um despejo de memória básico seja gravado no logcat e um arquivo de marca de exclusão mais detalhado seja gravado em /data/tombstones/ . A marca de exclusão é um arquivo com dados extras sobre o processo travado. Em particular, ele contém rastreamentos de pilha para todos os threads no processo de travamento (não apenas o thread que pegou o sinal), um mapa de memória completo e uma lista de todos os descritores de arquivo abertos.

Antes Android 8.0, falhas foram manipulados pelos debuggerd e debuggerd64 daemons. No Android 8.0 e superior, crash_dump32 e crash_dump64 são gerados conforme necessário.

É possível que o crash dumper seja anexado apenas se nada mais estiver conectado, o que significa que o uso de ferramentas como strace ou gdb evita que ocorram despejos de memória.

Exemplo de saída (com carimbos de data / hora e informações estranhas removidos):

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Build fingerprint: 'Android/aosp_angler/angler:7.1.1/NYC/enh12211018:eng/test-keys'
Revision: '0'
ABI: 'arm'
pid: 17946, tid: 17949, name: crasher  >>> crasher <<<
signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0xc
    r0 0000000c  r1 00000000  r2 00000000  r3 00000000
    r4 00000000  r5 0000000c  r6 eccdd920  r7 00000078
    r8 0000461a  r9 ffc78c19  sl ab209441  fp fffff924
    ip ed01b834  sp eccdd800  lr ecfa9a1f  pc ecfd693e  cpsr 600e0030

backtrace:
    #00 pc 0004793e  /system/lib/libc.so (pthread_mutex_lock+1)
    #01 pc 0001aa1b  /system/lib/libc.so (readdir+10)
    #02 pc 00001b91  /system/xbin/crasher (readdir_null+20)
    #03 pc 0000184b  /system/xbin/crasher (do_action+978)
    #04 pc 00001459  /system/xbin/crasher (thread_callback+24)
    #05 pc 00047317  /system/lib/libc.so (_ZL15__pthread_startPv+22)
    #06 pc 0001a7e5  /system/lib/libc.so (__start_thread+34)
Tombstone written to: /data/tombstones/tombstone_06

A última linha de saída fornece a localização da marca de exclusão completa no disco.

Se você tiver os binários não eliminados disponíveis, poderá obter um desenrolar mais detalhado com informações de número de linha colando a pilha em development/scripts/stack :

development/scripts/stack

Dica: Por conveniência, se você executou o lunch , a stack já está em seu $PATH portanto, não é necessário fornecer o caminho completo.

Saída de exemplo (com base na saída do logcat acima):

Reading native crash info from stdin
03-02 23:53:49.477 17951 17951 F DEBUG   : *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
03-02 23:53:49.477 17951 17951 F DEBUG   : Build fingerprint: 'Android/aosp_angler/angler:7.1.1/NYC/enh12211018:eng/test-keys'
03-02 23:53:49.477 17951 17951 F DEBUG   : Revision: '0'
03-02 23:53:49.477 17951 17951 F DEBUG   : ABI: 'arm'
03-02 23:53:49.478 17951 17951 F DEBUG   : pid: 17946, tid: 17949, name: crasher  >>> crasher <<<
03-02 23:53:49.478 17951 17951 F DEBUG   : signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0xc
03-02 23:53:49.478 17951 17951 F DEBUG   :     r0 0000000c  r1 00000000  r2 00000000  r3 00000000
03-02 23:53:49.478 17951 17951 F DEBUG   :     r4 00000000  r5 0000000c  r6 eccdd920  r7 00000078
03-02 23:53:49.478 17951 17951 F DEBUG   :     r8 0000461a  r9 ffc78c19  sl ab209441  fp fffff924
03-02 23:53:49.478 17951 17951 F DEBUG   :     ip ed01b834  sp eccdd800  lr ecfa9a1f  pc ecfd693e  cpsr 600e0030
03-02 23:53:49.491 17951 17951 F DEBUG   :
03-02 23:53:49.491 17951 17951 F DEBUG   : backtrace:
03-02 23:53:49.492 17951 17951 F DEBUG   :     #00 pc 0004793e  /system/lib/libc.so (pthread_mutex_lock+1)
03-02 23:53:49.492 17951 17951 F DEBUG   :     #01 pc 0001aa1b  /system/lib/libc.so (readdir+10)
03-02 23:53:49.492 17951 17951 F DEBUG   :     #02 pc 00001b91  /system/xbin/crasher (readdir_null+20)
03-02 23:53:49.492 17951 17951 F DEBUG   :     #03 pc 0000184b  /system/xbin/crasher (do_action+978)
03-02 23:53:49.492 17951 17951 F DEBUG   :     #04 pc 00001459  /system/xbin/crasher (thread_callback+24)
03-02 23:53:49.492 17951 17951 F DEBUG   :     #05 pc 00047317  /system/lib/libc.so (_ZL15__pthread_startPv+22)
03-02 23:53:49.492 17951 17951 F DEBUG   :     #06 pc 0001a7e5  /system/lib/libc.so (__start_thread+34)
03-02 23:53:49.492 17951 17951 F DEBUG   :     Tombstone written to: /data/tombstones/tombstone_06
Reading symbols from /huge-ssd/aosp-arm64/out/target/product/angler/symbols
Revision: '0'
pid: 17946, tid: 17949, name: crasher  >>> crasher <<<
signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0xc
     r0 0000000c  r1 00000000  r2 00000000  r3 00000000
     r4 00000000  r5 0000000c  r6 eccdd920  r7 00000078
     r8 0000461a  r9 ffc78c19  sl ab209441  fp fffff924
     ip ed01b834  sp eccdd800  lr ecfa9a1f  pc ecfd693e  cpsr 600e0030
Using arm toolchain from: /huge-ssd/aosp-arm64/prebuilts/gcc/linux-x86/arm/arm-linux-androideabi-4.9/bin/

Stack Trace:
  RELADDR   FUNCTION                   FILE:LINE
  0004793e  pthread_mutex_lock+2       bionic/libc/bionic/pthread_mutex.cpp:515
  v------>  ScopedPthreadMutexLocker   bionic/libc/private/ScopedPthreadMutexLocker.h:27
  0001aa1b  readdir+10                 bionic/libc/bionic/dirent.cpp:120
  00001b91  readdir_null+20            system/core/debuggerd/crasher.cpp:131
  0000184b  do_action+978              system/core/debuggerd/crasher.cpp:228
  00001459  thread_callback+24         system/core/debuggerd/crasher.cpp:90
  00047317  __pthread_start(void*)+22  bionic/libc/bionic/pthread_create.cpp:202 (discriminator 1)
  0001a7e5  __start_thread+34          bionic/libc/bionic/clone.cpp:46 (discriminator 1)

Você pode usar stack em uma lápide inteira. Exemplo:

stack < FS/data/tombstones/tombstone_05

Isso é útil se você acabou de descompactar um relatório de bug no diretório atual. Para obter mais informações sobre como diagnosticar falhas e marcas de exclusão nativas, consulte Diagnosticando falhas nativas .

Obter um rastreamento de pilha / marca para exclusão de um processo em execução

Você pode usar a ferramenta debuggerd para obter um despejo de pilha de um processo em execução. Na linha de comando, execute debuggerd usando um ID de processo (PID) para despejar uma marca de exclusão completa para stdout . Para obter apenas a pilha para cada thread no processo, inclua o sinalizador -b ou --backtrace .

Compreender um relaxamento complexo

Quando um aplicativo falha, a pilha tende a ser bem complexa. O exemplo detalhado a seguir destaca muitas das complexidades:

    #00 pc 00000000007e6918  /system/priv-app/Velvet/Velvet.apk (offset 0x346b000)
    #01 pc 00000000001845cc  /system/priv-app/Velvet/Velvet.apk (offset 0x346b000)
    #02 pc 00000000001847e4  /system/priv-app/Velvet/Velvet.apk (offset 0x346b000)
    #03 pc 00000000001805c0  /system/priv-app/Velvet/Velvet.apk (offset 0x346b000) (Java_com_google_speech_recognizer_AbstractRecognizer_nativeRun+176)

Os quadros # 00– # 03 são do código JNI nativo que foi armazenado descompactado no APK para economizar espaço em disco, em vez de ser extraído em um arquivo .so separado. O desenrolador de pilha no Android 9 e superior não precisa do arquivo .so extraído para lidar com esse caso comum específico do Android.

Os quadros # 00– # 02 não têm nomes de símbolo porque foram removidos pelo desenvolvedor.

O quadro # 03 mostra que, onde os símbolos estão disponíveis, o desenrolador os usa.

    #04 pc 0000000000117550  /data/dalvik-cache/arm64/system@priv-app@Velvet@Velvet.apk@classes.dex (offset 0x108000) (com.google.speech.recognizer.AbstractRecognizer.nativeRun+160)

O Frame # 04 é um código Java compilado antecipadamente. O antigo desenrolador teria parado aqui, incapaz de se desenrolar em Java.

    #05 pc 0000000000559f88  /system/lib64/libart.so (art_quick_invoke_stub+584)
    #06 pc 00000000000ced40  /system/lib64/libart.so (art::ArtMethod::Invoke(art::Thread*, unsigned int*, unsigned int, art::JValue*, char const*)+200)
    #07 pc 0000000000280cf0  /system/lib64/libart.so (art::interpreter::ArtInterpreterToCompiledCodeBridge(art::Thread*, art::ArtMethod*, art::ShadowFrame*, unsigned short, art::JValue*)+344)
    #08 pc 000000000027acac  /system/lib64/libart.so (bool art::interpreter::DoCall<false, false>(art::ArtMethod*, art::Thread*, art::ShadowFrame&, art::Instruction const*, unsigned short, art::JValue*)+948)
    #09 pc 000000000052abc0  /system/lib64/libart.so (MterpInvokeDirect+296)
    #10 pc 000000000054c614  /system/lib64/libart.so (ExecuteMterpImpl+14484)

Os quadros # 05– # 10 são da implementação do interpretador ART. O desenrolador de pilha em versões anteriores ao Android 9 teria mostrado esses quadros sem o contexto do quadro # 11 explicando qual código o interpretador estava interpretando. Esses quadros são úteis se você estiver depurando o próprio ART. Se você estiver depurando um aplicativo, poderá ignorá-los. Algumas ferramentas, como o simpleperf , omitem automaticamente esses quadros.

    #11 pc 00000000001992d6  /system/priv-app/Velvet/Velvet.apk (offset 0x26cf000) (com.google.speech.recognizer.AbstractRecognizer.run+18)

Frame # 11 é o código Java sendo interpretado.

    #12 pc 00000000002547a8  /system/lib64/libart.so (_ZN3art11interpreterL7ExecuteEPNS_6ThreadERKNS_20CodeItemDataAccessorERNS_11ShadowFrameENS_6JValueEb.llvm.780698333+496)
    #13 pc 000000000025a328  /system/lib64/libart.so (art::interpreter::ArtInterpreterToInterpreterBridge(art::Thread*, art::CodeItemDataAccessor const&, art::ShadowFrame*, art::JValue*)+216)
    #14 pc 000000000027ac90  /system/lib64/libart.so (bool art::interpreter::DoCall<false, false>(art::ArtMethod*, art::Thread*, art::ShadowFrame&, art::Instruction const*, unsigned short, art::JValue*)+920)
    #15 pc 0000000000529880  /system/lib64/libart.so (MterpInvokeVirtual+584)
    #16 pc 000000000054c514  /system/lib64/libart.so (ExecuteMterpImpl+14228)

Os quadros 12–16 são a própria implementação do interpretador.

    #17 pc 00000000002454a0  /system/priv-app/Velvet/Velvet.apk (offset 0x1322000) (com.google.android.apps.gsa.speech.e.c.c.call+28)

Frame # 17 é o código Java sendo interpretado. Este método Java corresponde aos quadros do interpretador # 12– # 16.

    #18 pc 00000000002547a8  /system/lib64/libart.so (_ZN3art11interpreterL7ExecuteEPNS_6ThreadERKNS_20CodeItemDataAccessorERNS_11ShadowFrameENS_6JValueEb.llvm.780698333+496)
    #19 pc 0000000000519fd8  /system/lib64/libart.so (artQuickToInterpreterBridge+1032)
    #20 pc 00000000005630fc  /system/lib64/libart.so (art_quick_to_interpreter_bridge+92)

Os quadros 18–20 são a própria VM, o código para a transição do código Java compilado para o código Java interpretado.

    #21 pc 00000000002ce44c  /system/framework/arm64/boot.oat (offset 0xdc000) (java.util.concurrent.FutureTask.run+204)

O Quadro # 21 é o método Java compilado que chama o método Java no # 17.

    #22 pc 0000000000559f88  /system/lib64/libart.so (art_quick_invoke_stub+584)
    #23 pc 00000000000ced40  /system/lib64/libart.so (art::ArtMethod::Invoke(art::Thread*, unsigned int*, unsigned int, art::JValue*, char const*)+200)
    #24 pc 0000000000280cf0  /system/lib64/libart.so (art::interpreter::ArtInterpreterToCompiledCodeBridge(art::Thread*, art::ArtMethod*, art::ShadowFrame*, unsigned short, art::JValue*)+344)
    #25 pc 000000000027acac  /system/lib64/libart.so (bool art::interpreter::DoCall<false, false>(art::ArtMethod*, art::Thread*, art::ShadowFrame&, art::Instruction const*, unsigned short, art::JValue*)+948)
    #26 pc 0000000000529880  /system/lib64/libart.so (MterpInvokeVirtual+584)
    #27 pc 000000000054c514  /system/lib64/libart.so (ExecuteMterpImpl+14228)

Os quadros 22–27 são a implementação do interpretador, fazendo uma invocação de método do código interpretado para um método compilado.

    #28 pc 00000000003ed69e  /system/priv-app/Velvet/Velvet.apk (com.google.android.apps.gsa.shared.util.concurrent.b.e.run+22)

O quadro # 28 é o código Java sendo interpretado.

    #29 pc 00000000002547a8  /system/lib64/libart.so (_ZN3art11interpreterL7ExecuteEPNS_6ThreadERKNS_20CodeItemDataAccessorERNS_11ShadowFrameENS_6JValueEb.llvm.780698333+496)
    #30 pc 0000000000519fd8  /system/lib64/libart.so (artQuickToInterpreterBridge+1032)
    #31 pc 00000000005630fc  /system/lib64/libart.so (art_quick_to_interpreter_bridge+92)

Os frames # 29– # 31 são outra transição entre o código compilado e o código interpretado.

    #32 pc 0000000000329284  /system/framework/arm64/boot.oat (offset 0xdc000) (java.util.concurrent.ThreadPoolExecutor.runWorker+996)
    #33 pc 00000000003262a0  /system/framework/arm64/boot.oat (offset 0xdc000) (java.util.concurrent.ThreadPoolExecutor$Worker.run+64)
    #34 pc 00000000002037e8  /system/framework/arm64/boot.oat (offset 0xdc000) (java.lang.Thread.run+72)

Os frames # 32– # 34 são frames Java compilados chamando uns aos outros diretamente. Nesse caso, a pilha de chamadas nativa é igual à pilha de chamadas Java.

    #35 pc 0000000000559f88  /system/lib64/libart.so (art_quick_invoke_stub+584)
    #36 pc 00000000000ced40  /system/lib64/libart.so (art::ArtMethod::Invoke(art::Thread*, unsigned int*, unsigned int, art::JValue*, char const*)+200)
    #37 pc 0000000000280cf0  /system/lib64/libart.so (art::interpreter::ArtInterpreterToCompiledCodeBridge(art::Thread*, art::ArtMethod*, art::ShadowFrame*, unsigned short, art::JValue*)+344)
    #38 pc 000000000027acac  /system/lib64/libart.so (bool art::interpreter::DoCall<false, false>(art::ArtMethod*, art::Thread*, art::ShadowFrame&, art::Instruction const*, unsigned short, art::JValue*)+948)
    #39 pc 0000000000529f10  /system/lib64/libart.so (MterpInvokeSuper+1408)
    #40 pc 000000000054c594  /system/lib64/libart.so (ExecuteMterpImpl+14356)

Os quadros # 35– # 40 são o próprio intérprete.

    #41 pc 00000000003ed8e0  /system/priv-app/Velvet/Velvet.apk (com.google.android.apps.gsa.shared.util.concurrent.b.i.run+20)

Frame # 41 é o código Java sendo interpretado.

    #42 pc 00000000002547a8  /system/lib64/libart.so (_ZN3art11interpreterL7ExecuteEPNS_6ThreadERKNS_20CodeItemDataAccessorERNS_11ShadowFrameENS_6JValueEb.llvm.780698333+496)
    #43 pc 0000000000519fd8  /system/lib64/libart.so (artQuickToInterpreterBridge+1032)
    #44 pc 00000000005630fc  /system/lib64/libart.so (art_quick_to_interpreter_bridge+92)
    #45 pc 0000000000559f88  /system/lib64/libart.so (art_quick_invoke_stub+584)
    #46 pc 00000000000ced40  /system/lib64/libart.so (art::ArtMethod::Invoke(art::Thread*, unsigned int*, unsigned int, art::JValue*, char const*)+200)
    #47 pc 0000000000460d18  /system/lib64/libart.so (art::(anonymous namespace)::InvokeWithArgArray(art::ScopedObjectAccessAlreadyRunnable const&, art::ArtMethod*, art::(anonymous namespace)::ArgArray*, art::JValue*, char const*)+104)
    #48 pc 0000000000461de0  /system/lib64/libart.so (art::InvokeVirtualOrInterfaceWithJValues(art::ScopedObjectAccessAlreadyRunnable const&, _jobject*, _jmethodID*, jvalue*)+424)
    #49 pc 000000000048ccb0  /system/lib64/libart.so (art::Thread::CreateCallback(void*)+1120)

Os frames # 42– # 49 são a própria VM. Desta vez, é o código que começa a executar o Java em um novo encadeamento.

    #50 pc 0000000000082e24  /system/lib64/libc.so (__pthread_start(void*)+36)
    #51 pc 00000000000233bc  /system/lib64/libc.so (__start_thread+68)

Os frames # 50– # 51 são como todos os threads devem começar. Este é o novo código de início de thread da libc .